Uniqueness of the RKHS

Jean-Philippe Vert

Recall the definition of an RKHS:

Definition 1. Let X be a set and $\mathcal{H} \subset \mathbb{R}^X$ be a class of functions forming a Hilbert space with inner product $\langle ., . \rangle_{\mathcal{H}}$. The function $K : X^2 \mapsto \mathbb{R}$ is called a reproducing kernel (r.k.) of \mathcal{H} if

1. H contains all functions of the form

$$\forall \mathbf{x} \in \mathcal{X}, \quad K_{\mathbf{x}} : \mathbf{t} \mapsto K(\mathbf{x}, \mathbf{t}) . \tag{1}$$

2. For every $\mathbf{x} \in X$ and $f \in \mathcal{H}$ the reproducing property holds:

$$f(\mathbf{x}) = \langle f, K_{\mathbf{x}} \rangle_{\mathcal{H}} \,. \tag{2}$$

If a r.k. exists, then \mathcal{H} is called a reproducing kernel Hilbert space (RKHS).

Remember that an RKHS has the following property

Theorem 1. A Hilbert space of functions $\mathcal{H} \subset \mathbb{R}^X$ is a RKHS if and only if for any $\mathbf{x} \in X$, the mapping $f \mapsto f(\mathbf{x})$ (from \mathcal{H} to \mathbb{R}) is continuous.

Suppose a sequence of function $(f_n)_{n \in \mathbb{N}}$ converges in a RKHS to a function $f \in \mathcal{H}$. Then the functions $(f_n - f)$ converges to 0 in the RKHS sense, from which we deduce that $f_n(x) - f(x)$ also converges to 0 for any $x \in \mathcal{X}$, by continuity of the evaluations functionals. This proves that:

Corollary 1. Convergence in a RKHS implies pointwise convergence on any point, i.e., if f_n converges to $f \in \mathcal{H}$, then $f_n(x)$ converges to f(x) for any $x \in X$.

We now detail the proof of the following result, due to **?**, which shows that there is a one-to-one correspondance between RKHS and r.k. It allows us to talk about "the" RHKS associated to a r.k., and conversely to "the" r.k. associated to a RKHS.

Theorem 2. 1. If a r.k. exists for a Hilbert space $\mathcal{H} \subset \mathbb{R}^X$, then it is unique.

2. Conversely, if two RKHS have the same r.k., then they are equal.

Proof. To prove 1., let \mathcal{H} be a RKHS with two r.k. kernels K and K'. For any two points $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, we need to show that $K(\mathbf{x}, \mathbf{y}) = K'(\mathbf{x}, \mathbf{y})$. By the first property of RKHS, we know that the functions $K_{\mathbf{x}}$ and $K'_{\mathbf{x}}$ are in \mathcal{H} , and using the second property we obtain:

$$\begin{split} \|K_{\mathbf{x}} - K'_{\mathbf{x}}\|_{\mathcal{H}}^{2} &= \left\langle K_{\mathbf{x}} - K'_{\mathbf{x}}, K_{\mathbf{x}} - K'_{\mathbf{x}} \right\rangle_{\mathcal{H}} \\ &= \left\langle K_{\mathbf{x}} - K'_{\mathbf{x}}, K_{\mathbf{x}} \right\rangle_{\mathcal{H}} - \left\langle K_{\mathbf{x}} - K'_{\mathbf{x}}, K'_{\mathbf{x}} \right\rangle_{\mathcal{H}} \\ &= K_{\mathbf{x}} \left(\mathbf{x} \right) - K'_{\mathbf{x}} \left(\mathbf{x} \right) - K_{\mathbf{x}} \left(\mathbf{x} \right) + K'_{\mathbf{x}} \left(\mathbf{x} \right) \\ &= 0 \,. \end{split}$$

 \mathcal{H} being a Hilbert space, only the zero function has a norm equal to 0. This shows that $K_{\mathbf{x}} = K'_{\mathbf{x}}$ as functions, and in particular that $K_{\mathbf{x}}(\mathbf{y}) = K'_{\mathbf{x}}(\mathbf{y})$, i.e., $K(\mathbf{x}, \mathbf{y}) = K'(\mathbf{x}, \mathbf{y})$.

To prove the converse, let us first consider a RKHS \mathcal{H}_1 with r.k. *K*. By definition of the r.k., we know that all the functions K_x for $x \in \mathcal{X}$ are in \mathcal{H}_1 , therefore their linear span

$$\mathcal{H}_0 = \left\{\sum_{i=1}^n \alpha_i K_{x_i} : n \in \mathbb{N}, \alpha_1, \dots, \alpha_n \in \mathbb{R}, x_1, \dots, x_n \in \mathcal{X}\right\}$$

is a subspace of \mathcal{H}_1 . Now we observe that if $f \in \mathcal{H}_1$ is orthogonal to \mathcal{H}_0 , then in particular it is orthogonal to K_x for any x which implies $f(x) = \langle f, K_x \rangle_{\mathcal{H}_1} = 0$, i.e., f = 0. In other words, \mathcal{H}_0 is dense in \mathcal{H}_1 . Moreover the \mathcal{H}_1 norm for functions in \mathcal{H}_0 only depends on the r.k. K, because it is given for a function $f = \sum_{i=1}^n \alpha_i K_{x_i} \in \mathcal{H}_0$ by

$$\|f\|_{\mathcal{H}_{I}}^{2} = \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} \langle K_{x_{i}}, K_{x_{j}} \rangle_{\mathcal{H}_{I}}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} K(x_{i}, x_{j}).$$
(3)

Suppose now that \mathcal{H}_2 is also a RKHS that admits *K* as r.k. Then by the same argument, the space \mathcal{H}_0 is dense in \mathcal{H}_2 , and the \mathcal{H}_2 norm in \mathcal{H}_0 is given by (3). In particular, for any $f \in \mathcal{H}_0$, $||f||_{\mathcal{H}_1} = ||f||_{\mathcal{H}_2}$. Let now $f \in \mathcal{H}_1$. By density of \mathcal{H}_0 in \mathcal{H}_1 , there is a sequence (f_n) in \mathcal{H}_0 such that $||f_n - f||_{\mathcal{H}_1} \to 0$. The converging sequence (f_n) is in particular a Cauchy sequence for the \mathcal{H}_1 norm, and since this norm coincides with the \mathcal{H}_2 norm on \mathcal{H}_0 , (f_n) is also a Cauchy sequence for the \mathcal{H}_2 norm and converges in \mathcal{H}_2 to a function $g \in \mathcal{H}_2$. By Corollary 1 applied to both \mathcal{H}_1 and \mathcal{H}_2 , we see that, for any $x \in X$, $\lim_{n \to +\infty} f_n(x) = f(x) = g(x)$. In other words, f = g and therefore $f \in \mathcal{H}_2$. This shows that $\mathcal{H}_1 \subset \mathcal{H}_2$ and, by symmetry of the argument, in fact that $\mathcal{H}_1 = \mathcal{H}_2$. We now need to check that the norms in \mathcal{H}_1 and \mathcal{H}_2 coincide, which results from:

$$||f||_{\mathcal{H}_1} = \lim_{n \to +\infty} ||f_n||_{\mathcal{H}_1} = \lim_{n \to +\infty} ||f_n||_{\mathcal{H}_2} = ||f||_{\mathcal{H}_2}.$$