"Kernel methods in machine learning" Homework 4
 Due March 10, 2021, 3pm

Julien Mairal and Jean-Philippe Vert

Exercice 1. B_{n}-splines

The convolution between two functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ is defined by:

$$
f \star g(x)=\int_{-\infty}^{\infty} f(u) g(x-u) d u
$$

when this integral exists.
Let now the function:

$$
I(x)= \begin{cases}1 & \text { si }-1 \leq x \leq 1 \\ 0 & \text { si } x<-1 \text { ou } x>1\end{cases}
$$

and $B_{n}=I^{\star n}$ for $n \in \mathbb{N}_{*}$ (that is, the function I convolved n times with itself: $B_{1}=I, B_{2}=I \star I, B_{3}=I \star I \star I$, etc...).

Is the function $k(x, y)=B_{n}(x-y)$ a positive definite kernel over $\mathbb{R} \times \mathbb{R}$? If yes, describe the corresponding reproducing kernel Hilbert space.

Exercice 2. Diffusion kernel on a grid

Let $0=\lambda_{1} \leq \ldots \leq \lambda_{n} \in \mathbb{R}$ be the eigenvalues and $e_{1}, \ldots, e_{n} \in \mathbb{R}^{n}$ the eigenvectors of the Laplacian L_{1} of the line graph with n vertices ${ }^{1}$.

1. Show that the eigenvalues of the Laplacian L_{2} of the $n \times n$ square grid ${ }^{2}$ are $\lambda_{i j}=\lambda_{i}+\lambda_{j}$ for $i, j=1, \ldots, n$, and compute the corresponding eigenvectors $e_{i j} \in \mathbb{R}^{n^{2}}$ as a function of e_{i} and e_{j}.

[^0]2. Let $K_{1}=e^{-t L_{1}} \in \mathbb{R}^{n \times n}$ and $K_{2}=e^{-t L_{2}} \in \mathbb{R}^{n^{2} \times n^{2}}$ be diffusion kernels, respectively on the line graph and on the square grid. Show that, for any $i, j, k, l \in\{1, \ldots, n\}$,
$$
K_{2}((i, j),(k, l))=K_{1}(i, k) K_{1}(j, l)
$$
3. Assuming the complexity of computing the exponential of an $n \times n$ matrix is $O\left(n^{3}\right)$, what is the complexity of computing K_{1} ? Of computing K_{2} ?

[^0]: ${ }^{1}$ Vertices $V_{1}=\{1, \ldots, n\}$, edges $E_{1}=\left\{(i, j) \in V_{1} \times V_{1}\right.$ such that $\left.|i-j|=1\right\}$.
 ${ }^{2}$ Vertices $V_{2}=V_{1} \times V_{1}$, edges $E_{2}=\left\{\left((i, j),\left(i^{\prime}, j^{\prime}\right)\right) \in V_{2} \times V_{2}\right.$ such that $\left|i-i^{\prime}\right|+\left|j-j^{\prime}\right|=$ 1\}

