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Recall the definition of an RKHS:

Definition 1. Let X be a set and H ⊂ RX be a class of functions forming a Hilbert space with inner
product 〈., .〉H . The function K : X 2 7→ R is called a reproducing kernel (r.k.) of H if

1. H contains all functions of the form

∀x ∈ X , Kx : t 7→ K (x, t) . (1)

2. For every x ∈ X and f ∈H the reproducing property holds:

f (x) = 〈 f ,Kx〉H . (2)

If a r.k. exists, then H is called a reproducing kernel Hilbert space (RKHS).

Remember that an RKHS has the following property

Theorem 1. A Hilbert space of functions H ⊂ RX is a RKHS if and only if for any x ∈ X , the mapping
f 7→ f (x) (from H to R) is continuous.

Suppose a sequence of function ( fn)n∈N converges in a RKHS to a function f ∈ H . Then the
functions ( fn− f ) converges to 0 in the RKHS sense, from which we deduce that fn(x)− f (x) also
converges to 0 for any x ∈ X , by continuity of the evaluations functionals. This proves that:

Corollary 1. Convergence in a RKHS implies pointwise convergence on any point, i.e., if fn converges
to f ∈H , then fn(x) converges to f (x) for any x ∈ X .

We now detail the proof of the following result, due to ?, which shows that there is a one-to-one
correspondance between RKHS and r.k. It allows us to talk about ”the” RHKS associated to a r.k., and
conversely to ”the” r.k. associated to a RKHS.

Theorem 2. 1. If a r.k. exists for a Hilbert space H ⊂ RX , then it is unique.

2. Conversely, if two RKHS have the same r.k., then they are equal.

Proof. To prove 1., let H be a RKHS with two r.k. kernels K and K′. For any two points x,y ∈ X , we
need to show that K (x,y) = K′ (x,y). By the first property of RKHS, we know that the functions Kx and
K′x are in H , and using the second property we obtain:

‖Kx−K′x ‖2
H =

〈
Kx−K′x,Kx−K′x

〉
H

=
〈
Kx−K′x,Kx

〉
H −

〈
Kx−K′x,K

′
x
〉

H

= Kx (x)−K′x (x)−Kx (x)+K′x (x)
= 0 .

1



Jean-Philippe VERT 2

H being a Hilbert space, only the zero function has a norm equal to 0. This shows that Kx = K′x as
functions, and in particular that Kx(y) = K′x(y), i.e., K (x,y) = K′ (x,y).
To prove the converse, let us first consider a RKHS H1 with r.k. K. By definition of the r.k., we know
that all the functions Kx for x ∈ X are in H1, therefore their linear span

H0 =

{
n

∑
i=1

αiKxi : n ∈ N,α1, . . . ,αn ∈ R,x1, . . . ,xn ∈ X

}

is a subspace of H1. Now we observe that if f ∈H1 is orthogonal to H0, then in particular it is orthogonal
to Kx for any x which implies f (x) = 〈 f ,Kx〉H1

= 0, i.e., f = 0. In other words, H0 is dense in H1.
Moreover the H1 norm for functions in H0 only depends on the r.k. K, because it is given for a function
f = ∑

n
i=1 αiKxi ∈H0 by

‖ f ‖2
H1

=
n

∑
i=1

n

∑
j=1

αiα j
〈
Kxi ,Kx j

〉
H1

=
n

∑
i=1

n

∑
j=1

αiα jK(xi,x j) .

(3)

Suppose now that H2 is also a RKHS that admits K as r.k. Then by the same argument, the space H0
is dense in H2, and the H2 norm in H0 is given by (3). In particular, for any f ∈ H0, ‖ f ‖H1

= ‖ f ‖H2
.

Let now f ∈ H1. By density of H0 in H1, there is a sequence ( fn) in H0 such that ‖ fn− f ‖H1
→ 0.

The converging sequence ( fn) is in particular a Cauchy sequence for the H1 norm, and since this norm
coincides with the H2 norm on H0, ( fn) is also a Cauchy sequence for the H2 norm and converges
in H2 to a function g ∈ H2. By Corollary 1 applied to both H1 and H2, we see that, for any x ∈ X ,
limn→+∞ fn(x) = f (x) = g(x). In other words, f = g and therefore f ∈ H2. This shows that H1 ⊂ H2
and, by symmetry of the argument, in fact that H1 = H2. We now need to check that the norms in H1
and H2 coincide, which results from:

‖ f ‖H1
= lim

n→+∞
‖ fn ‖H1

= lim
n→+∞

‖ fn ‖H2
= ‖ f ‖H2

.


