
”Kernel methods in machine learning”
Final Homework

Due March 31st, 2021, 11:59pm

Julien Mairal and Jean-Philippe Vert

Exercice 1. Positive definiteness
Are the following kernels, defined on X = R+ positive definite?
K1(x, x

′) = 2x−x
′
;

K2(x, x
′) = 2x+x

′
;

K3(x, x
′) = 2xx

′
;

K4(x, x
′) = log(1 + xx′);

K5(x, x
′) = max(x, x′)

K6(x, x
′) = min(f(x)g(x′), f(x′)g(x)) where f, g are non-negative functions.

You need to provide short proofs.

Exercice 2. Kernels encoding equivalence classes.
Consider a similarity measure K : X × X → {0, 1} with K(x, x) = 1 for all
x in X . Prove that K is p.d. if and only if, for all x, x′, x′′ in X ,

• K(x, x′) = 1⇔ K(x′, x) = 1, and

• K(x, x′) = K(x′, x′′) = 1⇒ K(x, x′′) = 1.

Exercice 3. Kernel mean embedding
Let us consider a Borel probability measure P of some random variable X
on a compact set X . Let K : X × X → R be a continuous, bounded, p.d.
kernel and H be its RKHS. The kernel mean embedding of P is defined as
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the function

µ(P ) : X → R
y 7→ EX∼P [K(X, y)].

1. Show that µ(P ) is in H and that EX∼P [f(X)] = 〈f, µ(P )〉H for any
f ∈ H.
Remark: If P and Q are two Borel probability measures, then

µ(P ) = µ(Q) implies {EX∼P [f(X)] = EX∼Q[f(X)] for all f ∈ H} .

When H is dense in the space of continuous bounded functions on X ,
this relation is sufficient to show that P = Q. Hence, the kernel mean
embedding (single point in the RKHS!) carries all information about the
distribution. We call such kernels “universal”. It is possible to show
that the Gaussian kernel is universal.

2. Consider the empirical distribution

PS =
1

n

n∑
i=1

δxi ,

where S = {x1, . . . , xn} is a finite subset of X and δxi is a Dirac distri-
bution centered at xi. Show that

ES [‖µ(P )− µ(PS)‖H] ≤
4
√

EK(X,X)√
n

,

where ES is the expectation by randomizing over the training set (each
xi is a r.v. distributed according to P ). Remember that you are allowed
to (and you should!) use any existing result from the slides.

3. Consider the quantity

MMD(S1,S2) = ‖µ(PS1)− µ(PS2)‖2H

for two sets S1 = (x1, . . . , xn) and S2 = (y1, . . . , ym). Show that

MMD(S1,S2) =

(
sup
‖f‖H≤1

{
1

n

n∑
i=1

f(xi)−
1

m

m∑
j=1

f(yj)

})2

,
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and give a formula for this quantity in terms of kernel evaluations only.
Remark: this is called the maximum mean discrepancy criterion, which
can be used for statistical testing (are S1 and S2 coming from the same
distribution?).

4. We consider X = Rd and the normalized Gaussian kernel with band-
width σ: K(x, y) = σ−d exp

(
−‖x−y‖

2

2σ2

)
. For any two sets S1 and S2,

show that MMD(S1,S2) is a decreasing function of σ.

Exercice 4. Properties of the dot-product kernel
Consider the dot-product kernel on the sphere K1 : Sp−1 × Sp−1 → R such
that for all pair of points x, x′ in Sp−1 (unit sphere of Rp),

K1(x, x
′) = κ(〈x, x′〉),

where κ : [−1, 1] → R is an infinitely differentiable function that admits a
polynomial expansion on [−1, 1]:

κ(u) =
+∞∑
i=0

aiu
i, (1)

where the ai’s are real coefficients and the sum above is always converging.

1. Show that if all coefficients ai are non-negative and κ 6= 0, then K1 is
p.d.

2. If K1 is p.d., show that the homogeneous dot-product kernel K2 : Rp×
Rp → R is also p.d..

K2(x, x
′) =

{
‖x‖‖x′‖κ

(
〈x,x′〉
‖x‖‖x′‖

)
if ‖x‖ 6= 0 and ‖x′‖ 6= 0

0 otherwise
.

Remark: it is in fact possible to show that all coefficients ai need to be
non-negative for the positive definiteness to hold for all dimension p,
but we do not ask for a proof of this result, which is due to Shoenberg,
1942.
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3. Assume that all coefficients ai are non-negative (K1 is thus p.d.) and
that κ(1) = κ′(1) = 1. Let H be the RKHS of K1 and consider its
RKHS mapping ϕ : Sp−1 → H such that K1(x, x

′) = 〈ϕ(x), ϕ(x′)〉H for
all x, x′ in Sp−1. Show that:

∀x, x′ ∈ Sp−1 , ‖ϕ(x)− ϕ(x′)‖H ≤ ‖x− x′‖.

4. Find an explicit feature map ψ : Sp−1 → `2, where `2 is the Hilbert
space of real-valued sequences (see definition on slide 240), such that
for all x, y in Sp−1

K1(x, y) = 〈ψ(x), ψ(y)〉`2 .

Hint: remember that 〈x, y〉2 = 〈xx>, yy>〉F, where 〈., 〉F is the Frobenius
inner-product. You may want to use the tensor product notation x⊗2 =
xx> and its generalization for degrees higher than 2.

5. Let us assume that you have found an explicit feature map ψ in the
previous question. Remember from one of our previous homeworks that
the RKHS H of K1 can be characterized by

H = {fw : w ∈ `2} such that fw : x 7→ 〈w,ψ(x)〉`2 ,

with
‖fw‖2H = inf

w′∈`2

{
‖w′‖2`2 : fw = fw′

}
.

Consider then a function gz : Sp−1 → R of the form

gz : x 7→ σ(〈z, x〉)

with z in Sp−1 and σ admits a polynomial expansion σ(u) =
∑+∞

i=0 biu
i.

Could you find a sufficient condition on z and on the coefficients bi
for gz to be in H?

Remark: gz can be interpreted as a one-layer neural network function.
We could ask you to do the same analysis for the homogeneous kernel
K2, but this would be unnecessary technical for this homework which
is already too long. This being said, if you found it too short, we’re
happy to see your analysis of K2 and the type of functions gz you will
consider.
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