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Perception
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Communication
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Mobility
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Health

https://pct.mdanderson.org
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Reasoning
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A common process: learning from data

https://www.linkedin.com/pulse/supervised-machine-learning-pega-decisioning-solution-nizam-muhammad

Given examples (training data), make a machine learn how to
predict on new samples, or discover patterns in data

Statistics + optimization + computer science

Gets better with more training examples and bigger computers
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Large-scale ML?

X	 Y	

d	dimensions	 t	tasks	

n	
sa
m
pl
es
	

Iris dataset: n = 150, d = 4, t = 1

Cancer drug sensitivity: n = 1k, d = 1M, t = 100

Imagenet: n = 14M, d = 60k+, t = 22k

Shopping, e-marketing n = O(M), d = O(B), t = O(100M)

Astronomy, GAFA, web... n = O(B), d = O(B), t = O(B)

12 / 104



Today’s goals

1 Review a few standard ML techniques

2 Introduce a few ideas and techniques to scale them to modern, big
datasets
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Main ML paradigms

Unsupervised learning

Dimension reduction
Clustering
Density estimation
Feature learning

Supervised learning

Regression
Classification
Structured output classification

Semi-supervised learning

Reinforcement learning
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Motivation

X	 X’	

d	
n	 n	

k	<	d	

Dimension reduction

Preprocessing (remove noise, keep signal)

Visualization (k = 2, 3)

Discover structure
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PCA definition

PC1PC2

Training set S = {x1, . . . , xn} ⊂ Rd

For i = 1, . . . , k ≤ d , PCi is the linear projection onto the direction
that captures the largest amount of variance and is orthogonal to
the previous ones:

ui ∈ argmax
‖ u ‖=1, u⊥{u1,...,ui−1}

n∑

i=1


x>i u − 1

n

n∑

j=1

x>j u




2
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PCA solution

PC1PC2

Let X̃ be the centered n × d data matrix

PCA solves, for i = 1, . . . , k ≤ d :

ui ∈ argmax
‖ u ‖=1, u⊥{u1,...,ui−1}

u>X̃>X̃ u

Solution: ui is the i-th eigenvector of C = X̃>X̃ , the empirical
covariance matrix
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PCA example
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●

●

setosa
versicolor
virginica

> data(iris)

> head(iris, 3)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa

2 4.9 3.0 1.4 0.2 setosa

3 4.7 3.2 1.3 0.2 setosa

> m <- princomp(log(iris[,1:4]))
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PCA complexity

Memory: store X and C : O(max(nd , d2))

Compute C : O(nd2)

Compute k eigenvectors of C (power method): O(kd2)

Computing C is more expensive than computing its eigenvectors (n > k)!

n = 1B, d = 100M
Store C: 40, 000TB
Compute C: 2× 1025FLOPS = 20yottaFLOPS (about 300 years of the
most powerful supercomputer in 2016)
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Motivation
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Motivation
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k-means definition

Training set S = {x1, . . . , xn} ⊂ Rd

Given k, find C = (C1, . . . ,Cn) ∈ {1, k}n that solves

min
C

n∑

i=1

‖ xi − µCi
‖2

where is the barycentre of data in class i .

This is an NP-hard problem. k-means finds an approximate solution
by iterating

1 Assignment step: fix µ, optimize C

∀i = 1, . . . , n, Ci ← arg min
c∈{1,...,k}

‖ xi − µg ‖

2 Update step

∀i = 1, . . . , k , µi ←
1

|Ci |
∑

j :Cj=i

xj
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k-means example
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> irisCluster <- kmeans(log(iris[, 1:4]), 3, nstart = 20)

> table(irisCluster$cluster, iris$Species)

setosa versicolor virginica

1 0 48 4

2 50 0 0

3 0 2 46
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k-means complexity

Each update step: O(nd)

Each assgnment step: O(ndk)
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Model

Training set S = {(x1, y1), . . . , (xn, yn)} ⊂ Rd × R
Fit a linear function:

fβ(x) = β>x

Goodness of fit measured by residual sum of squares:

RSS(β) =
n∑

i=1

(yi − fβ(xi ))2

Ridge regression minimizes the regularized RSS:

min
β

RSS(β) + λ

d∑

i=1

β2
i

Solution (set gradient to 0):

β̂ =
(
X>X + λI

)−1
X>Y
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Ridge regression complexity

Compute X>X : O(nd2)

Inverse
(
X>X + λI

)
: O(d3)

Computing X>X is more expensive than inverting it!

31 / 104



Outline

1 Introduction

2 Standard machine learning
Dimension reduction: PCA
Clustering: k-means
Regression: ridge regression
Classification: kNN, logistic regression and SVM
Nonlinear models: kernel methods

3 Large-scale machine learning

4 Conclusion

32 / 104



Motivation

Predict the category of a data

2 or more (sometimes many) categories

33 / 104



Motivation

Predict the category of a data

2 or more (sometimes many) categories

33 / 104



Motivation

Predict the category of a data

2 or more (sometimes many) categories

33 / 104



Motivation

Predict the category of a data

2 or more (sometimes many) categories

33 / 104



k-nearest neigbors (kNN)16 2. Overview of Supervised Learning

1−Nearest Neighbor Classifier
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FIGURE 2.3. The same classification example in two dimensions as in Fig-
ure 2.1. The classes are coded as a binary variable (BLUE = 0, ORANGE = 1), and
then predicted by 1-nearest-neighbor classification.

2.3.3 From Least Squares to Nearest Neighbors

The linear decision boundary from least squares is very smooth, and ap-
parently stable to fit. It does appear to rely heavily on the assumption
that a linear decision boundary is appropriate. In language we will develop
shortly, it has low variance and potentially high bias.

On the other hand, the k-nearest-neighbor procedures do not appear to
rely on any stringent assumptions about the underlying data, and can adapt
to any situation. However, any particular subregion of the decision bound-
ary depends on a handful of input points and their particular positions,
and is thus wiggly and unstable—high variance and low bias.

Each method has its own situations for which it works best; in particular
linear regression is more appropriate for Scenario 1 above, while nearest
neighbors are more suitable for Scenario 2. The time has come to expose
the oracle! The data in fact were simulated from a model somewhere be-
tween the two, but closer to Scenario 2. First we generated 10 means mk

from a bivariate Gaussian distribution N((1, 0)T , I) and labeled this class
BLUE. Similarly, 10 more were drawn from N((0, 1)T , I) and labeled class
ORANGE. Then for each class we generated 100 observations as follows: for
each observation, we picked an mk at random with probability 1/10, and

(Hastie et al. The elements of statistical learning. Springer, 2001.)

Training set S = {(x1, y1), . . . , (xn, yn)} ⊂ Rd × {−1, 1}
No training

Given a new point x ∈ Rd , predict the majority class among its k
nearest neighbors (take k odd)
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kNN properties

Uniform Bayes consistency [Stone, 1977]

Take k =
√
n (for example)

Let P be any distribution over (X ,Y ) pairs

Assume training data are random pairs sampled i.i.d. according to P

Then the k-NN classifier f̂n satisfies almost surely:

lim
n→+∞

P(f̂ (X ) 6= Y ) = inf
fmeasurable

P(f (X ) 6= Y )

Complexity:

Memory: story X is O(nd)

Training time: 0

Prediction: O(nd) for each test point
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Linear models for classification

Training set S = {(x1, y1), . . . , (xn, yn)} ⊂ Rd × {−1, 1}
Fit a linear function

fβ(x) = β>x

The prediction on a new point x ∈ Rd is:
{

+1 if fβ(x) > 0 ,

−1 otherwise.
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Large-margin classifiers

For any f : Rd → R, the margin of f on an (x , y) pair is

yf (x)

Large-margin classifiers fit a classifier by maximizing the margins on
the training set:

min
β

n∑

i=1

` (yi fβ(xi )) + λβ>β

for a convex, non-increasing loss function ` : R→ R+
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Loss function examples

Loss Method `(u)

0-1 none 1(u ≤ 0)
Hinge Support vector machine (SVM) max (1− u, 0)

Logistic Logistic regression log (1 + e−u)

Square Ridge regression (1− u)2
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Ridge logistic regression [Le Cessie and van Houwelingen,
1992]

min
β∈Rp

J(β) =
n∑

i=1

ln
(

1 + e−yiβ
>xi
)

+ λβ>β

Can be interpreted as a regularized conditional maximum likelihood
estimator

No explicit solution, but smooth convex optimization problem that
can be solved numerically by Newton-Raphson iterations:

βnew ← βold −
[
∇2
βJ
(
βold

)]−1
∇βJ

(
βold

)
.

Each iteration amounts to solving a weighted ridge regression
problem, hence the name iteratively reweighted least squares (IRLS).

Complexity O(iterations ∗ (nd2 + d3))
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SVM [Boser et al., 1992]

min
β∈Rp

n∑

i=1

max
(

0, 1− yiβ
>xi
)

+ λβ>β

A non-smooth convex optimization problem (convex quadratic
program)

Equivalent to the dual problem

max
α∈Rn

2α>Y − α>XX>α s.t. 0 ≤ yiαi ≤
1

2λ
for i = 1, . . . , n

The solution β∗ of the primal is obtained from the solution α∗ of
the dual:

β∗ = X>α∗ fβ∗(x) = (β∗)>x = (α∗)>Xx

Training complexity: O(n2) to store XX>, O(n3) to find α∗

Prediction: O(d) for (β∗)>x , O(nd) for (α∗)>Xx
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Outline

1 Introduction

2 Standard machine learning
Dimension reduction: PCA
Clustering: k-means
Regression: ridge regression
Classification: kNN, logistic regression and SVM
Nonlinear models: kernel methods

3 Large-scale machine learning

4 Conclusion
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Model

Learn a function f : Rd → R of the form

f (x) =
n∑

i=1

αiK (xi , x)

For a positive definite (p.d.) kernel K : Rd × Rd → R, such as

Linear K (x , x ′) = x>x ′

Polynomial K (x , x ′) =
(
x>x ′ + c

)p

Gaussian K (x , x ′) = exp

(‖ x − x ′ ‖2

2σ2

)

Min/max K (x , x ′) =
d∑

i=1

min(|xi |, |x ′i |)
max(|xi |, |x ′i |)
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Feature space

A function K : Rd × Rd → R is a p.d. kernel if and only if there
existe a mapping Φ : Rd → RD , for some D ∈ N ∪ {+∞}, such that

∀x , x ′ ∈ Rd , K (x , x ′) = Φ(x)>Φ(x ′)

f is then a linear function in RD :

f (x) =
n∑

i=1

αiK (xi , x) =
n∑

i=1

αiΦ(xi )
>Φ(x) = β>Φ(x)

for β =
∑n

i=1 αiΦ(xi ).

2R

x1

x2

x1

x2

2
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Learning

2R

x1

x2

x1

x2

2

We can learn f (x) =
∑n

i=1 αiK (xi , x) by fitting a linear model
β>Φ(x) in the feature space

Example: ridge regression / logistic regression / SVM

min
β∈RD

n∑

i=1

`(yi , β
>Φ(xi )) + λβ>β

But D can be very large, even infinite...
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Kernel tricks

K (x , x ′) = Φ(x)>Φ(x ′) can be quick to compute even if D is large
(even infinite)

For a set of training samples {x1, . . . , xn} ⊂ Rd let Kn the n × n
Gram matrix:

[Kn]ij = K (xi , xj)

For β =
∑n

i=1 αiΦ(xi ) we have

β>Φ(xi ) = [Kα]i and β>β = α>Kα

We can therefore solve the equivalent problem in α ∈ Rn

min
α∈Rn

n∑

i=1

`(yi , [Kα]i ) + λα>Kα
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Example: kernel ridge regression (KRR)

min
β∈Rd

n∑

i=1

(
yi − β>Φ(xi )

)2
+ λβ>β

Solve in RD :

β̂ =
(

Φ(X )>Φ(X ) + λI
)−1

︸ ︷︷ ︸
D×D

Φ(X )>Y

Solve in Rn:
α̂ = (K + λI )−1

︸ ︷︷ ︸
n×n

Y
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KRR with Gaussian RBF kernel

min
β∈Rd

n∑

i=1

(
yi − β>Φ(xi )

)2
+ λβ>β K (x , x ′) = exp

(‖ x − x ′ ‖2

2σ2

)
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KRR with Gaussian RBF kernel

min
β∈Rd

n∑
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(
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KRR with Gaussian RBF kernel

min
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KRR with Gaussian RBF kernel

min
β∈Rd

n∑

i=1

(
yi − β>Φ(xi )

)2
+ λβ>β K (x , x ′) = exp
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KRR with Gaussian RBF kernel

min
β∈Rd

n∑
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KRR with Gaussian RBF kernel

min
β∈Rd

n∑

i=1

(
yi − β>Φ(xi )

)2
+ λβ>β K (x , x ′) = exp
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KRR with Gaussian RBF kernel

min
β∈Rd

n∑

i=1

(
yi − β>Φ(xi )

)2
+ λβ>β K (x , x ′) = exp
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KRR with Gaussian RBF kernel

min
β∈Rd

n∑

i=1

(
yi − β>Φ(xi )

)2
+ λβ>β K (x , x ′) = exp

(‖ x − x ′ ‖2

2σ2

)

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●
●
●
●●

●

●

●

●
●

●

●
●● ●

●

●

●

●

●
●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

● ●
●

●

●

●

●●
●

●

●

●

●

●

0 2 4 6 8 10

−
1

0
1

2

lambda = 0.001

x

y

48 / 104



KRR with Gaussian RBF kernel

min
β∈Rd

n∑

i=1

(
yi − β>Φ(xi )
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+ λβ>β K (x , x ′) = exp
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KRR with Gaussian RBF kernel

min
β∈Rd

n∑

i=1

(
yi − β>Φ(xi )
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+ λβ>β K (x , x ′) = exp

(‖ x − x ′ ‖2

2σ2

)

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●
●
●
●●

●

●

●

●
●

●

●
●● ●

●

●

●

●

●
●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

● ●
●

●

●

●

●●
●

●

●

●

●

●

0 2 4 6 8 10

−
1

0
1

2

lambda = 0.00001

x

y

48 / 104



KRR with Gaussian RBF kernel

min
β∈Rd

n∑

i=1

(
yi − β>Φ(xi )

)2
+ λβ>β K (x , x ′) = exp
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KRR with Gaussian RBF kernel

min
β∈Rd

n∑

i=1

(
yi − β>Φ(xi )

)2
+ λβ>β K (x , x ′) = exp

(‖ x − x ′ ‖2

2σ2
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Complexity
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Compute K : O(dn2)

Store K : O(n2)

Solve α: O(n2∼3)

Compute f (x) for one x : O(nd)

Unpractical for n > 10 ∼ 100k
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What is ”large-scale”?

Data cannot fit in RAM
Algorithm cannot run on a single machine in reasonable time
(algorithm-dependent)
Sometimes even O(n) is too large! (e.g., nearest neighbor in a
database of O(B+) items)
Many tasks / parameters (e.g., image categorization in O(10M)
classes)
Streams of data
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Things to worry about

Training time (usually offline)

Memory requirements

Test time

Complexities so far

Method Memory Training time Test time

PCA O(d2) O(nd2) O(d)
k-means O(nd) O(ndk) O(kd)

Ridge regression O(d2) O(nd2) O(d)
kNN O(nd) 0 O(nd)

Logistic regression O(nd) O(nd2) O(d)
SVM, kernel methods O(n2) O(n3) O(nd)
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Techniques for large-scale machine learning

Good baselines:

Subsample data and run standard method
Split and run on several machines (depends on algorithm)

Need to revisit standard algorithms and implementation, taking into
account scalability

Trade exactness for scalability

Compress, sketch, hash data in a smart way
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Motivation

Classical learning theory analyzes the trade-off between:
approximation error (how well we approximate the true function)
estimation errors (how well we estimate the parameters)

model selection tradeoffs

ℱ

How complex a model can you afford with your data?But reaching the best trade-off for a given n may be impossible with
limited computational resources

We should include in the trade-off the computational budget, and
see which optimization algorithm gives the best trade-off!

Seminal paper of Bottou and Bousquet [2008]
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Classical ERM setting

Goal: learn a function f : Rd → Y (Y = R or {−1, 1})
P unknown distribution over Rd × Y
Training set: S = {(X1,Y1), . . . , (Xn,Yn)} ⊂ Rd × Y i.i.d. following
P

Fix a class of functions F ⊂
{
f : Rd → R

}

Choose a loss `(y , f (x))

Learning by empirical risk minimization

fn ∈ arg min
f ∈F

Rn[f ] =
1

n

n∑

i=1

` (Yi , f (Xi ))

Hope that fn has a small risk:

R[fn] = E` (Y , fn(X ))
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Classical ERM setting

The best possible risk is

R∗ = min
f :Rd→Y

R[f ]

The best achievable risk over F is

R∗F = min
f ∈F

R[f ]

We then have the decomposition

R[fn]− R∗ = R[fn]− R∗F︸ ︷︷ ︸
estimation error εest

+ R∗F − R∗︸ ︷︷ ︸
approximation errror εapp

model selection tradeoffs

ℱ

How complex a model can you afford with your data?
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Optimization error

Solving the ERM problem may be hard (when n and d are large)

Instead we usually find an approximate solution f̃n that satisfies

Rn[f̃n] ≤ Rn[fn] + ρ

The excess risk of f̃n is then

ε = R[f̃n]− R∗ = R[f̃n]− R[fn]︸ ︷︷ ︸
optimization error εopt

+ εest + εapp
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A new trade-off

ε = εapp + εest + εopt

Problem

Choose F , n, ρ to make ε as small as possible

Subject to a limit on n and on the computation time T

2.3 The Approximation–Estimation–Optimization Tradeoff

This decomposition leads to a more complicated compromise. It involves three variables and two
constraints. The constraints are the maximal number of available training example and the maximal
computation time. The variables are the size of the family of functions F , the optimization accuracy
ρ, and the number of examples n. This is formalized by the following optimization problem.

min
F,ρ,n

E = Eapp + Eest + Eopt subject to
{

n ≤ nmax

T (F , ρ, n) ≤ Tmax
(3)

The number n of training examples is a variable because we could choose to use only a subset of
the available training examples in order to complete the optimization within the alloted time. This
happens often in practice. Table 1 summarizes the typical evolution of the quantities of interest with
the three variables F , n, and ρ increase.

Table 1: Typical variations when F , n, and ρ increase.

F n ρ

Eapp (approximation error) ↘
Eest (estimation error) ↗ ↘
Eopt (optimization error) · · · · · · ↗
T (computation time) ↗ ↗ ↘

The solution of the optimization program (3) depends critically of which budget constraint is active:
constraint n < nmax on the number of examples, or constraint T < Tmax on the training time.

• We speak of small-scale learning problem when (3) is constrained by the maximal number
of examples nmax. Since the computing time is not limited, we can reduce the optimization
error Eopt to insignificant levels by choosing ρ arbitrarily small. The excess error is then
dominated by the approximation and estimation errors, Eapp and Eest. Taking n = nmax,
we recover the approximation-estimation tradeoff that is the object of abundant literature.

• We speak of large-scale learning problem when (3) is constrained by the maximal com-
puting time Tmax. Approximate optimization, that is choosing ρ > 0, possibly can achieve
better generalization because more training examples can be processed during the allowed
time. The specifics depend on the computational properties of the chosen optimization
algorithm through the expression of the computing time T (F , ρ, n).

3 The Asymptotics of Large-scale Learning

In the previous section, we have extended the classical approximation-estimation tradeoff by taking
into account the optimization error. We have given an objective criterion to distiguish small-scale
and large-scale learning problems. In the small-scale case, we recover the classical tradeoff between
approximation and estimation. The large-scale case is substantially different because it involves
the computational complexity of the learning algorithm. In order to clarify the large-scale learning
tradeoff with sufficient generality, this section makes several simplifications:

• We are studying upper bounds of the approximation, estimation, and optimization er-
rors (2). It is often accepted that these upper bounds give a realistic idea of the actual
convergence rates [9, 10, 11, 12]. Another way to find comfort in this approach is to say
that we study guaranteed convergence rates instead of the possibly pathological special
cases.

• We are studying the asymptotic properties of the tradeoff when the problem size increases.
Instead of carefully balancing the three terms, we write E = O(Eapp)+O(Eest)+O(Eopt)
and only need to ensure that the three terms decrease with the same asymptotic rate.

• We are considering a fixed family of functions F and therefore avoid taking into account
the approximation error Eapp. This part of the tradeoff covers a wide spectrum of practical
realities such as choosing models and choosing features. In the context of this work, we do

Large-scale or small-scale?

Small-scale when constraint on n is active

Large-scale when constraint on T is active
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Comparing optimization methods

min
β∈B⊂Rd

Rn[fβ] =
n∑

i=1

` (yi , fβ(xi ))

Gradient descent (GD):

βt+1 ← βt − η
∂Rn(fβt )

∂β

Second-order gradient descent (2GD), assuming Hessian H known

βt+1 ← βt − H−1∂Rn(fβt )

∂β

Stochastic gradient descent (SGD):

βt+1 ← βt −
η

t

∂`(yt , fβt (xt))

∂β
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Results [Bottou and Bousquet, 2008]
Table 2: Asymptotic results for gradient algorithms (with probability 1). Compare the second
last column (time to optimize) with the last column (time to reach the excess test error ϵ).
Legend: n number of examples; d parameter dimension; κ, ν see equation (10).

Algorithm Cost of one Iterations Time to reach Time to reach
iteration to reach ρ accuracy ρ E ≤ c (Eapp + ε)

GD O(nd) O
(
κ log 1

ρ

)
O

(
ndκ log 1

ρ

)
O

(
d2 κ
ε1/α log2 1

ε

)

2GD O
(
d2 + nd

)
O

(
log log 1

ρ

)
O

((
d2 + nd

)
log log 1

ρ

)
O

(
d2

ε1/α log 1
ε log log 1

ε

)

SGD O(d) νκ2

ρ + o
(

1
ρ

)
O

(
dνκ2

ρ

)
O

(
d ν κ2

ε

)

2SGD O
(
d2

)
ν
ρ + o

(
1
ρ

)
O

(
d2ν
ρ

)
O

(
d2 ν

ε

)

• Second Order Stochastic Gradient Descent (2SGD) replaces the gain η by the inverse of
the Hessian matrixH:

w(t + 1) = w(t) − 1

t
H−1 ∂

∂w
ℓ
(
fw(t)(xt), yt

)
.

Unlike standard gradient algorithms, using the second order information does not change
the influence of ρ on the convergence rate but improves the constants. Using again [17,
theorem 4], accuracy ρ is reached after ν/ρ + o(1/ρ) iterations.

For each of the four gradient algorithms, the first three columns of table 2 report the time for a single
iteration, the number of iterations needed to reach a predefined accuracy ρ, and their product, the
time needed to reach accuracy ρ. These asymptotic results are valid with probability 1, since the
probability of their complement is smaller than η for any η > 0.
The fourth column bounds the time necessary to reduce the excess error E below c (Eapp+ε)where c
is the constant from (6). This is computed by observing that choosing ρ ∼

`

d
n

log n
d

´α in (6) achieves
the fastest rate for ε, with minimal computation time. We can then use the asymptotic equivalences
ρ ∼ ε and n ∼ d

ε1/α log 1
ε
. Setting the fourth column expressions to Tmax and solving for ϵ yields

the best excess error achieved by each algorithm within the limited time Tmax . This provides the
asymptotic solution of the Estimation–Optimization tradeoff (3) for large scale problems satisfying
our assumptions.
These results clearly show that the generalization performance of large-scale learning systems de-
pends on both the statistical properties of the estimation procedure and the computational properties
of the chosen optimization algorithm. Their combination leads to surprising consequences:

• The SGD and 2SGD results do not depend on the estimation rate α. When the estimation
rate is poor, there is less need to optimize accurately. That leaves time to process more
examples. A potentially more useful interpretation leverages the fact that (11) is already a
kind of generalization bound: its fast rate trumps the slower rate assumed for the estimation
error.

• Second order algorithms bring little asymptotical improvements in ε. Although the super-
linear 2GD algorithm improves the logarithmic term, all four algorithms are dominated by
the polynomial term in (1/ε). However, there are important variations in the influence of
the constants d, κ and ν. These constants are very important in practice.

• Stochastic algorithms (SGD, 2SGD) yield the best generalization performance despite be-
ing the worst optimization algorithms. This had been described before [18] and observed
in experiments.

In contrast, since the optimization error Eopt of small-scale learning systems can be reduced to
insignificant levels, their generalization performance is solely determined by the statistical properties
of their estimation procedure.

α ∈ [1/2, 1] comes from the bound on εest and depends on the data

In the last column, n and ρ are optimized to reach ε for each method

2GD optimizes much faster than GD, but limited gain on the final
performance limited by ε−1/α coming from the estimation error
SGD:

Optimization speed is catastrophic
Learning speed is the best, and independent of α

This suggests that SGD is very competitive (and has become the de
facto standard in large-scale ML)
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Illustrationtext categorization with a linear svm

https://bigdata2013.sciencesconf.org/conference/bigdata2013/pages/bottou.pdf
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Motivation

Affects scalability of algorithms, e.g., O(nd) for kNN or O(d3) for
ridge regression

Hard to visualize

(Sometimes) counterintuitive phenomena in high dimension, e.g.,
concentration of measure for Gaussian data
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Statistical inference degrades when d increases (curse of dimension)
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Dimension reduction with PCA

PC1PC2

Projects data onto k < d dimensions that captures the largest
amount of variance

Also minimizes total reconstruction errors:

min
Sk

n∑

i=1

‖ xi − ΠSk (xi ) ‖2

But computational expensive: O(nd2)

No theoretical garantee on distance preservation
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Linear dimension reduction

X ′︸︷︷︸
n×k

= X︸︷︷︸
n×d
× R︸︷︷︸

d×k

Can we find R efficiently?

Can we preserve distances?

∀i , j = 1, . . . , n, ‖ f (xi )− f (xj) ‖ ≈ ‖ xi − xj ‖
Note: when d > n, we can take k = n and preserve all distances
exactly (kernel trick)
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Random projections

Simply take a random projection matrix:

f (x) =
1√
k
R>x with Rij ∼ N (0, 1)

Theorem [Johnson and Lindenstrauss, 1984]

For any ε > 0 and n ∈ N, take

k ≥ 4
(
ε2/2− ε3/3

)−1
log(n) ≈ ε−2 log(n) .

Then the following holds with probabiliy at least 1− 1/n:

∀i , j = 1, . . . , n (1−ε)‖ xi−xj ‖2 ≤ ‖ f (xi )−f (xj) ‖2 ≤ (1+ε)‖ xi−xj ‖2

k does not depend on d!

n = 1M, ε = 0.1 =⇒ k ≈ 5K

n = 1B, ε = 0.1 =⇒ k ≈ 8K
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Proof (1/3)

For a single dimension, qj = r>j u:

E (qj) = E (rj)
>u = 0

E (qj)
2 = u>E (rj r

>
j )u = ‖ u ‖2

For the k-dimensional projection f (u) = 1/
√
kR>u:

‖ f (u) ‖2 =
1

k

k∑

j=1

q2
j ∼
‖ u ‖2

k
χ2(k)

E‖ f (u) ‖2 =
1

k

k∑

j=1

E (q2
j ) = ‖ u ‖2

Need to show that ‖ f (u) ‖2 is concentrated around its mean
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Proof (2/3)

P
[
‖ f ‖2 > (1 + ε)‖ u ‖2

]

= P
[
χ2(k) > (1 + ε)k

]

= P
[
eλχ

2(k) > eλ(1+ε)k
]

≤ E
[
eλχ

2(k)
]
e−λ(1+ε)k (Markov)

= (1− 2λ)−
k
2 e−λ(1+ε)k (MGF of χ2(k) for 0 ≤ λ ≤ 1/2)

=
(
(1 + ε)e−ε

)k/2
(take λ = ε/2(1 + ε))

≤ e−(ε2/2−ε3/3)k/2 (use log(1 + x) ≤ x − x2/2 + x3/3)

= n−2 (take k = 4
(
ε2/2− ε3/3

)
log(n))

Similarly we get

P
[
‖ f ‖2 < (1− ε)‖ u ‖2

]
< n−2

70 / 104



Proof (3/3)

Apply with u = xi − xj and use linearity of f to show that for an
(xi , xj) pair, the probability of large distortion is ≤ 2n−2

Union bound: for all n(n − 1)/2 pairs, the probability that at least
one has large distortion is smaller than

n(n − 1)

2
× 2

n2
= 1− 1

n
�
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Scalability

n = O(1B); d = O(1M) =⇒ k = O(10K )
Memory: need to store R, O(dk) ≈ 40GB
Computation: X × R in O(ndk)
Other random matrices R have similar properties but better
scalability, e.g.:

”add or subtract” [Achlioptas, 2003], 1 bit/entry, size≈ 1, 25GB

Rij =

{
+1 with probability 1/2

−1 with probability 1/2

Fast Johnson-Lindenstrauss transform [Ailon and Chazelle, 2009]
where R = PHD, compute f (x) in O(d log d)
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Motivation

R	d	 R	D	 R	k	
Kernel	Phi	 JL	random	projec<on	

Random	features?	
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Fourier feature space

Example: Gaussian kernel

e−
‖ x−x′ ‖2

2 =
1

(2π)
d
2

∫

Rd

e iω
>(x−x ′)e−

‖ω ‖2

2 dω

= Eω cos
(
ω>(x − x ′)

)

= Eω,b

[
2 cos

(
ω>x + b

)
cos
(
ω>x ′ + b

)]

with

ω ∼ p(dω) =
1

(2π)
d
2

e−
‖ω ‖2

2 dω , b ∼ U ([0, 2π]) .

This is of the form K (x , x ′) = Φ(x)>Φ(x ′) with D = +∞:

Φ : Rd → L2

((
Rd , p(dω)

)
× ([0, 2π],U)

)
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Random Fourier features [Rahimi and Recht, 2008]

For i = 1, . . . , k , sample randomly:

(ωi , bi ) ∼ p(dω)× U ([0, 2π])

Create random features:

∀x ∈ Rd , fi (x) =

√
2

k
cos
(
ω>i x + bi

)

Random Fourier Features
Approximate 

Sanjiv
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1)]([)( ×= dj xzxz

)cos()( bxωxz jj += )2,0(~)(~ πUbωPω j

jω
x

bxωTj +

)(xz j

Gaussian )1,0(~ Nω jk Laplacian )1,0(~ Cauchyω jk
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Random Fourier features [Rahimi and Recht, 2008]

For any x , x ′ ∈ Rd , it holds

E
[
f (x)>f (x ′)

]
=

k∑

i=1

E
[
fi (x)fi (x

′)
]

=
1

k

k∑

i=1

E
[
2 cos

(
ω>x + b

)
cos
(
ω>x ′ + b

)]

= K (x , x ′)

and by Hoeffding’s inequality,

P
[∣∣∣ f (x)>f (x ′)− K (x , x ′)

∣∣∣ > ε
]
≤ 2e−

kε2

2

This allows to approximate learning with the Gaussian kernel with a
simple linear model in k dimensions!
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Generalization

A translation-invariant (t.i.) kernel is of the form

K (x , x ′) = ϕ(x − x ′)

Bochner’s theorem

For a continuous function ϕ : Rd → R, K is p.d. if and only if ϕ is the
Fourier-Stieltjes transform of a symmetric and positive finite Borel
measure µ ∈ M

(
Rd
)
:

ϕ(x) =

∫

Rd

e−iω
>xdµ(ω)

Just sample ωi ∼ dµ(ω)

µ(Rd)
and bi ∼ U ([0, 2π]) to approximate any t.i.

kernel K with random features√
2

k
cos
(
ω>i x + bi

)
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Examples

K (x , x ′) = ϕ(x − x ′) =

∫

Rd

e−iω
>(x−x ′)dµ(ω)

Kernel ϕ(x) µ(dω)

Gaussian exp
(
−‖ x ‖2

2

)
(2π)−d/2 exp−

(
‖ω ‖2

2

)

Laplace exp (−‖ x ‖1)
∏k

i=1
1

π(1+ω2
i )

Cauchy
∏k

i=1
2

1+x2
i

e−‖ω ‖1
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Performance [Rahimi and Recht, 2008]
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Motivation

query

Matching and Retreival
Documents, Images, Videos, Database

Database S = {x1, . . . , xn} ⊂ Rd , query q ∈ Rd

Naively: O(nd) to compute distances ‖ q − xi ‖ and find the
smallest one
For n = 1B, d = 10k , it takes 15 hours
Projections Rd → Rk with k < d is not good enough if n is large
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ANN

Given ε > 0, the approximate nearest neighbor (ANN) problem is:

Find y ∈ S such that ‖ q − y ‖ ≤ (1 + ε) min
x∈S
‖ q − x ‖

Two popular ANN approaches
1 Tree approaches

Recursively partition the data: Divide and Conquer
Expected query time: O(log(n))
Many variants: KDtree, Balltree, PCA-tree, Vantage Point tree
Shown to perform very well in relatively low-dim data

2 Hashing approaches

Each image in database represented as a code
Significant reduction in storage
Expected query time: O(1) or O(n)
Compact codes preferred
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KD tree

KD-Tree

Building K-Dimensional Tree 
– Axis-parallel splits
– Find the dimension of largest variance (remove outliers)
– Binary partitioning: Split the data along medianÆ balanced partitioning
– Split recursively until each node has only one point (leaves)

Sanjiv
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Axis-parallel splits

Along the direction of largest variance

Split along the median =⇒ balanced partitioning

Split recursively until each node has a single data point
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Search in a KD tree

KD-Tree: Search

– Given a query q, push down the tree to a leaf: O(log(n))
– Backtracking: search all potential leaves that may contain NN of q
– Maintain the nearest neighbor and min distance seen so far
– Branch-and-bound to check if leaves under a node may have smaller 

distance than seen so far

q

q

Sanjiv
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xl

q

Finds the leaf of the query in O(log(n))

But backtracking is needed to visit other leaves surrounding the cell

As d increases, the number of leaves to visit grows exponentially

Complexity: O(nd log(n)) to build the tree, O(nd) to store the
original data

Works fine up to d = 10 ∼ 100
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Variants
Vantage Point (VP)-Tree

Building VP-Tree 
– Select a vantage point randomly (usually from data periphery)
– Compute distance from all other points and pick median distance
– Binary tree: split data using median distance from vantage point
– Split recursively until each node has only one point (leaves)

Sanjiv
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left right

median distance

VP-Tree vs KD-Tree

Sanjiv Kumar            10/5/2010 EECS6898 – Large Scale Machine Learning 37

VP-Tree KD-Tree

Yianilos[3]
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Variants

Ball-Tree

left
right

Ball tree

Susceptible to outliers!

Sanjiv Kumar            10/5/2010 EECS6898 – Large Scale Machine Learning 42

– Find the (approx) diameter of the given dataset
– Find the point farthest from mean and another farthest from it
– Threshold at median
– Another variation: split according to distance from two points (i.e., 

threshold at mid point of line joining two centers), need to store two 
vectors per node 

PCA-Tree

left right

PCA tree

Expensive, not enough data at lower levels to construct covariance!

Sanjiv Kumar            10/5/2010 EECS6898 – Large Scale Machine Learning 43

– Use top eigenvector of data covariance as projection direction
– Threshold at median
– More robust than ball tree in presence of outliers

top eigenvector

Random-Projection (RP) Tree

Random- 
Projection  tree

Theoretical Guarantees!

Sanjiv Kumar            10/5/2010 EECS6898 – Large Scale Machine Learning 44

– Randomly sample a projection direction from a fixed distribution
– Threshold at “adjusted” median
– Robust for high-dim data
– Can adapt to low-dimensional structure in the data well

left
right

Random direction
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Binary code using multiple hashingLinear projection (hyperplane) based partitioning

x1

X x1 x2 x3 x4 x5

y1 0 1 1 0 1

y2 1 0 1 0 1

h1h2

      

ym      

010 100 111 001 110 x2

x3
x4

x5

No recursive partitioning unlike trees!

EECS6898 – Large Scale Machine Learning 3

Example: Binary Codes

Sanjiv
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No recursive partitioning, unlike trees

ANN with codes:
1 Choose a set of binary hashing functions to design a binary code
2 Index the database = compute codes for all points
3 Querying: compute the code of the query, and retrieve the points

with similar codes
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Hashing

A hash function is a function h : X → Z where

X is the set of data (Rd for us)

Z = {1, . . . ,N} is a finite set of codes

https://en.wikipedia.org/wiki/Hash_function

There is a collision when h(x) = h(x ′) for two different entries x 6= x ′
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Locality sensitive hashing (LSH)

Let a random hash function h : X → Z
It is a LSH with respect to a similarity function sim(x , x ′) on X if
there exists a monotonically increasing function f : R→ [0, 1] such
that:

∀x , x ′ ∈ X , P
[
h(x) = h(x ′)

]
= f (sim(x , x ′))

”Probability of collision increases with similarity”

Locality Sensitive Hashing

Hashing: Function (randomized) h that maps a given data vector x 2 RD

to an integer key h : RD 7! {0, 1, 2, ..., N}
Locality Sensitive: Additional property

Prh
⇥
h(x) = h(y)

⇤
= f (sim(x , y)),

where f is monotonically increasing. sim is any similarity of interest.

Similar points are more likely to have the same hash value (hash collision).

Question: Does this definition implies the definition given in the book ? 
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Example: simHash
Signed Random Projections (SimHash) 

 

𝒓𝑻𝒙 >  0 
𝒓𝑻𝒙 <  0 

  𝑟 

  
𝜃 

hr (x) =

(
1 if rT x � 0

0 otherwise
r 2 RD ⇠ N(0, I)

Prr (hr (x) = hr (y)) = 1� ✓

⇡
, monotonic in cosine similarity ✓ = cos�1S

A classical result from Goemans-Williamson (95)
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r ∈ Rd ∼ N (0, Id) hr (x) =

{
1 if r>x ≥ 0

0 otherwise.

P
[
hr (x) = hr (x ′)

]
= 1− θ

π

LSH with respect to the cosine similarity sim(x , x ′) = cos(θ) [Goemans
and Williamson, 1995].
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ANN with LSH

Sub-linear Near Neighbor Search: Idea

Given: Prh
⇥
h(x) = h(y)

⇤
= f (sim(x , y)), f is monotonic.

 

𝒉𝟏 𝒉𝟐 Buckets 
(pointers only) 

00 00          … 

00 01            …   

00 10 Empty 

… … … 

11 11     … 

𝒉𝟏 

𝒉𝟐 
𝑅𝐷 

𝒉𝟏, 𝒉𝟐: 𝑹𝑫 →   {𝟎, 𝟏, 𝟐, 𝟑} 

Given query q, if h1(q) = 11 and h2(q) = 01, then probe bucket with
index 1101. It is a good bucket !!

(Locality Sensitive) hi (q) = hi (x) implies high similarity.

Doing better than random !!

Rice University (COMP 441) LSH 27th Jan 2016 8 / 12

hi (q) = hi (x) implies high similarity (locality sensitive)

Use K contenations, repeated in L tables

Querying: report union of K buckets

Choice of K and L:

Large m increases precision but decreases recall
Large L increases recall but also storage
Optimization is possible to minimize run-time for a given application
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ANN with LSH
The Classical LSH Algorithm

 

𝒉𝟏𝟏 … 𝒉𝑲𝟏  Buckets  

00 … 00       … 

00 … 01         …   

00 … 10 Empty 

… … … … 

11 … 11  … 

𝒉𝟏𝑳 … 𝒉𝑲𝑳  Buckets  

00 … 00          … 

00 … 01         …    

00 … 10 
 

… … … … 

11 … 11 Empty 

… 

Table 1 Table L 

We use K concatenation.

Repeat the process L times. (L Independent Hash Tables)

Querying : Probe one bucket from each of L tables. Report union.

1 Two knobs K and L to control.

2 Theory says we have a sweet spot. Provable sub-linear algorithm.
(Indyk & Motwani 98)

Rice University (COMP 441) LSH 27th Jan 2016 9 / 12

hi (q) = hi (x) implies high similarity (locality sensitive)

Use K contenations, repeated in L tables

Querying: report union of K buckets

Choice of K and L:

Large m increases precision but decreases recall
Large L increases recall but also storage
Optimization is possible to minimize run-time for a given application
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LSH for ‖ x − x ′ ‖s?

hk(x) =

⌊
w>k x + bk

t

⌋
wk ∼

d∏

i=1

Ps(w i
k) , bk ∼ U([0, t])

A family of hash functions                           is called  - sensitive 
if for any

A simple LSH family

Locality Sensitive Hashing (LSH)

EECS6898 – Large Scale Machine Learning 18

}:{ ZXhH →= ),,,( 2121 pprr
Xxx ∈21,

,)]()(Pr[ then ),( if 121121 pxhxhrxxd ≥=≤
.)]()(Pr[ then ),( if 221221 pxhxhrxxd ≤=>

2121  and pprr ><where

⎣ ⎦tbxwxh k
T
kk )()( += )(~ wPw sk ],0[~ tUbk

s-stable distribution

k
T
k bxw +

t

Special case: 
binary hashing

0 1 2 3 4hk

 

(x)

Sanjiv

 

Kumar            10/12/2010Ps a s-stable distribution, i.e., for any x ∈ Rd , and any w i.i.d. with
w i ∼ Ps , x>w ∼ ‖ x ‖sw1.

s-stable distributions exist for p ∈ (0, 2]:

Gaussian N (0, 1) is 2-stable
Cauchy dx/

(
π(1 + x2)

)
is 1-stable

Then P [hk(x) = hk(x ′)] increases as ‖ x − x ′ ‖s decreases
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Motivation

The hashing / LSH trick is a fast random projection to compact
binary codes

Initially proposed for ANN problems, it can also be used for more
general learning problems

It is particularly effective when data are first converted to huge
binary vectors, using a specific similarity measure (the resemblance).

Applications: texts, time series, images...
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Shingling and resemblance

Given some input space X (e.g., texts, times series...), a shingling is
a representation as large binary vector

x ∈ {0, 1}D

Equivalently, represent x as a subset of Sx ⊂ Ω = {0, . . . ,D − 1}
Example: represent a text by the set of w -shingles it contains, i.e.,
sequences of w words. Typically, w = 5, 105 words, D = 1025, but
very sparse.

A common measure of similarity between two such vectors is the
resemblance (a.k.a. Jaccart or Tanimoto similarity):

R(x1, x2) =
|S1 ∩ S2|
|S1 ∪ S2|

But computing R(x1, x2) is expensive, and not scalable for NN
search or machine learning
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Minwise hashing

Let π ∈ SD be a random permutation of Ω

Let hπ : {0, 1}D → Ω assign to S ⊂ Ω the smallest index of π(S):

hπ(x) = min {π(i) : i ∈ Sx}

Theorem [Broder, 1997]

Minwise hashing is a LSH with respect to the resemblance:

P [hπ(x1) = hπ(x2)] = R(x1, x2)

Proof:

The smallest index min(hπ(x1), hπ(x2)) correspond a random
element of S1 ∪ S2

hπ(x1) = hπ(x2) if it is in S1 ∩ S2

This happens with probability R(x1, x2)
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Applications of minwise hashing

If we pick k random permutations, we can represent x by
(h1(x), . . . , hk(x)) ∈ {0, 1}Dk

Used for ANN, using the general LSH technique discussed earlier

Learning linear models as an approximation to learning a nonlinear
function with the resemblance kernel1

Various tricks to improve scalability
b-bit minwise hashing [Li and König, 2010]: only keep the last b bits
of hπ(x), which reduces the dimensionality of the hashed matrix to
2bk
One-permutation hashing [Li et al., 2012]: use a single permutation,
keep the smallest index in each consecutive block of size k

One can then estimate R from k independent permutations, º1, ..., ºk:

R̂M =
1

k

kX

j=1

1{min(ºj(S1)) = min(ºj(S2))}, Var
≥
R̂M

¥
=

1

k
R(1°R) (3)

Because the indicator function 1{min(ºj(S1)) = min(ºj(S2))} can be written as an inner product
between two binary vectors (each having only one 1) in D dimensions [16]:

1{min(ºj(S1)) = min(ºj(S2))} =
D°1X

i=0

1{min(ºj(S1)) = i}£ 1{min(ºj(S2)) = i} (4)

we know that minwise hashing can be potentially used for training linear SVM and logistic regres-
sion on high-dimensional binary data by converting the permuted data into a new data matrix in
D £ k dimensions. This of course would not be realistic if D = 264.

The method of b-bit minwise hashing [18, 19] provides a simple solution by storing only the lowest
b bits of each hashed data, reducing the dimensionality of the (expanded) hashed data matrix to just
2b £ k. [16] applied this idea to large-scale learning on the webspam dataset and demonstrated that
using b = 8 and k = 200 to 500 could achieve very similar accuracies as using the original data.

1.3 The Cost of Preprocessing and Testing

Clearly, the preprocessing of minwise hashing can be very costly. In our experiments, loading the
webspam dataset (350,000 samples, about 16 million features, and about 24GB in Libsvm/svmlight
(text) format) used in [16] took about 1000 seconds when the data were stored in text format, and
took about 150 seconds after we converted the data into binary. In contrast, the preprocessing cost for
k = 500 was about 6000 seconds. Note that, compared to industrial applications [24], the webspam
dataset is very small. For larger datasets, the preprocessing step will be much more expensive.

In the testing phrase (in search or learning), if a new data point (e.g., a new document or a new
image) has not been processed, then the total cost will be expensive if it includes the preprocessing.
This may raise significant issues in user-facing applications where the testing efficiency is crucial.

Intuitively, the standard practice of minwise hashing ought to be very “wasteful” in that all the
nonzero elements in one set are scanned (permuted) but only the smallest one will be used.

1.4 Our Proposal: One Permutation Hashing
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π(S1):

π(S2):

π(S3):

Figure 1: Consider S1, S2, S3 µ ≠ = {0, 1, ..., 15} (i.e., D = 16). We apply one permutation º on the
sets and present º(S1), º(S2), and º(S3) as binary (0/1) vectors, where º(S1) = {2, 4, 7, 13}, º(S2) =
{0, 6, 13}, and º(S3) = {0, 1, 10, 12}. We divide the space ≠ evenly into k = 4 bins, select the smallest
nonzero in each bin, and re-index the selected elements as: [2, 0, §, 1], [0, 2, §, 1], and [0, §, 2, 0]. For
now, we use ‘*’ for empty bins, which occur rarely unless the number of nonzeros is small compared to k.

As illustrated in Figure 1, the idea of one permutation hashing is simple. We view sets as 0/1 vectors
in D dimensions so that we can treat a collection of sets as a binary data matrix in D dimensions.
After we permute the columns (features) of the data matrix, we divide the columns evenly into k
parts (bins) and we simply take, for each data vector, the smallest nonzero element in each bin.

In the example in Figure 1 (which concerns 3 sets), the sample selected from º(S1) is [2, 4, §, 13],
where we use ’*’ to denote an empty bin, for the time being. Since only want to compare elements
with the same bin number (so that we can obtain an inner product), we can actually re-index the
elements of each bin to use the smallest possible representations. For example, for º(S1), after
re-indexing, the sample [2, 4, §, 13] becomes [2° 4£ 0, 4° 4£ 1, §, 13° 4£ 3] = [2, 0, §, 1].

We will show that empty bins occur rarely unless the total number of nonzeros for some set is small
compared to k, and we will present strategies on how to deal with empty bins should they occur.

2

1This shows in particular that the resemblance is positive definite
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Hash kernel [Shi et al., 2009]

Goal: improve the scalability of random projections or minwise
hashing, both in memory (sparsity) and processing time

Simple idea:

Let h : [1, d ]→ [1, k] a hash function

For x ∈ Rd (or {0, 1}d) let Φ(x) ∈ Rk with

∀i = 1, . . . , k Φi (x) =
∑

j∈[1,d ] : h(j)=i

xj

”Accumulate coordinates i of x for which h(i) is the same
Repeat L times and concatenate if needed, to limit the effect of
collisions

Advantages

No memory needed for projections (vs. LSH)
No need for dictionnary (just a hash function that can hash anything)
Sparsity preserving
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What we saw

Most standard ML algorithms do not scale to modern, large-scale
problems

They are being revisited with scalability as new constraint, both in
theory and in practice

Generally, trading accuracy for fast approximations can be beneficial:

Optimization by SGD
Random projections, sketching

Need to understand mathematics, statistics, algorithms, hardware
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What we did not see

A lot!

Hardware (distributed computing and storage, GPU, ...)

Data streams

Other models like deep learning or graphical models

Other learning paradigms like reinforcement learning

A lot of recent results (this is a very active research field!)

MERCI!

102 / 104



References I

D. Achlioptas. Database-friendly random projections: Johnson-lindenstrauss with binary coins.
J. Comput. Syst. Sci., 66(4):671–687, 2003. doi: 10.1016/S0022-0000(03)00025-4. URL
http://dx.doi.org/10.1016/S0022-0000(03)00025-4.

N. Ailon and B. Chazelle. The fast Johnson-Lindenstrauss transform and approximate nearest
neighbors. SIAM J. Comput., 39(1):302–322, 2009. doi: 10.1137/060673096. URL
http://dx.doi.org/10.1137/060673096.

B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal margin
classifiers. In Proceedings of the 5th annual ACM workshop on Computational Learning
Theory, pages 144–152, New York, NY, USA, 1992. ACM Press. URL
http://www.clopinet.com/isabelle/Papers/colt92.ps.Z.

L. Bottou and O. Bousquet. The tradeoffs of large scale learning. In J. C. Platt, D. Koller,
Y. Singer, and S. T. Roweis, editors, Adv. Neural. Inform. Process Syst., volume 20, pages
161–168. Curran Associates, Inc., 2008. URL
http://papers.nips.cc/paper/3323-the-tradeoffs-of-large-scale-learning.pdf.

A. Z. Broder. On the resemblance and containment of documents. In Proceedings of the
Compression and Complexity of Sequences, pages 21–29, 1997. doi:
10.1109/SEQUEN.1997.666900. URL
http://dx.doi.org/10.1109/SEQUEN.1997.666900.

M. X. Goemans and D. P. Williamson. A general approximation technique for constrained
forest problems. SIAM J. Comput., 24(2):296–317, apr 1995. doi:
10.1137/S0097539793242618. URL http://dx.doi.org/10.1137/S0097539793242618.

103 / 104

http://dx.doi.org/10.1016/S0022-0000(03)00025-4
http://dx.doi.org/10.1137/060673096
http://www.clopinet.com/isabelle/Papers/colt92.ps.Z
http://papers.nips.cc/paper/3323-the-tradeoffs-of-large-scale-learning.pdf
http://dx.doi.org/10.1109/SEQUEN.1997.666900
http://dx.doi.org/10.1137/S0097539793242618


References II
W. B. Johnson and J. Lindenstrauss. Extensions of lipschitz mappings into a hilbert space.

Contemp. Math., 26:189–206, 1984. doi: 10.1090/conm/026/737400. URL
http://dx.doi.org/10.1090/conm/026/737400.

S. Le Cessie and J. C. van Houwelingen. Ridge estimators in logistic regression. Appl. Statist.,
41(1):191–201, 1992. URL http://www.jstor.org/stable/2347628.

P. Li and A. C. König. b-bit minwise hashing. In WWW, pages 671–680, Raleigh, NC, 2010.

P. Li, A. O., and C. hui Z. One permutation hashing. In F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger, editors, Advances in Neural Information Processing
Systems 25, pages 3113–3121. Curran Associates, Inc., 2012. URL
http://papers.nips.cc/paper/4778-one-permutation-hashing.pdf.

A. Rahimi and B. Recht. Random features for large-scale kernel machines. In J. Platt,
D. Koller, Y. Singer, and S. Roweis, editors, Adv. Neural. Inform. Process Syst., volume 20,
pages 1177–1184. Curran Associates, Inc., 2008. URL http://papers.nips.cc/paper/

3182-random-features-for-large-scale-kernel-machines.pdf.

Q. Shi, J. Petterson, G. Dror, J. Langford, A. Smola, and S. Vishwanathan. Hash kernels for
structured data. Journal of Machine Learning Research, 10:2615–2637, 2009.

C. Stone. Consistent nonparametric regression. Ann. Stat., 8:1348–1360, 1977. URL
http://links.jstor.org/sici?sici=0090-5364%28197707%295%3A4%3C595%3ACNR%3E2.

0.CO%3B2-O.

104 / 104

http://dx.doi.org/10.1090/conm/026/737400
http://www.jstor.org/stable/2347628
http://papers.nips.cc/paper/4778-one-permutation-hashing.pdf
http://papers.nips.cc/paper/3182-random-features-for-large-scale-kernel-machines.pdf
http://papers.nips.cc/paper/3182-random-features-for-large-scale-kernel-machines.pdf
http://links.jstor.org/sici?sici=0090-5364%28197707%295%3A4%3C595%3ACNR%3E2.0.CO%3B2-O
http://links.jstor.org/sici?sici=0090-5364%28197707%295%3A4%3C595%3ACNR%3E2.0.CO%3B2-O

	Introduction
	Standard machine learning
	Dimension reduction: PCA
	Clustering: k-means
	Regression: ridge regression
	Classification: kNN, logistic regression and SVM
	Nonlinear models: kernel methods

	Large-scale machine learning
	Scalability issues
	The tradeoffs of large-scale learning
	Random projections
	Random features
	Approximate NN
	Shingling, hashing, sketching

	Conclusion

