Large Scale Optimization for ML 3 vignettes: GPU, Automatic Differentiation Distributed.

Marco Cuturi

Machine Learning often boils down to minimizing variable: *parameter* which describes the machine. objective: *fitting error* with respect to data + *regularization*

$$\min_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{l}(f_{\boldsymbol{\theta}}(x_i), y_i) + \boldsymbol{\psi}(\boldsymbol{\theta})$$

interpretation: *likelihood* + *prior* on parameter

Machine Learning often boils down to minimizing variable: parameter which describes the machine. objective: fitting error with respect to data + regularization

$$\min_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{l}(f_{\boldsymbol{\theta}}(x_i), y_i) + \boldsymbol{\psi}(\boldsymbol{\theta})$$

interpretation: *likelihood* + *prior* on parameter

Computing this gradient will often cause a **BIG** problem:

$$g = \frac{1}{n} \sum_{i=1}^{n} \nabla_{\boldsymbol{\theta}} [\boldsymbol{l}(f_{\boldsymbol{\theta}}(x_i), y_i)]$$

Issue 1: Parameter size

Very large *parameter* vector. for NN, this can be ~10⁹. Even one gradient is costly.

Issue 2: Model complexity Parameters define extremely complex *functions*. How can we compute gradients?

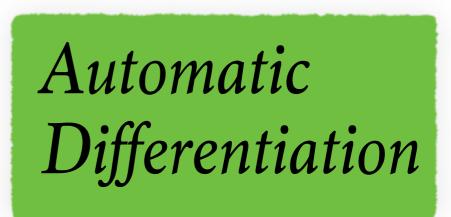
Issue 3: Dataset size Single machine not adequate. *Parallelism* required.

Issue 1: Parameter size

Very large *parameter* vector. for NN, this can be ~10⁹. Even one gradient is costly.

Issue 2: Model complexity Parameters define extremely complex *functions*. How can we compute gradients?

Issue 3: Dataset size Single machine not adequate. *Parallelism* required.



Distributed Computations

Self-introduction

•ENSAE ('01) / MVA / Phd. ENSMP / Japan & US

- post-doc then hedge-fund in Japan ('05~'08)
- Lecturer @ Princeton University ('09~'10)
- Assoc. Prof. @ Kyoto University ('10~'16)
- Prof @ ENSAE since 9/'16.
- •Active in ML community, stats/optim flavor.
 - Attend & publish regularly in NIPS & ICML.
- •Interests
 - Optimal transport, kernel methods, time series.

Summary

1. Basics

- Link between ML Optimisation. (R)(E)RM problems
- 2. GPUs
- 3. Automatic differentiation
- 4. Distributed optimization

list of ingredients in ML

$$\{(x_1, y_1), \dots, (x_n, y_n)\} \in (\mathcal{X} \times \mathcal{Y})^n$$

samples from $p \in \mathcal{P}(\mathcal{X} \times \mathcal{Y})$

loss function $l: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}_+$

function class $\mathcal{F} = \{f_{\theta} : \mathcal{X} \to \mathcal{Y}, \theta \in \Theta\}$

regularizer $\psi: \Theta \to \mathbb{R}_+$

list of ingredients in ML

samples from $p \in \mathcal{P}(\mathcal{X} \times \mathcal{Y})$

loss function $l: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}_+$

function class $\mathcal{F} = \{f_{\theta} : \mathcal{X} \to \mathcal{Y}, \theta \in \Theta\}$

regularizer $\psi: \Theta \to \mathbb{R}_+$

Goal of Batch ML

1. The elusive golden standard: Risk Minimization

$$\min_{\boldsymbol{\theta}\in\boldsymbol{\Theta}} \mathbb{E}_p[\boldsymbol{l}(f_{\boldsymbol{\theta}}(X), Y)]$$

2. The naive alternative: Empirical Risk Minimization

$$\min_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{l}(f_{\boldsymbol{\theta}}(x_i), y_i)$$

Supervised ML

3. The reasonable compromise

$$\min_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{l}(f_{\boldsymbol{\theta}}(x_i), y_i)$$

From an optimization point of view:

- parameter size is huge.
- loss and regularizer functions might be ugly.
- *n* points might be too much for a single RAM machine (~256Gb *vs.* a few terabytes of more for modern datasets).

Supervised ML

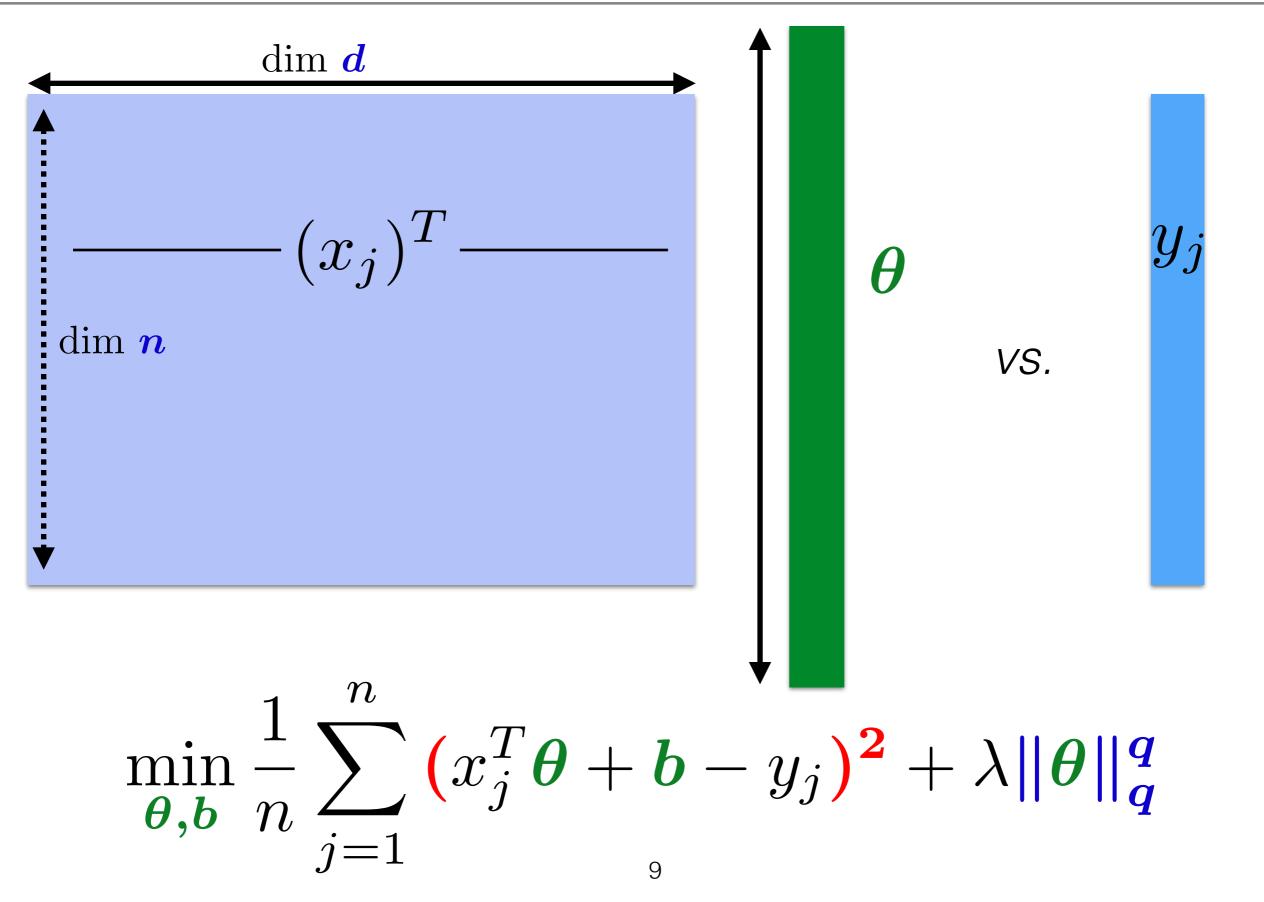
3. The reasonable compromise

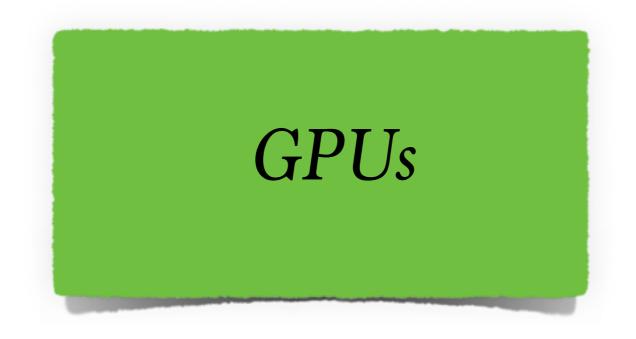
$$\min_{\boldsymbol{\theta}\in\boldsymbol{\Theta}}\frac{1}{n}\sum_{i=1}^{n}\boldsymbol{l}(f_{\boldsymbol{\theta}}(x_i),y_i) + \boldsymbol{\psi}(\boldsymbol{\theta})$$

From an optimization point of view:

- parameter size is huge.
- loss and regularizer functions might be ugly.
- *n* points might be too much for a single RAM machine (~256Gb *vs.* a few terabytes of more for modern datasets).

Example: Regression (Regularized)



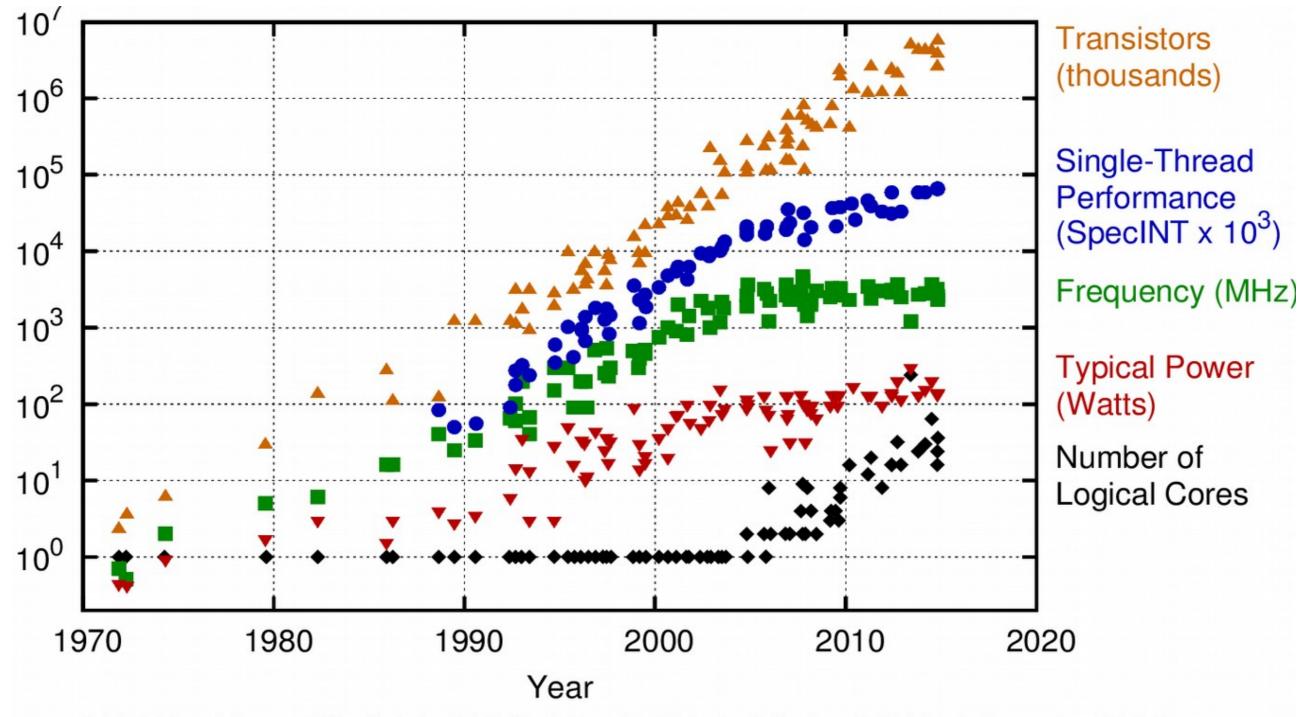


Moore's Law

"The complexity for minimum component costs has increased at a rate of roughly a factor of two per year. Certainly over the short term this rate can be expected to continue" Gordon Moore (Intel), 1965

"OK, maybe a factor of two every two years." **Gordon Moore (Intel), 1975 [paraphrased]**

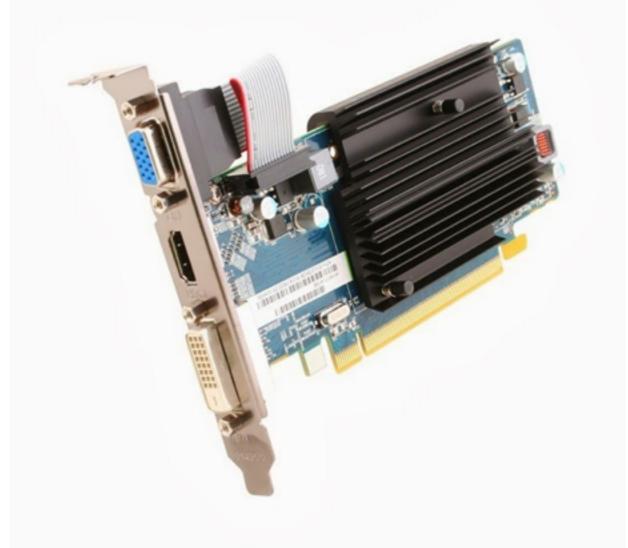
Moore's Law



Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2015 by K. Rupp

Solution: GPU

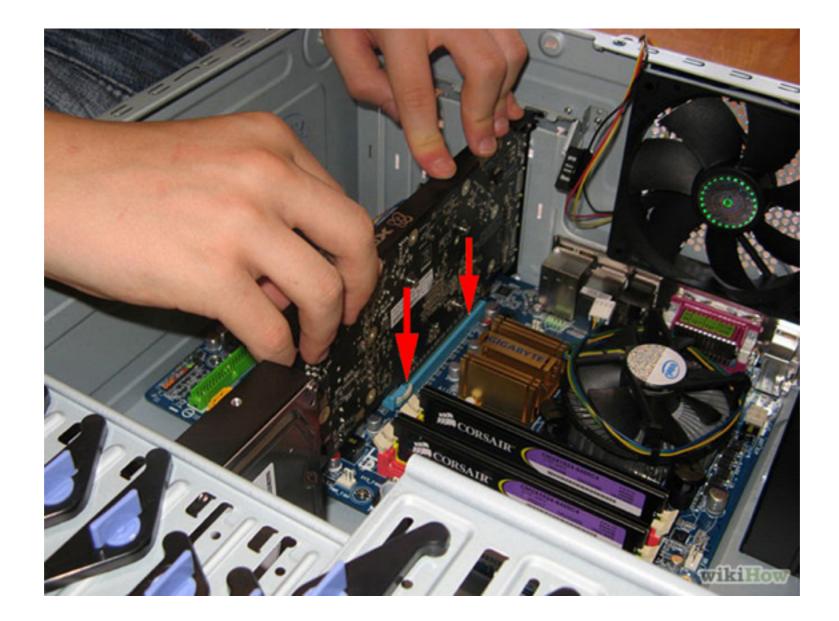
used to be a small piece of hardware...



GPU = Graphics Processing Unit

Solution: GPU

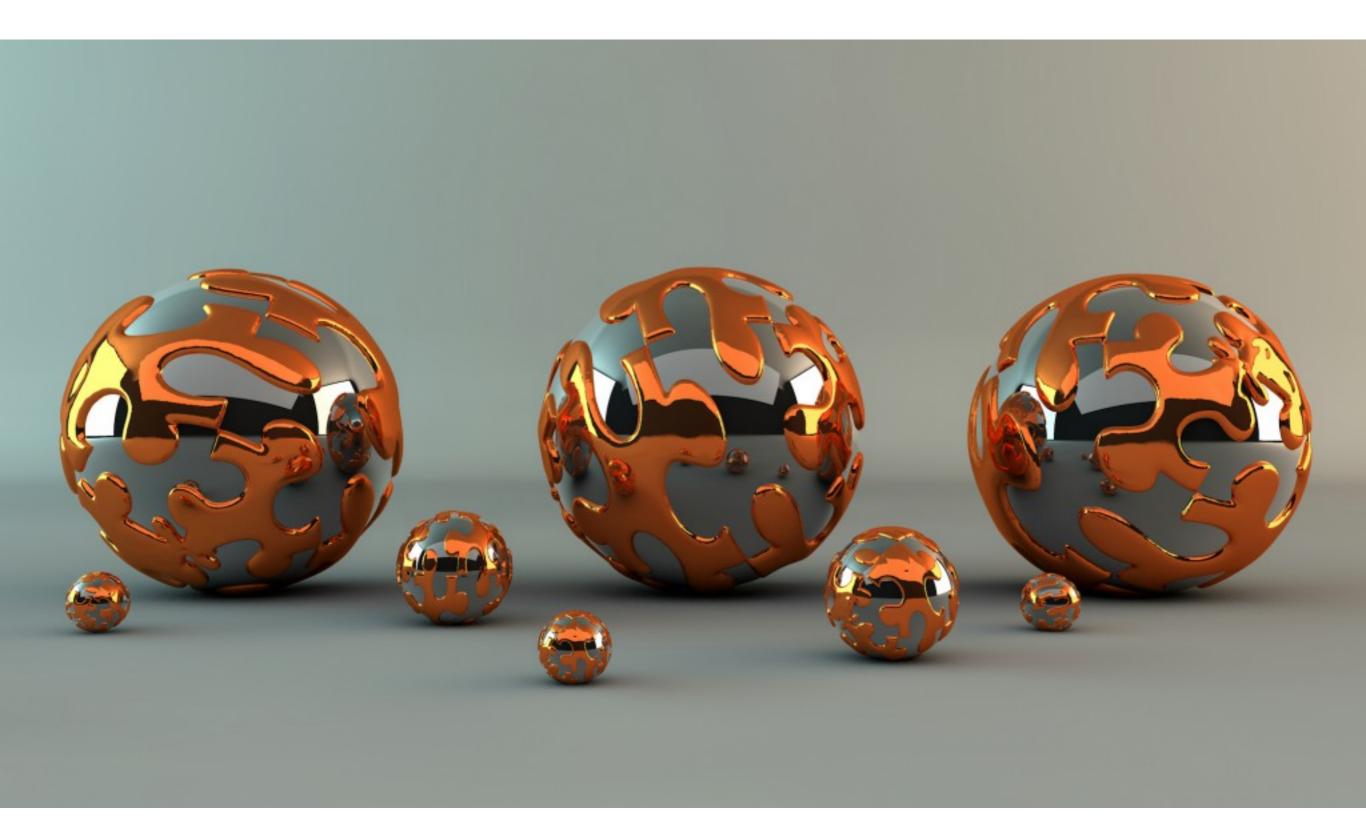
... plugged into computer, with video output...



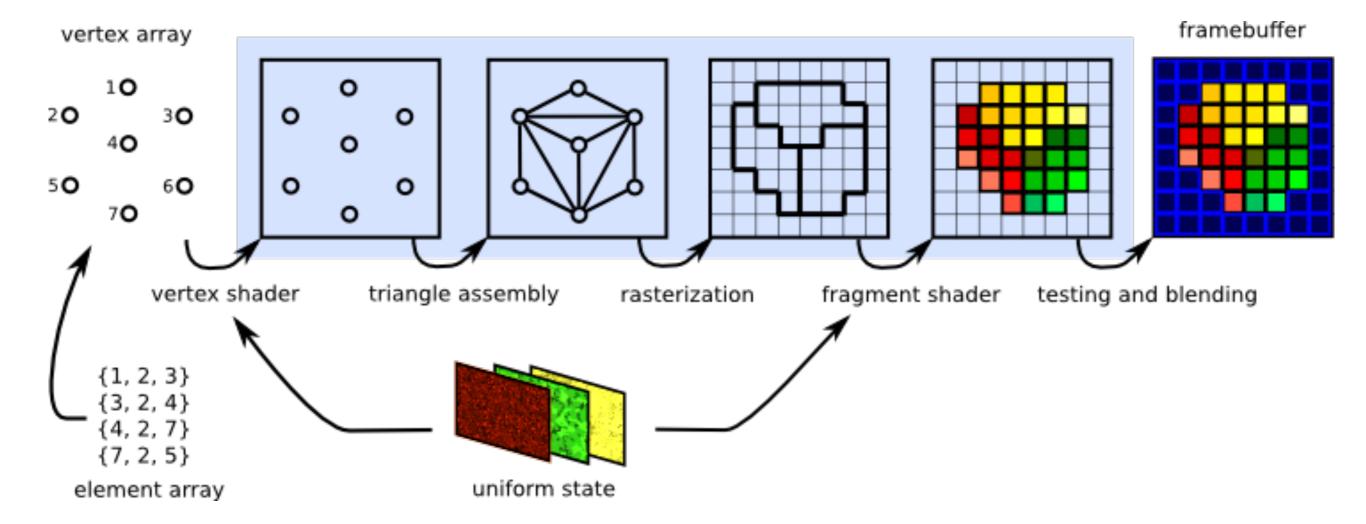
Solution: GPU

... of interest to gamers and video editors.

Graphics

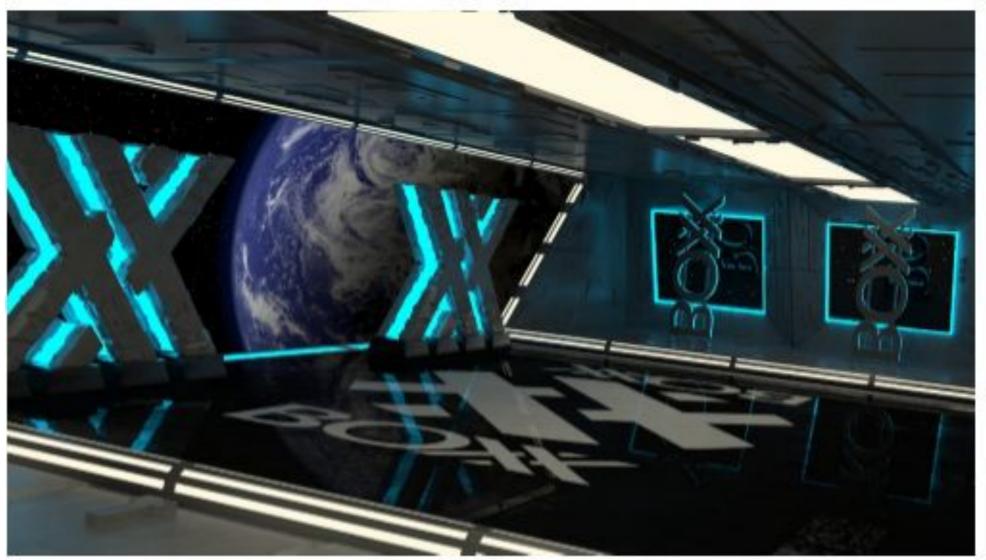


Graphics



3D Rendering

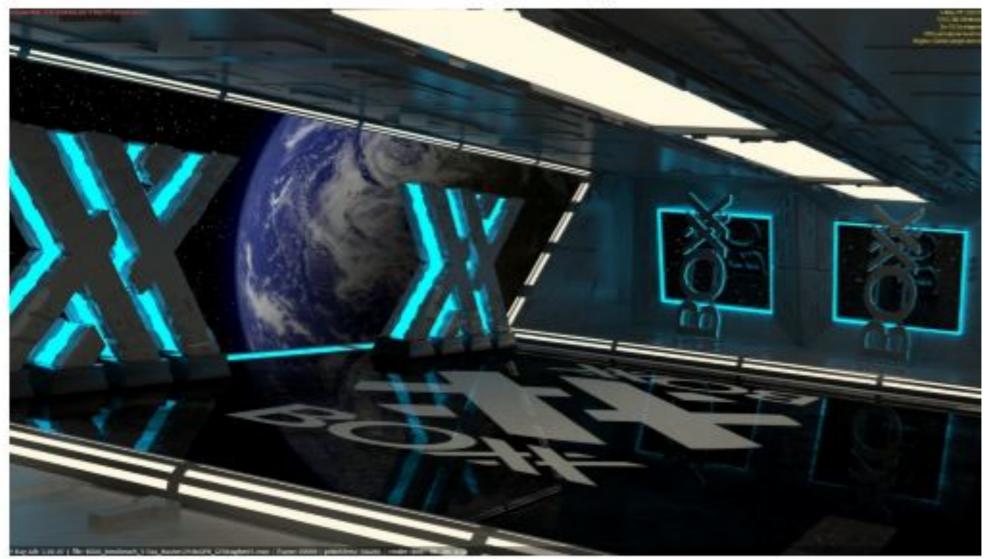
Rendered with V-Ray Advanced CPU



3.4 GHz 8 core Intel® Xeon® Image Quality = 11.35 Render Time = 19 minutes 11 seconds

3D Rendering

Rendered with V-Ray RT GPU



High-end NVIDIA GPU with 2688 CUDA cores Image Quality = 11.35 Render Time = 3 minutes 4 seconds

What are GPUs

Definition: GPU

A **programmable logic chip** (processor) specialized for **display functions**. The GPU renders images, animations and video for the computer's screen. GPUs are located on plug-in cards, in a chipset on the motherboard or in the same chip as the CPU.

A GPU performs parallel operations. Although it is used for 2D data as well as for zooming and panning the screen, a GPU is essential for smooth decoding and **rendering of 3D animations**.

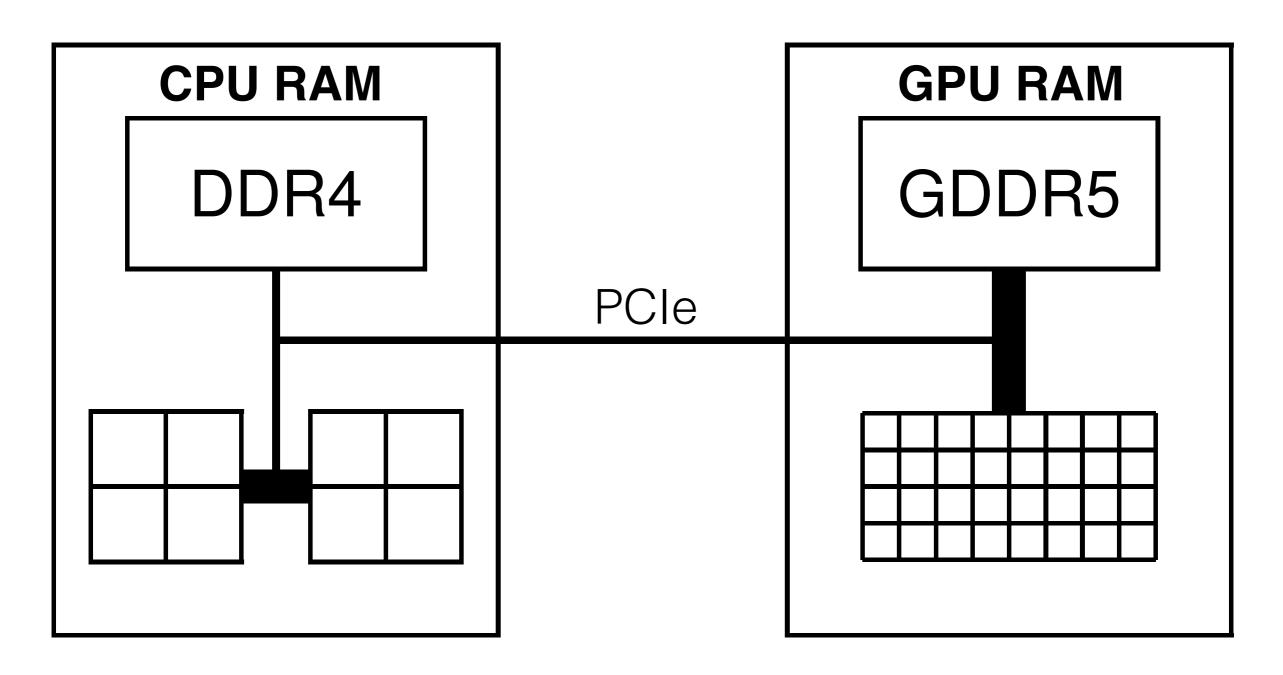
What are **GP**GPUs

Definition: **GP**GPU

Using a GPU for general-purpose (**GP**) parallel processing applications rather than rendering images for the screen.

For fast results, applications such as sorting, **matrix algebra**, image processing and physical modeling require multiple sets of data to be processed in parallel.

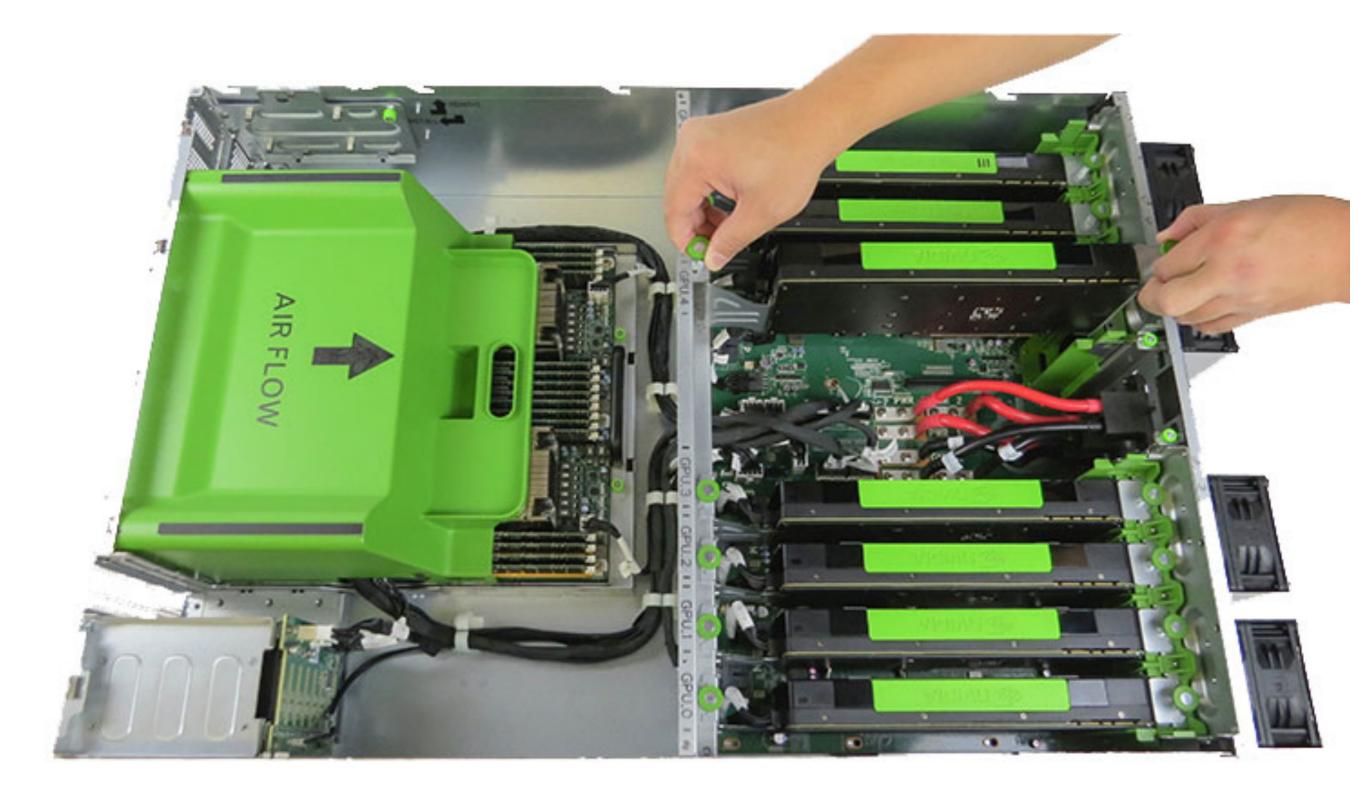
At very basic level...



Motherboard

GPU

In the real world

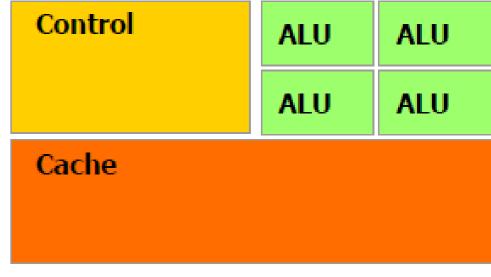


In the real world

CPU

Single Instructions, Multiple Data (SIMD) large data-caching large flow control units few Arithmetic Logical Units (ALU, cores), but fast

Example: Intel Xeon E5-2670 CPU 8 cores (16 threads) 2.6 GHz 2.3 billion transistors 20 MB on chip cache Flexible DRAM size

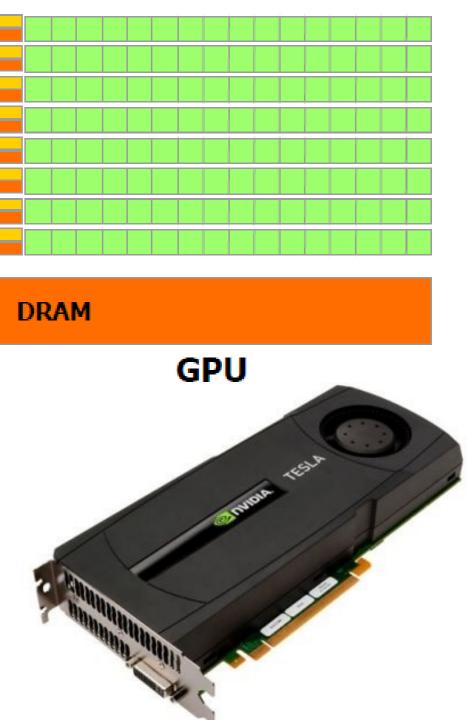


DRAM

GPU

Single Instructions, Multiple Threads (SIMT) small cache, control flow Many ALUs (cores), slow. Highly parallel. Example: Kepler K20x GPU 2688 (14 x 192) cores 0.73 GHz DRAM

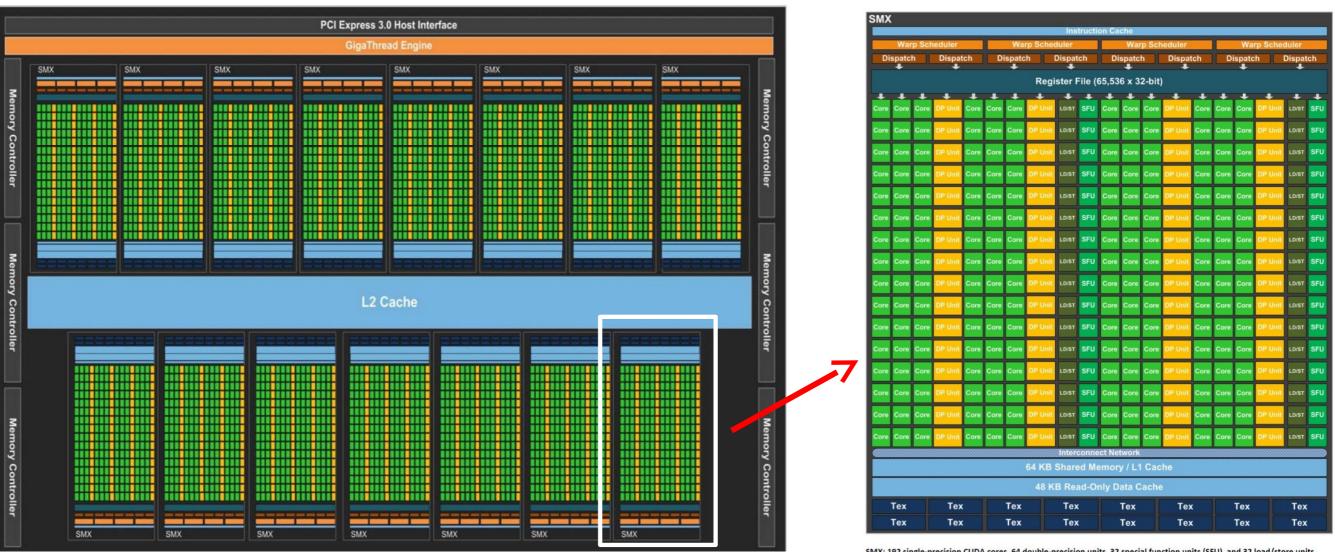
28nm features
7.1 billion transistors
1.5 MB on-chip L2 cache
Only 6GB on chip memory



GPU vs. CPU

GPU vs. CPU

GPU Example: Kepler



SMX: 192 single-precision CUDA cores, 64 double-precision units, 32 special function units (SFU), and 32 load/store units (LD/ST).

Set of 14~15 SIMD Streaming Multiprocessors (SMX) Each Multiprocessor has 192 cores, 64k L1 Cache. Each SMX can handle up to 2000 threads.

GPU Example: Kepler

One SMX 12 x 16=192 cores 32 Special Function Units 32 Load/Store Units 64 Double Precision Units

64k shared memory

SMX	SMX Instruction Cache																		
	Warp Scheduler Warp Scheduler Warp Scheduler Warp Scheduler																		
Di	Dispatch Dispatch			Dispatch Dispatch			Dispatch Dispatch				Dispatch Dispatch				tch				
+	Ŧ	+	÷	+	Ŧ								+	Ŧ	+				
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU			Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU
	Interconnect Network 64 KB Shared Memory / L1 Cache																		
	48 KB Read-Only Data Cache																		
	Tex		Tex			Tex		Tex	(Tex		Tex	¢		Tex		Tex	:
	Tex		Tex			Tex		Tex	¢		Tex		Tex	¢		Tex		Tex	1

SMX: 192 single-precision CUDA cores, 64 double-precision units, 32 special function units (SFU), and 32 load/store units 2C (LD/ST).

GPU

GPU	G80	GT200	Fermi	Kepler		
Transistors	681 million	1.4 billion	3.0 billion	7.0 billion		
CUDA Cores	128	240	512 @ 1.15 GHz	2688 @ 0.73 GHz		
Double Precision Floating	None	30 FMA ops / clock	256 FMA ops /clock	1344 FMA ops/clock		
Point Capability						
Single Precision Floating	128 MAD	240 MAD ops /	512 FMA ops /clock	2688 FMA ops/clock		
Point Capability	ops/clock	clock				
Special Function Units	2	2	4	32		
(SFUs) / SM						
Warp schedulers (per SM)	1	1	2	2		
Shared Memory (per SM)	16 KB	16 KB	Configurable 48 KB or	Configurable 48 KB, 16		
			16 KB	KB or 32 KB		
L1 Cache (per SM)	None	None	Configurable 16 KB or	Configurable 48 KB, 16		
			48 KB	KB or 32 KB		
L2 Cache	None	None	768 KB	1.5 MB		
ECC Memory Support	No	No	Yes	Yes		
Concurrent Kernels	No	No	Up to 16	Up to 32 + Dyn. Parallel		
Load/Store Address Width	32-bit	32-bit	64-bit	64-bit		

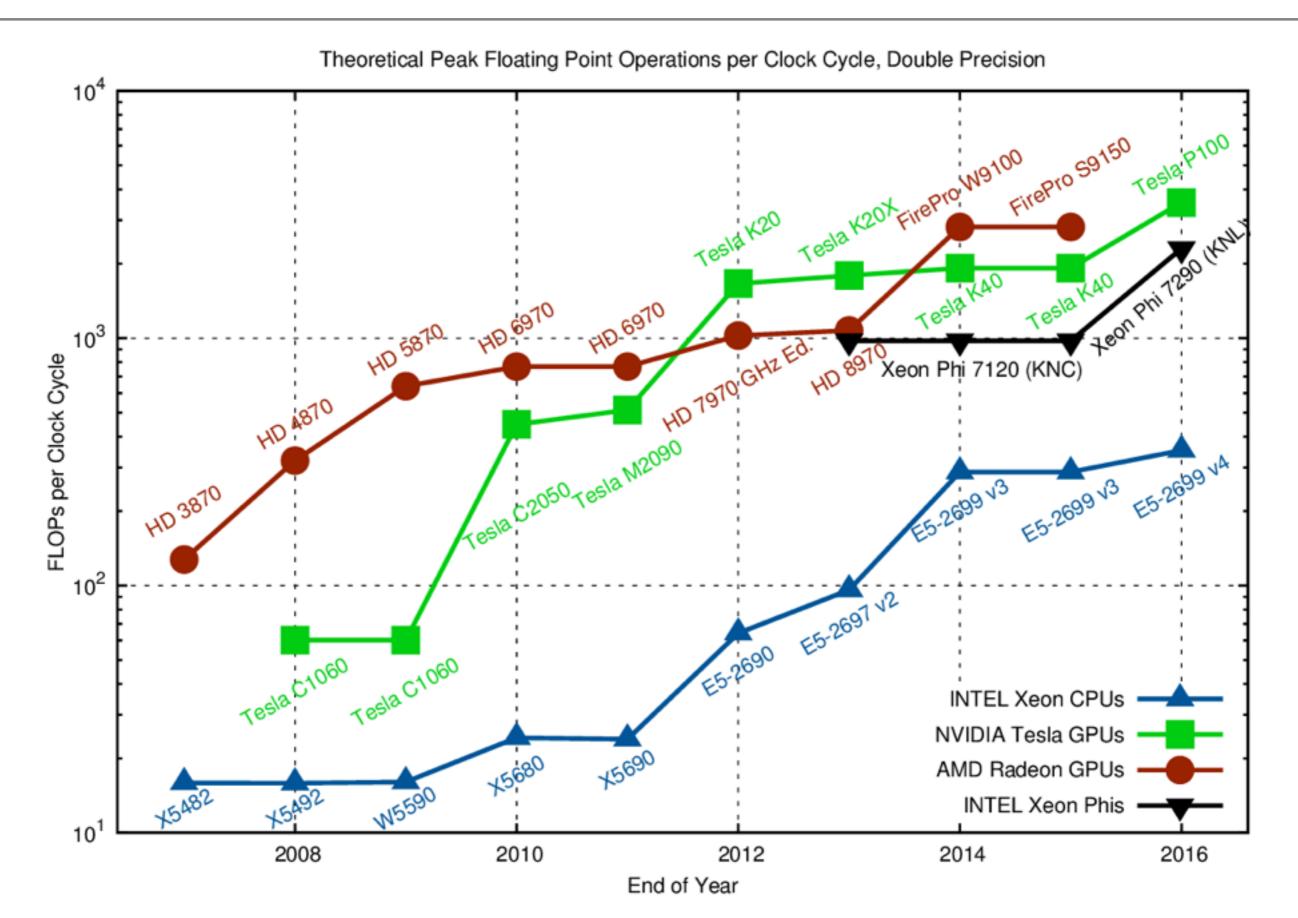
GPU

Because GPUs were designed to apply the same shading function to many pixels simultaneously, GPUs can be used to apply the same **simple** function to many data points simultaneously

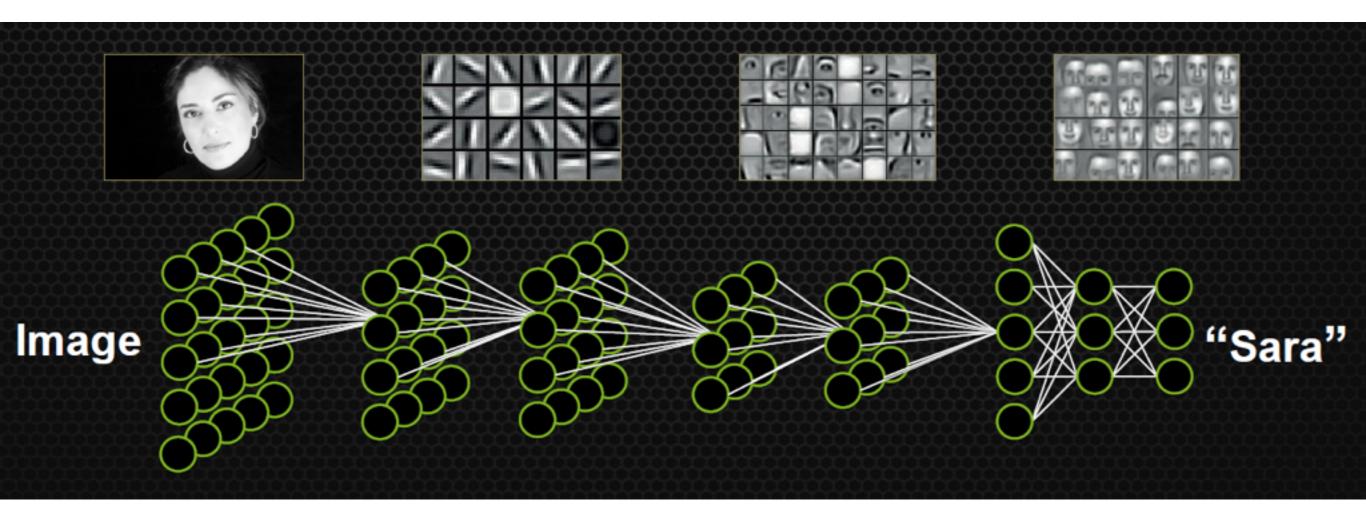
How simple?

Essentially, matrix algebra and special functions on each element (exp, log, sin etc...)

How fast?



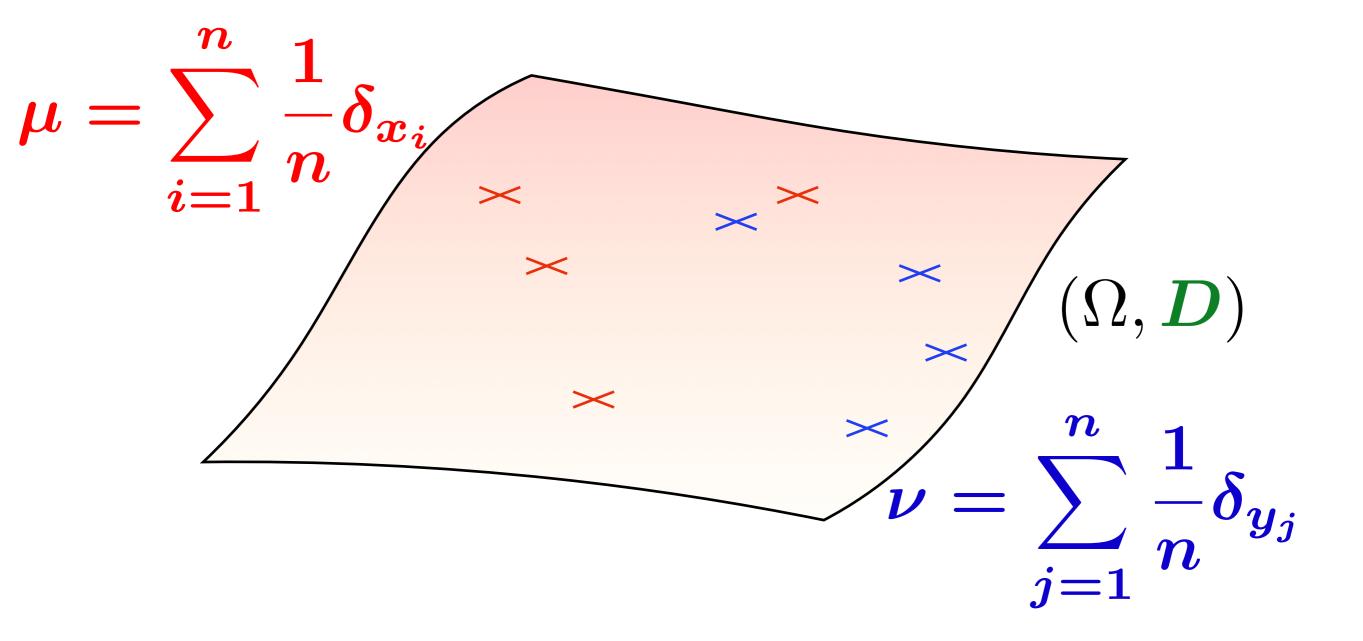
Crucial for Deep Learning



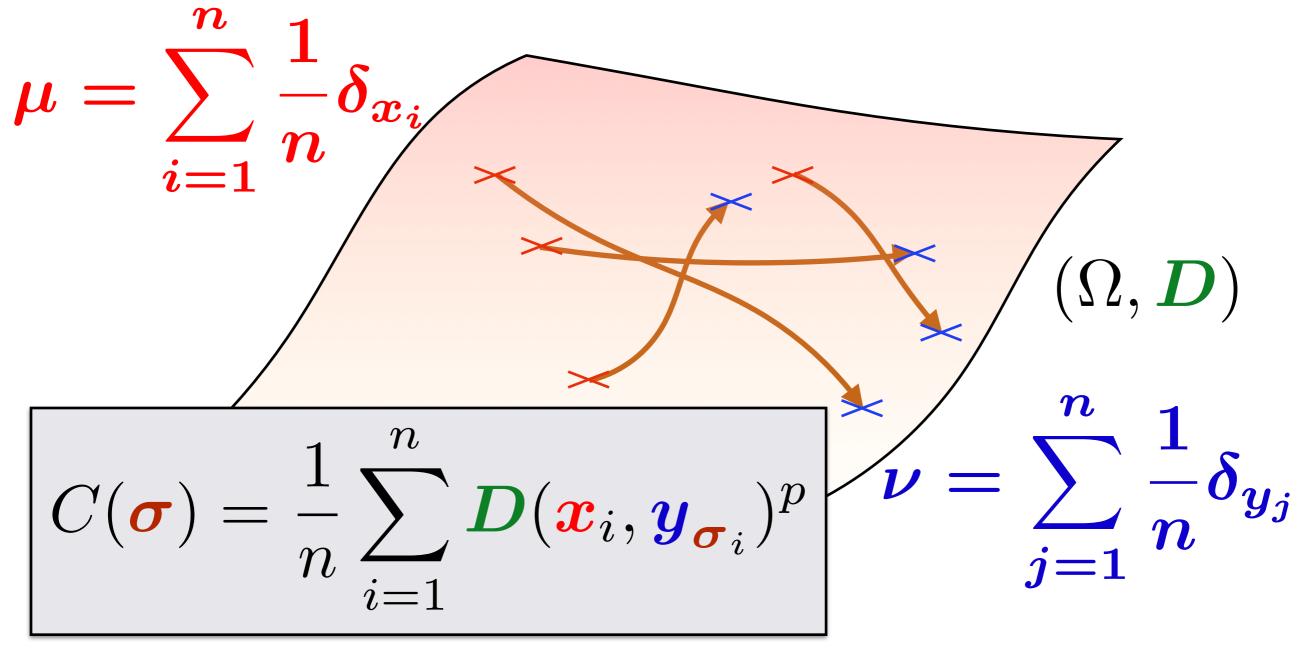
Why?

Multilayer Neural Networks only use element wise operations (hinge, softmax, tanh, sigmoid) and matrix products, exactly those operations that GPU are good for.

A more concrete Math Problem.



A more concrete Math Problem.



$$OA(\boldsymbol{\mu}, \boldsymbol{\nu}) = \min_{\boldsymbol{\sigma} \in S_n} C(\boldsymbol{\sigma})$$

$$M_{\boldsymbol{X}\boldsymbol{Y}} \stackrel{\text{def}}{=} [D(\boldsymbol{x}_i, \boldsymbol{y}_j)^p]_{ij}$$

$$P_{\sigma} = [\mathbf{1}_{\sigma_i=j}/n]_{i,j}$$

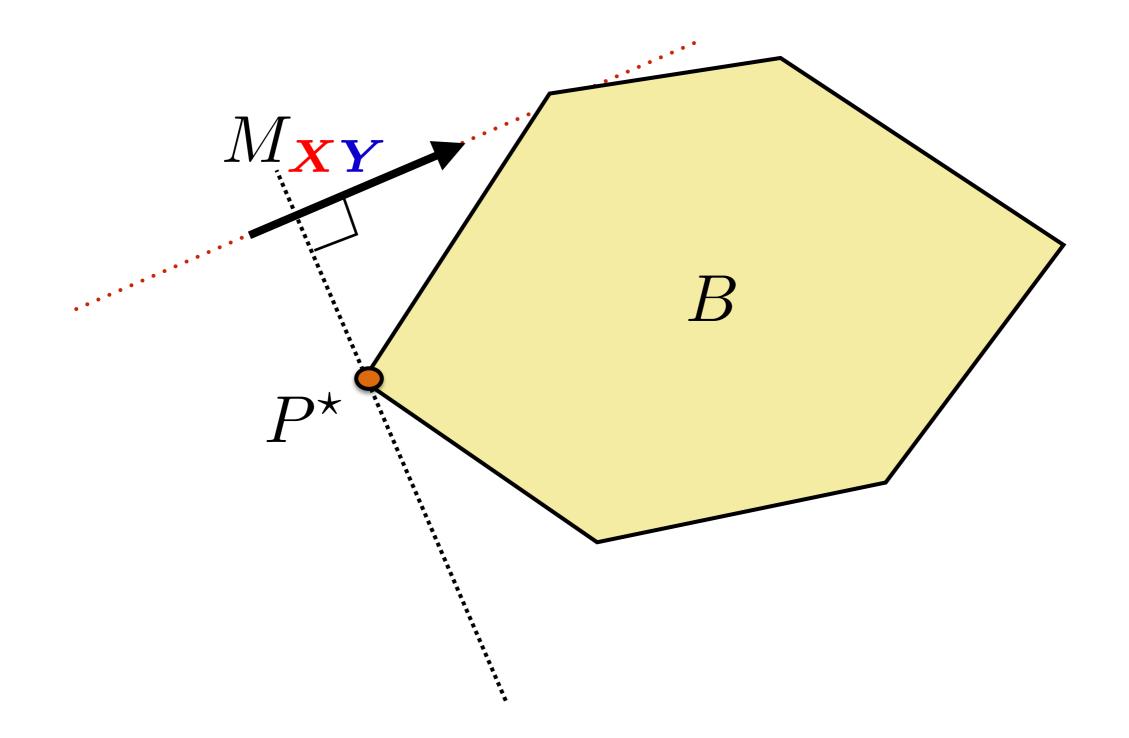
$$\min_{\boldsymbol{\sigma}\in S_n} C(\boldsymbol{\sigma}) = \min_{\boldsymbol{\sigma}\in S_n} \langle P_{\boldsymbol{\sigma}}, M_{\boldsymbol{X}\boldsymbol{Y}} \rangle$$

$$\min_{\boldsymbol{\sigma}\in S_n} C(\boldsymbol{\sigma}) = \min_{\boldsymbol{\sigma}\in S_n} \langle P_{\boldsymbol{\sigma}}, M_{\boldsymbol{X}\boldsymbol{Y}} \rangle$$

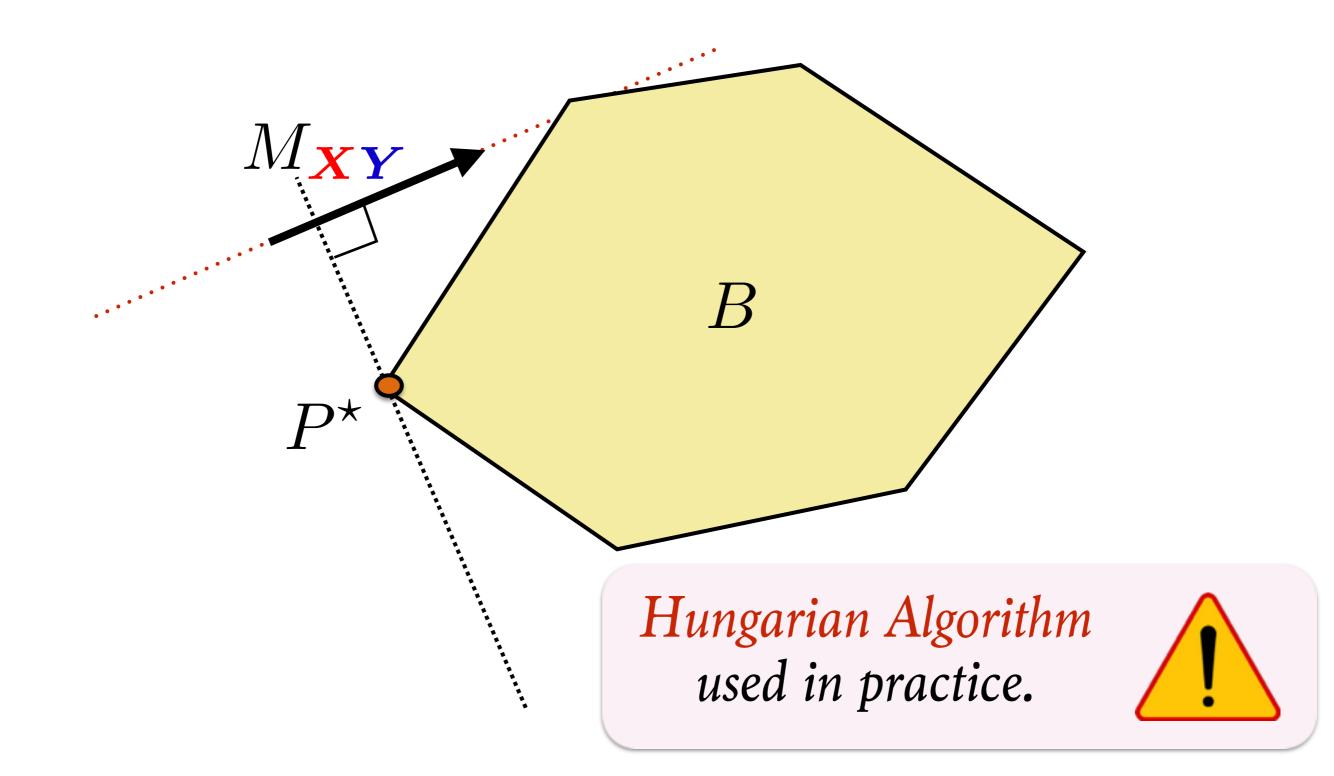
$$B = \left\{ P \in \mathbb{R}^{n \times n}_+ | P \mathbf{1} = P^T \mathbf{1} = \frac{\mathbf{1}}{n} \right\}$$

$$OA(\boldsymbol{\mu}, \boldsymbol{\nu}) = \min_{\boldsymbol{P} \in B} \langle \boldsymbol{P}, M_{\boldsymbol{X}\boldsymbol{Y}} \rangle$$

Optimal Assignment



Optimal Assignment



Solving OA using Matrix Products

$$OA_{\gamma}(\boldsymbol{\mu}, \boldsymbol{\nu}) = \min_{\boldsymbol{P} \in B} \langle \boldsymbol{P}, M_{\boldsymbol{X}\boldsymbol{Y}} \rangle - \gamma E(\boldsymbol{P})$$

$$E(P) \stackrel{\text{def}}{=} - \sum_{i,j=1}^{n} P_{ij}(\log P_{ij})$$

Solving OA using Matrix Products

$$OA_{\gamma}(\boldsymbol{\mu}, \boldsymbol{\nu}) = \min_{\boldsymbol{P} \in B} \langle \boldsymbol{P}, M_{\boldsymbol{X}\boldsymbol{Y}} \rangle - \gamma E(\boldsymbol{P})$$

$$E(P) \stackrel{\text{def}}{=} - \sum_{i,j=1}^{n} P_{ij}(\log P_{ij})$$

$$L(P,\alpha,\beta) = \sum_{ij} P_{ij}M_{ij} + \gamma P_{ij}\log P_{ij} + \alpha^T(P\mathbf{1} - \mathbf{1}/n) + \beta^T(P^T\mathbf{1} - \mathbf{1}/n)$$

$$\partial L/\partial P_{ij} = M_{ij} + \gamma (\log P_{ij} + 1) + \alpha_i + \beta_j$$

$$(\partial L/\partial P_{ij} = 0) \Rightarrow P_{ij} = e^{\frac{\alpha_i}{\gamma} + \frac{1}{2}} e^{-\frac{M_{ij}}{\gamma}} e^{\frac{\beta_j}{\gamma} + \frac{1}{2}} = u_i K_{ij} v_j$$

Solving OA using Matrix Products

$$OA(\boldsymbol{\mu}, \boldsymbol{\nu}) = \min_{\boldsymbol{P} \in B} \langle \boldsymbol{P}, M_{\boldsymbol{X}\boldsymbol{Y}} \rangle$$

Hungarian Algorithm Cubic complexity

$$OA_{\gamma}(\boldsymbol{\mu}, \boldsymbol{\nu}) = \min_{\boldsymbol{P} \in B} \langle \boldsymbol{P}, M_{\boldsymbol{X}\boldsymbol{Y}} \rangle - \gamma E(\boldsymbol{P})$$
$$\boldsymbol{P}^{*} = D(\boldsymbol{u})KD(\boldsymbol{v}); \boldsymbol{u} = \frac{1}{nK\boldsymbol{v}}, \boldsymbol{v} = \frac{1}{nK^{T}\boldsymbol{u}}$$

Automatic differentiation:

set of techniques to numerically evaluate the derivative of a function specified by a computer program.

Automatic differentiation is **not** *numerical differentiation*

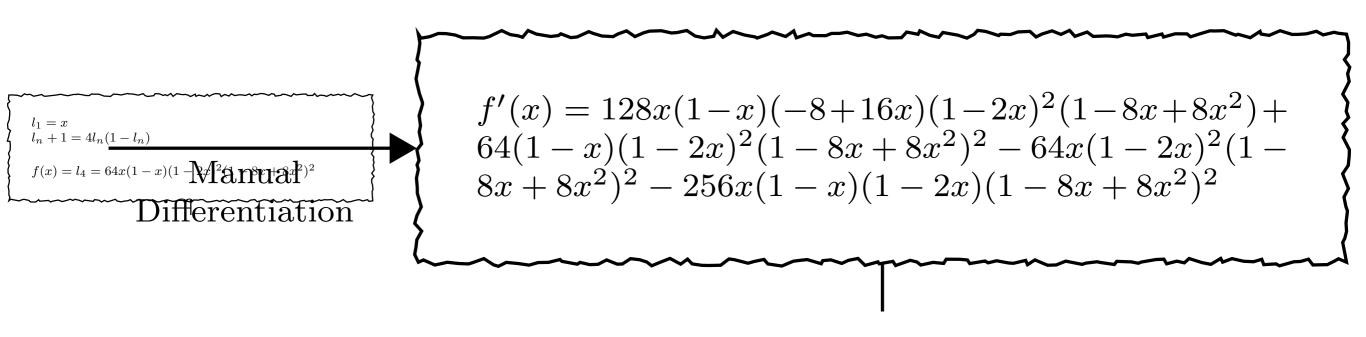
$$\nabla f = \left(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}\right) \qquad \frac{\partial f(\mathbf{x})}{\partial x_i} \approx \frac{f(\mathbf{x} + h\mathbf{e}_i) - f(\mathbf{x})}{h}$$

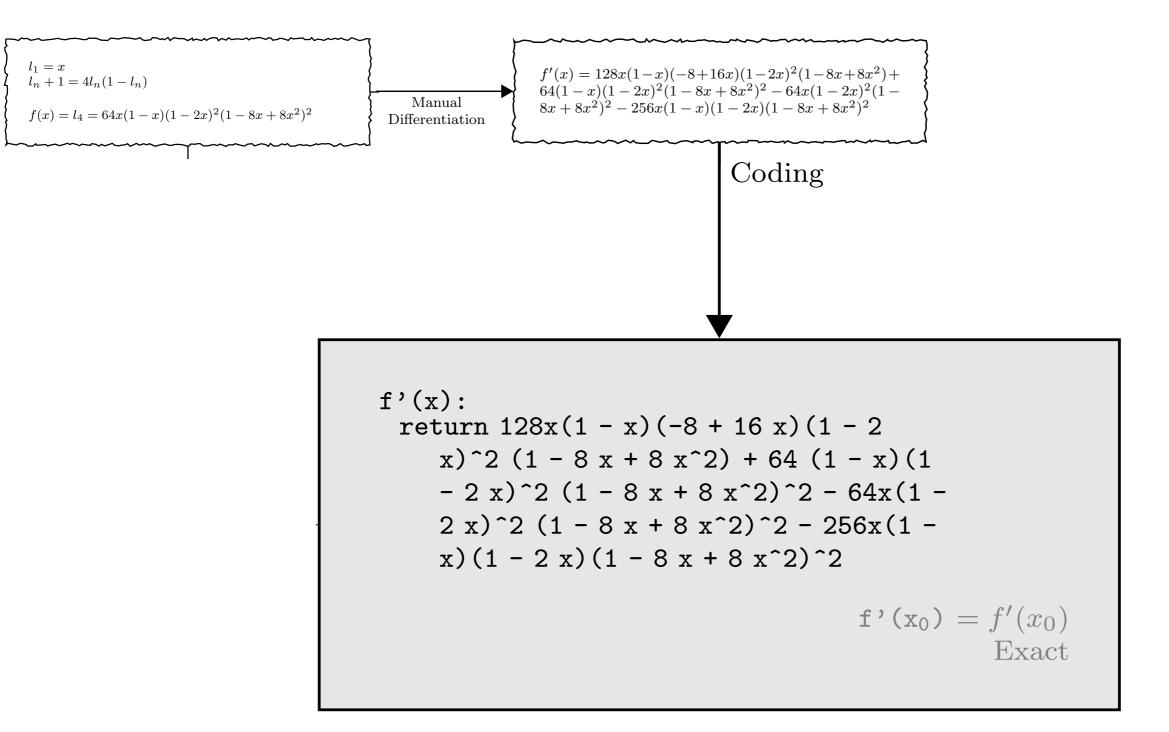
symbolic differentiation

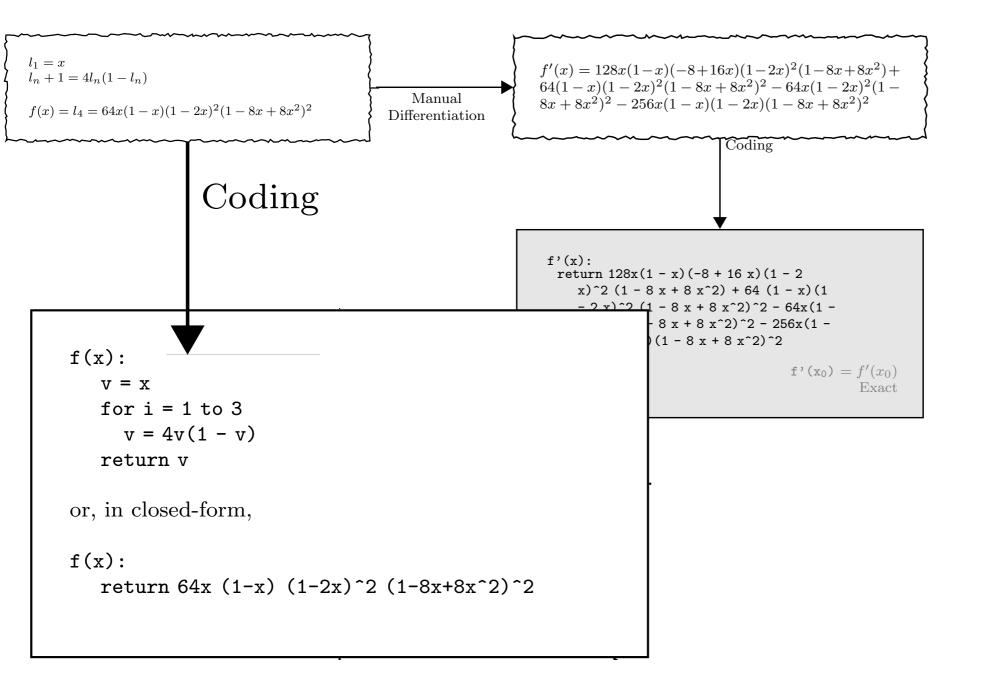
$$\frac{d}{dx} (f(x) + g(x)) \rightsquigarrow \frac{d}{dx} f(x) + \frac{d}{dx} g(x)$$

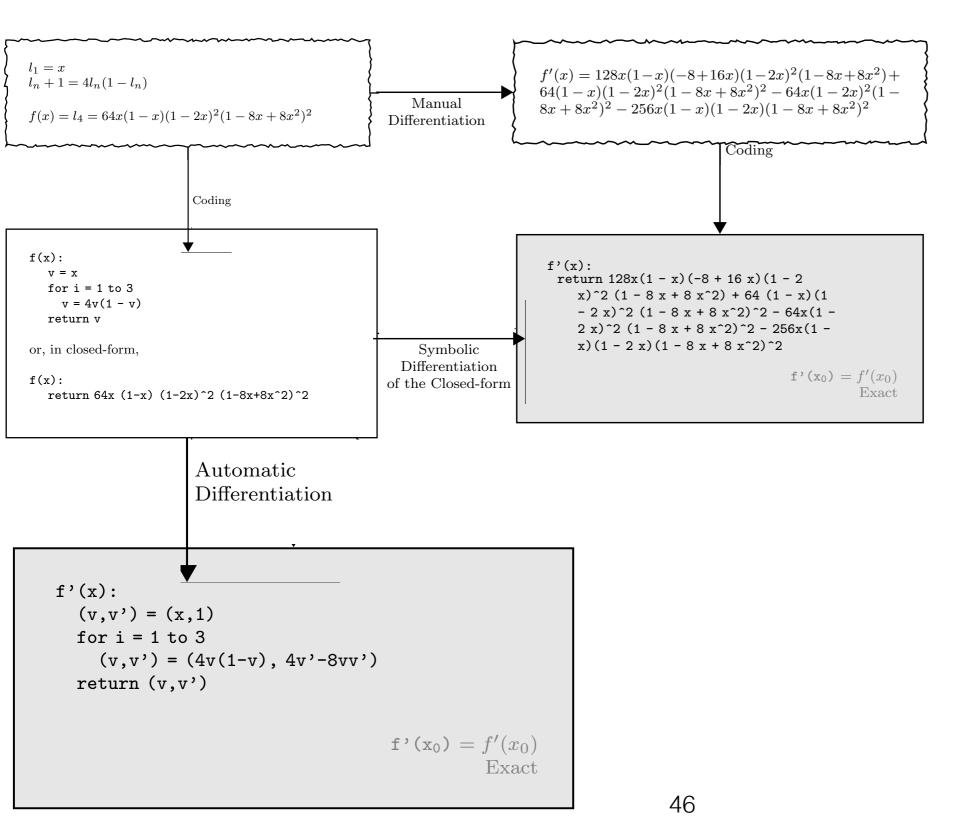
$$\frac{d}{dx} (f(x) g(x)) \rightsquigarrow \left(\frac{d}{dx} f(x)\right) g(x) + f(x) \left(\frac{d}{dx} g(x)\right)$$
41

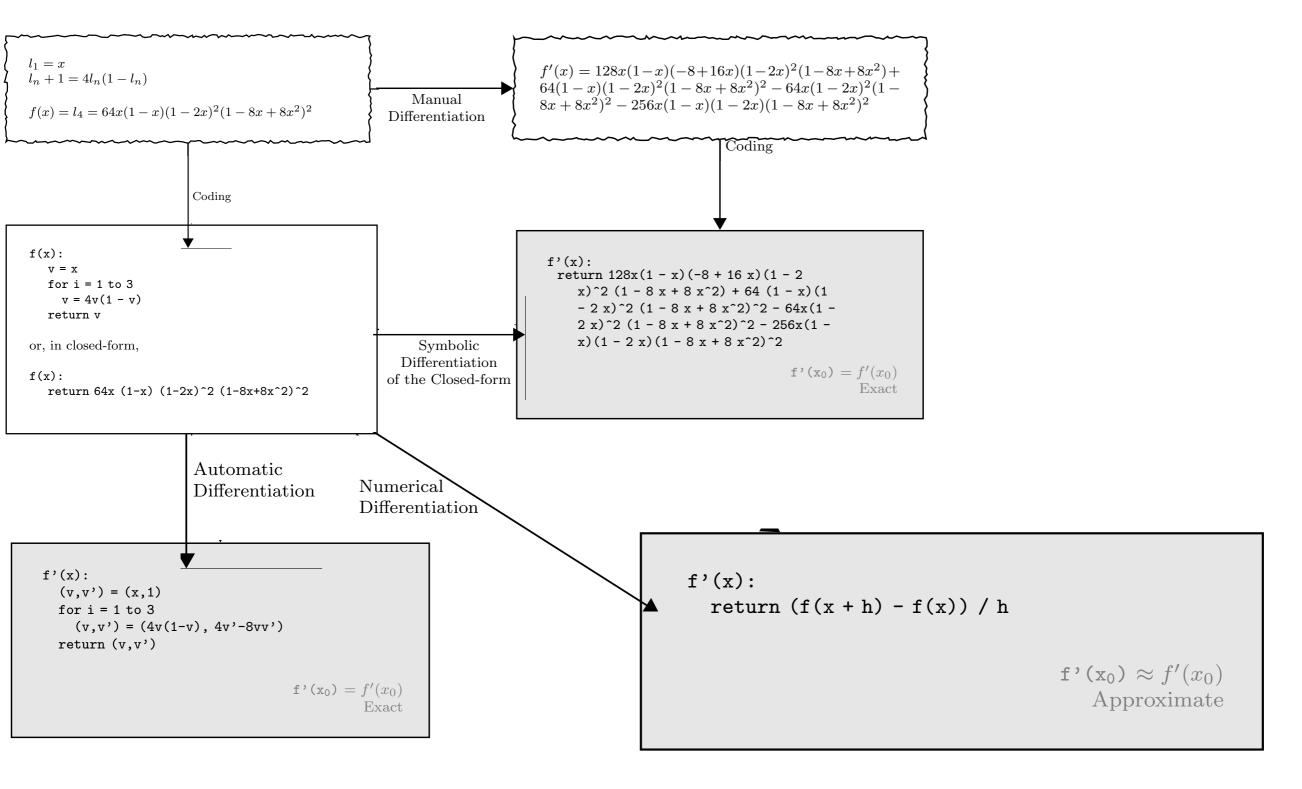
$$\begin{cases} l_1 = x \\ l_n + 1 = 4l_n(1 - l_n) \\ f(x) = l_4 = 64x(1 - x)(1 - 2x)^2(1 - 8x + 8x^2)^2 \end{cases}$$

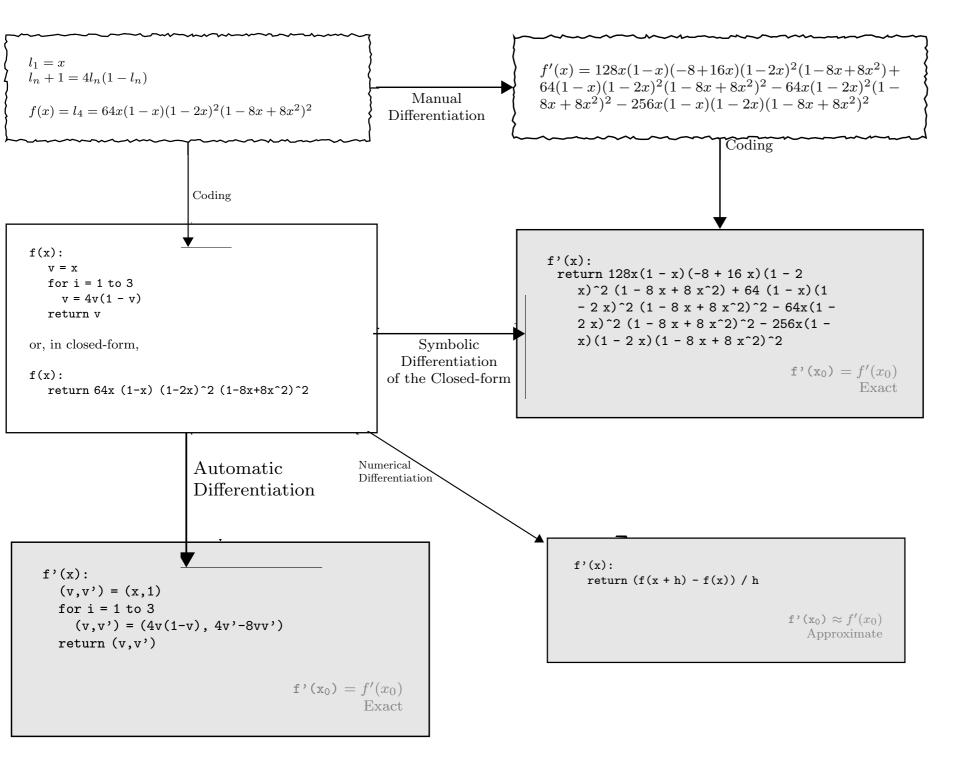












n	l_n	$rac{d}{dx}l_n$	$\frac{d}{dx}l_n$ (Optimized)
1	x	1	1
2	4x(1-x)	4(1-x) - 4x	4-8x
3	$16x(1-x)(1-2x)^2$	$\frac{16(1-x)(1-2x)^2 - 16x(1-2x)^2}{2x)^2 - 64x(1-x)(1-2x)}$	$16(1 - 10x + 24x^2 - 16x^3)$
4	$ \begin{array}{r} 64x(1-x)(1-2x)^2\\(1-8x+8x^2)^2 \end{array} $	$\begin{array}{r} 128x(1-x)(-8+16x)(1-x)(1-2x)^2(1-8x+8x^2)+64(1-x)(1-2x)^2(1-8x+8x^2)^2-64x(1-2x)^2(1-8x+8x^2)^2-256x(1-x)(1-2x)(1-8x+8x^2)^2-256x(1-x)(1-8x+8x^2)^2-256x(1-x)(1-2x)(1-8x+8x^2)^2-256x(1-x)(1-2x)(1-8x+8x^2)^2-256x(1-x)(1-2x)(1-8x+8x^2)^2-256x(1-x)(1-2x)(1-8x+8x^2)^2-256x(1-x)(1-2x)(1-8x+8x^2)^2-256x(1-x)(1-2x)(1-8x+8x^2)^2-256x(1-x)(1-2x)(1-8x+8x^2)^2-256x(1-x)(1-2x)(1-8x+8x^2)^2-256x(1-x)(1-2x)(1-8x+8x^2)^2-256x(1-x)(1-2x)(1-2x)(1-8x+8x^2)^2-256x(1-x)(1-2$	$\begin{array}{l} 64(1-42x+504x^2-2640x^3+\\ 7040x^4-9984x^5+7168x^6-\\ 2048x^7) \end{array}$

Computer code for $f(x_1, x_2) = x_1x_2 + \sin(x_1)$ might read

Original program	Dual program	
$w_1 = x_1$	$\dot{w}_1 = 0$	
$w_2 = x_2$	$\dot{w}_2 = 1$	
$w_3 = w_1 w_2$	$\dot{w}_3 = \dot{w}_1 w_2 + w_1 \dot{w}_2 = 0 \cdot x_2 + x_1 \cdot 1 = x_1$	
$w_4 = \sin(w_1)$	$\dot{w}_4 = \cos(w_1)\dot{w}_1 = \cos(x_1)\cdot 0 = 0$	
$w_5 = w_3 + w_4$	$\dot{w}_5 = \dot{w}_3 + \dot{w}_4 = x_1 + 0 = x_1$	

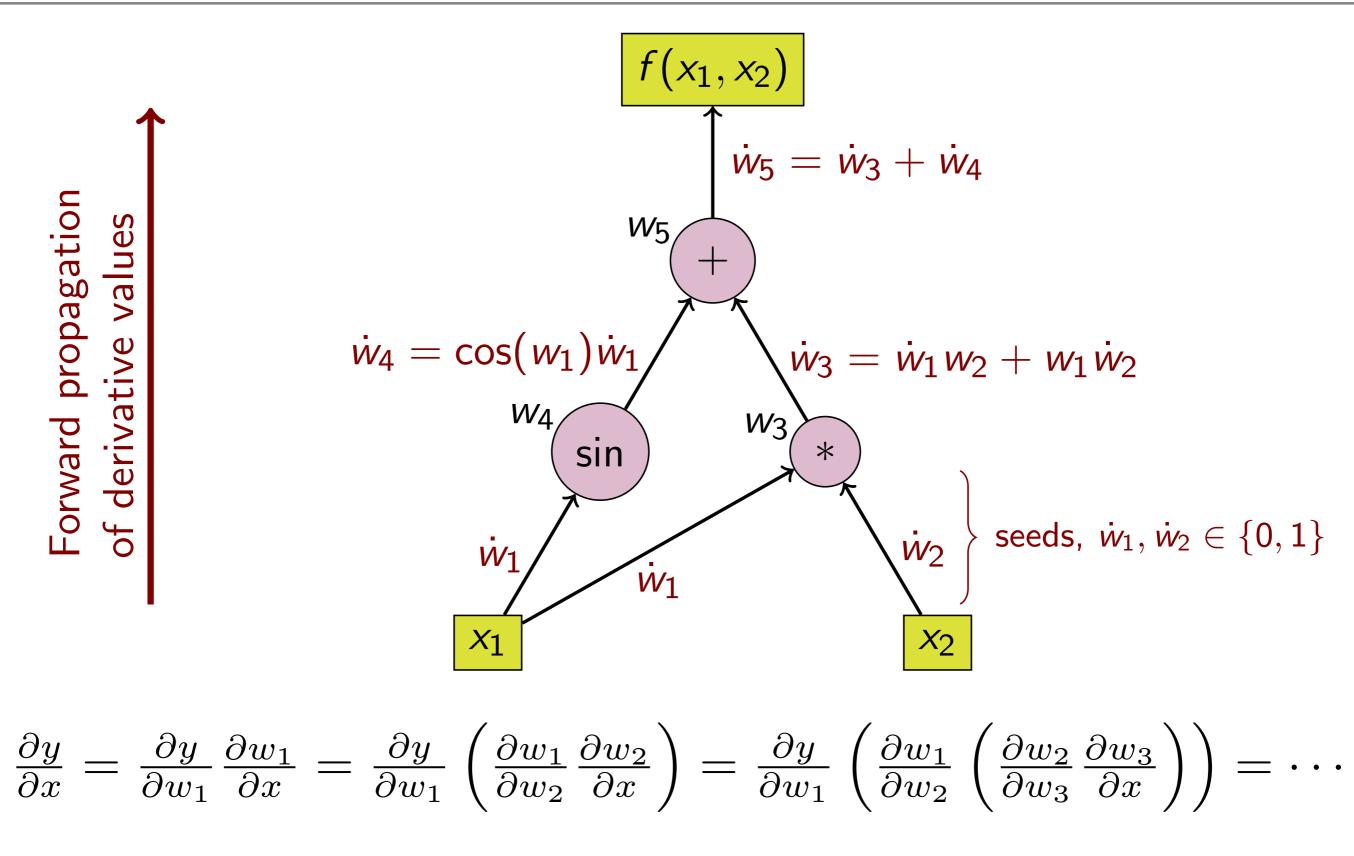
and

$$\frac{\partial f}{\partial x_2} = x_1$$

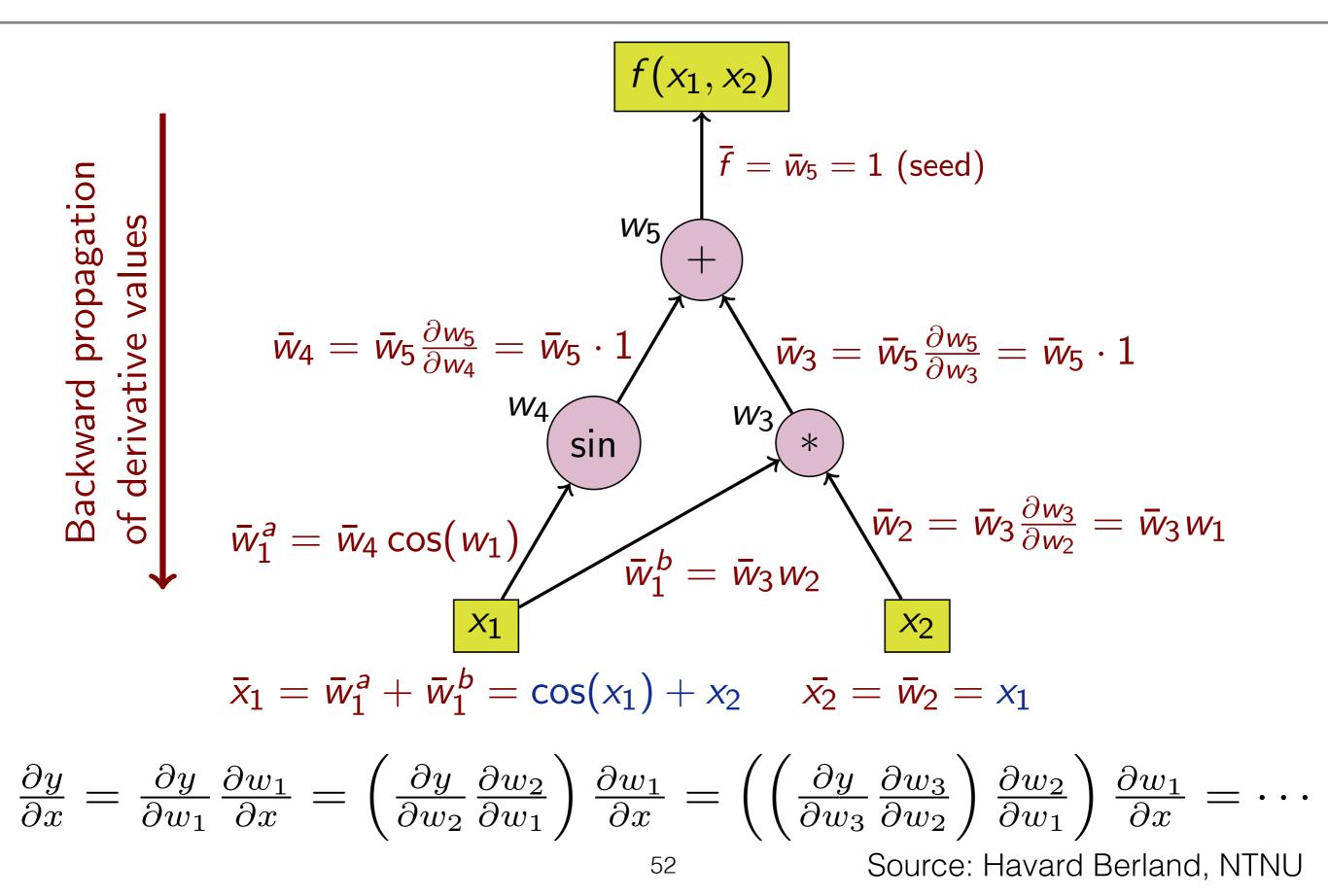
The chain rule

$$\frac{\partial f}{\partial x_2} = \frac{\partial f}{\partial w_5} \frac{\partial w_5}{\partial w_3} \frac{\partial w_3}{\partial w_2} \frac{\partial w_2}{\partial x_2}$$

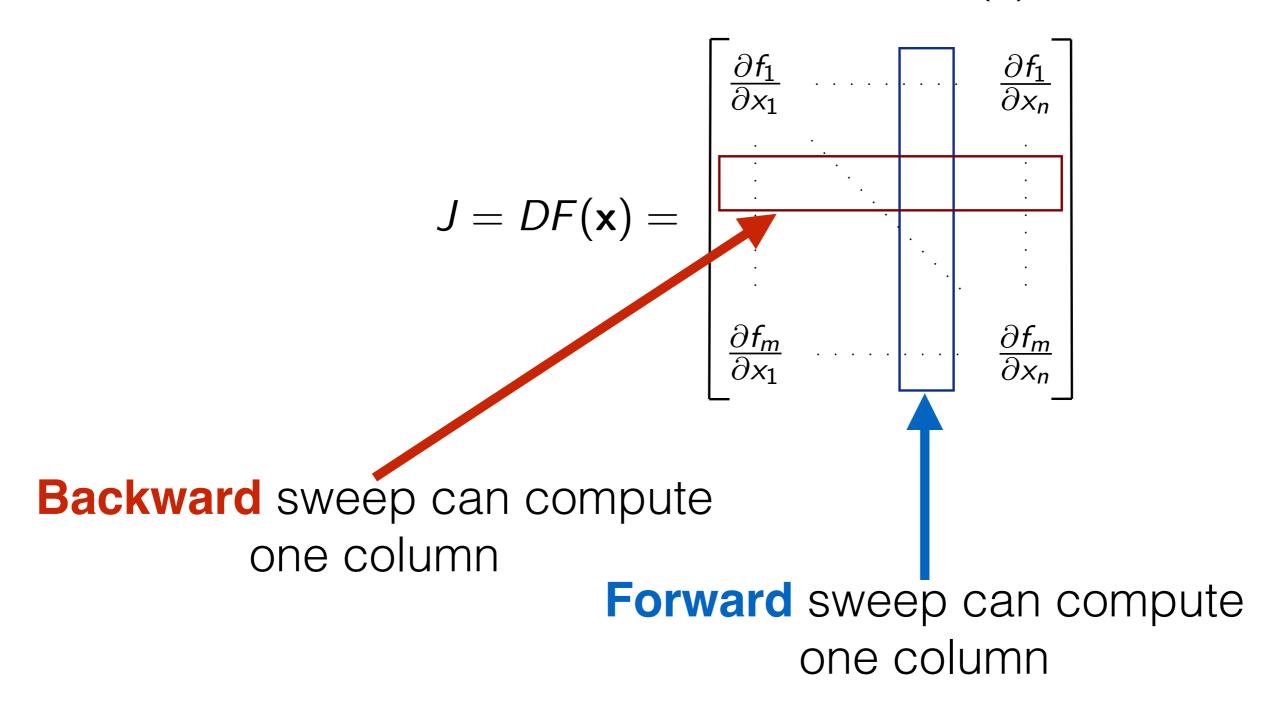
ensures that we can *propagate* the dual components throughout the computation.

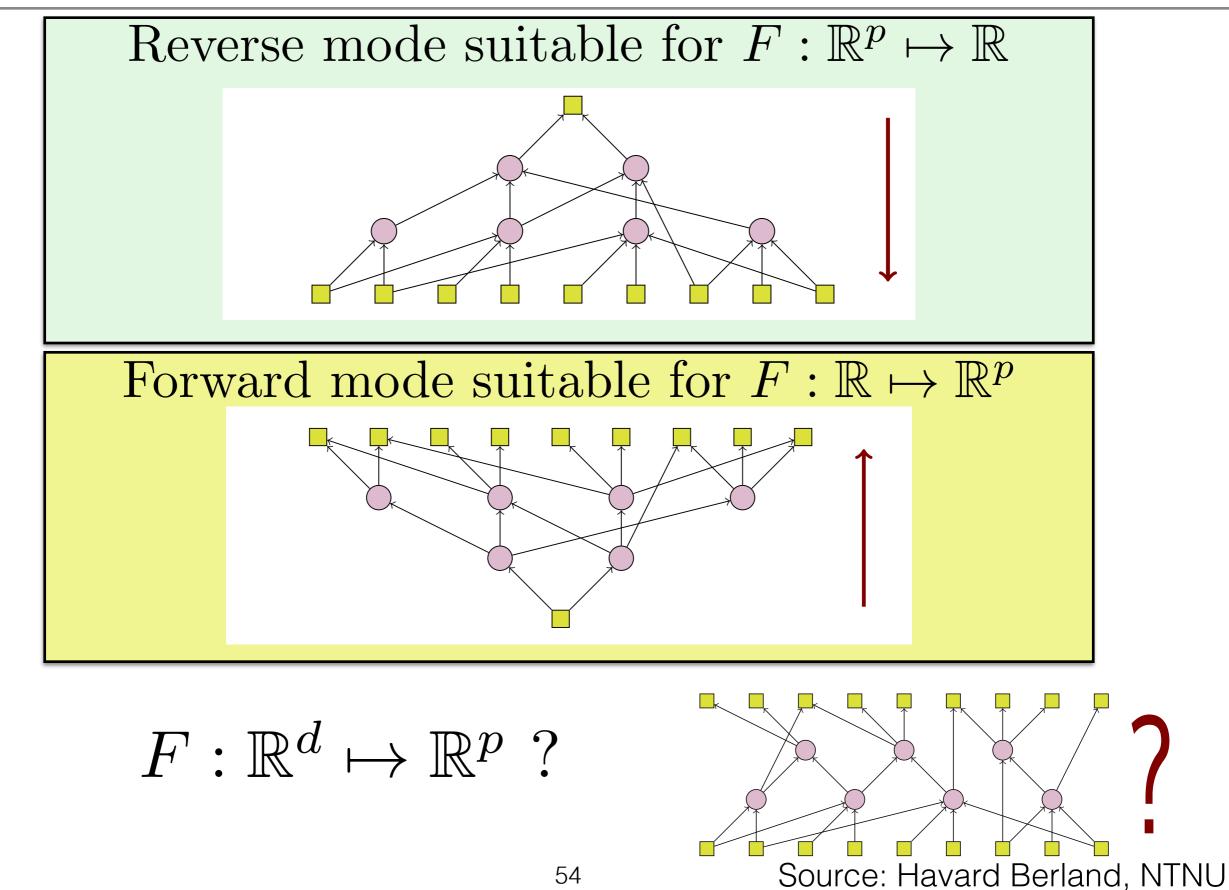


Source: Havard Berland, NTNU



Given $F : \mathbf{R}^n \mapsto \mathbf{R}^m$ and the Jacobian $J = DF(\mathbf{x}) \in \mathbf{R}^{m \times n}$.





Distributed Optimization

$$\min_{\boldsymbol{\theta} \in \mathbb{R}^{p}} \frac{1}{n} \sum_{i=1}^{n} l_{i}(\boldsymbol{\theta})$$

We want to approximate $\nabla \frac{1}{n} \sum_{i=1}^{n} l_i(\boldsymbol{\theta})$

$$\min_{\boldsymbol{\theta} \in \mathbb{R}^{p}} \frac{1}{n} \sum_{i=1}^{n} l_{i}(\boldsymbol{\theta})$$

We want to approximate
$$\nabla \frac{1}{n} \sum_{i=1}^{n} l_i(\boldsymbol{\theta})$$

 $\mathbb{E}_{i \sim \text{unif}\{1,...,n\}} [\nabla l_i(\boldsymbol{\theta})] = \frac{1}{n} \sum_i \nabla l_i(\boldsymbol{\theta}) = \nabla \mathcal{L}(\boldsymbol{\theta})$

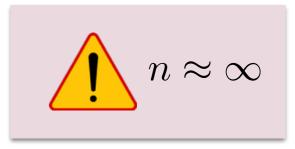
Stochastic approaches mentioned in F. Bach's talk.

$$\min_{\boldsymbol{\theta} \in \mathbb{R}^{p}} \frac{1}{n} \sum_{i=1}^{n} l_{i}(\boldsymbol{\theta})$$

We want to approximate
$$\nabla \frac{1}{n} \sum_{i=1}^{n} l_i(\boldsymbol{\theta})$$

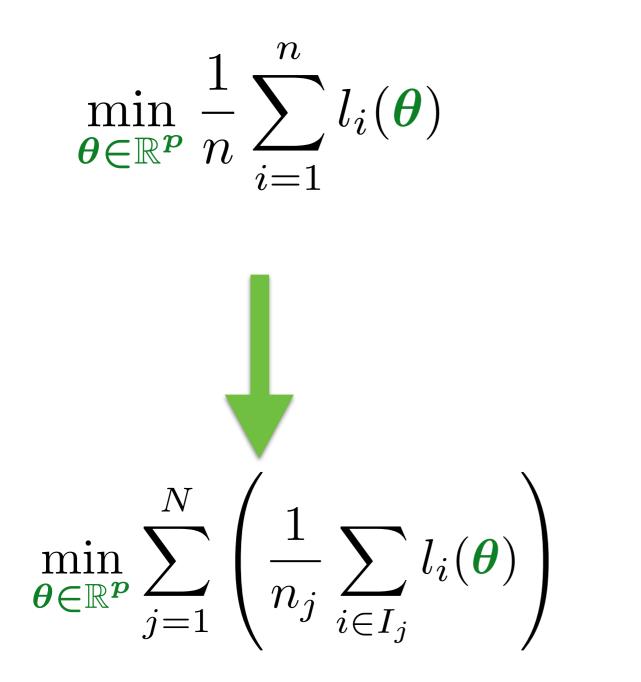
 $\mathbb{E}_{i \sim \text{unif}\{1,...,n\}} [\nabla l_i(\boldsymbol{\theta})] = \frac{1}{n} \sum_i \nabla l_i(\boldsymbol{\theta}) = \nabla \mathcal{L}(\boldsymbol{\theta})$

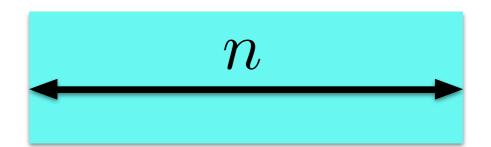
$$\min_{\boldsymbol{\theta} \in \mathbb{R}^{p}} \frac{1}{n} \sum_{i=1}^{n} l_{i}(\boldsymbol{\theta})$$

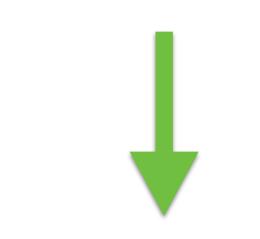


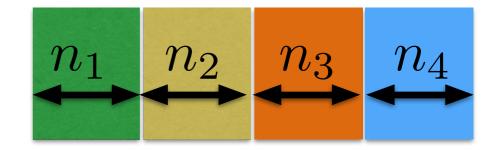
We want to approximate
$$\nabla \frac{1}{n} \sum_{i=1}^{n} l_i(\boldsymbol{\theta})$$

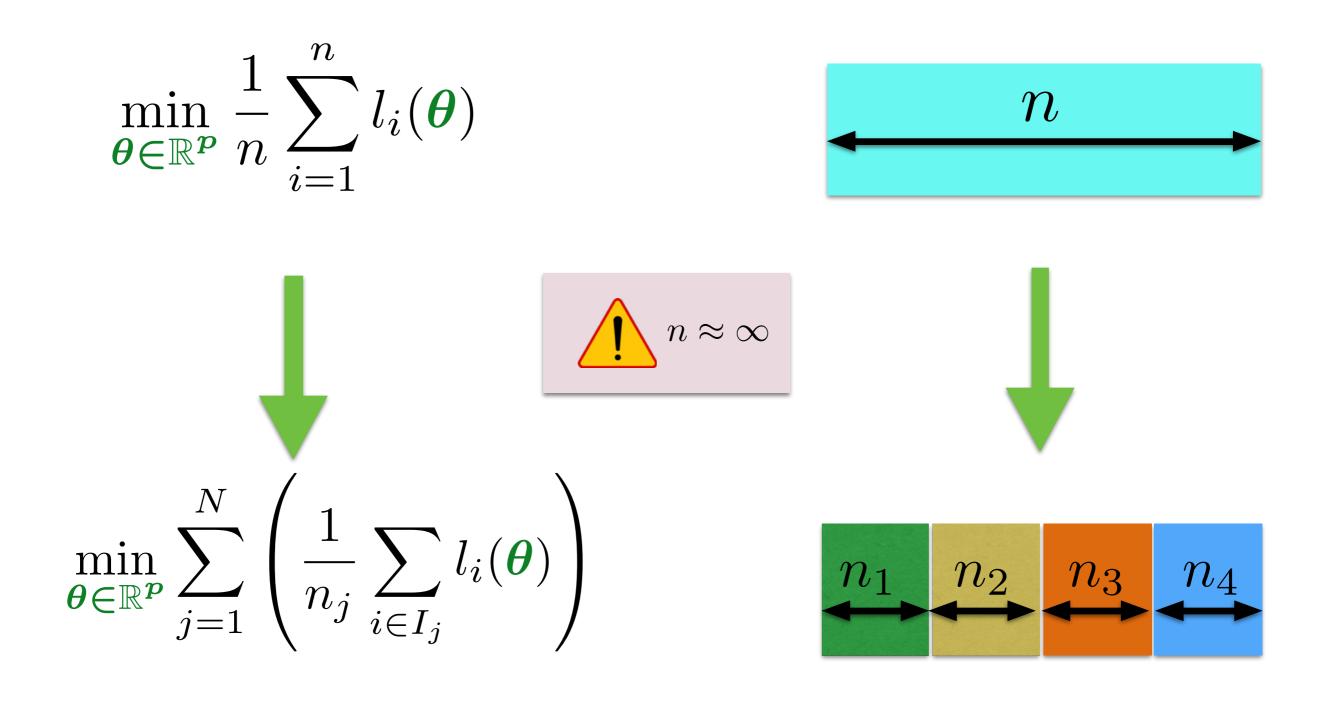
 $\mathbb{E}_{i \sim \text{unif}\{1,...,n\}} [\nabla l_i(\boldsymbol{\theta})] = \frac{1}{n} \sum_i \nabla l_i(\boldsymbol{\theta}) = \nabla \mathcal{L}(\boldsymbol{\theta})$





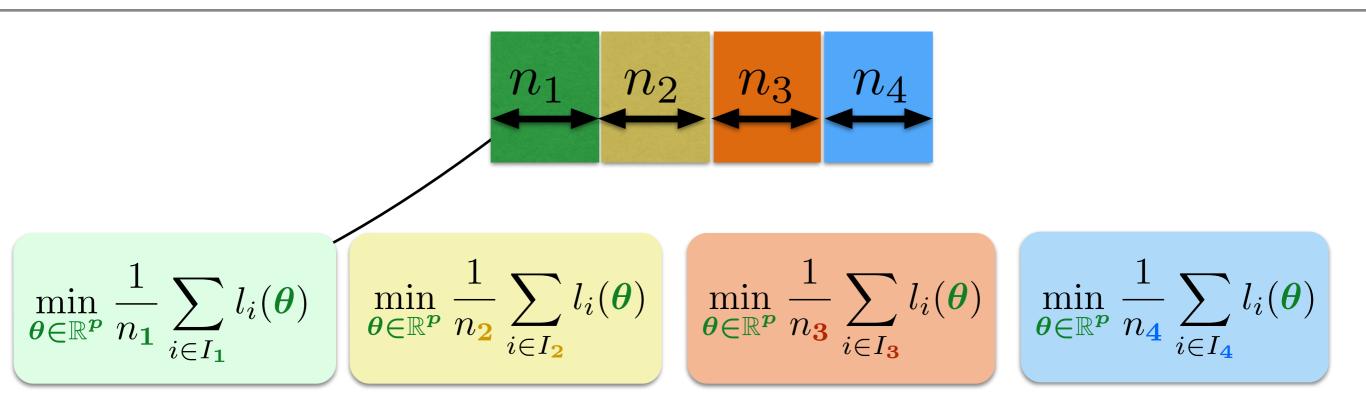


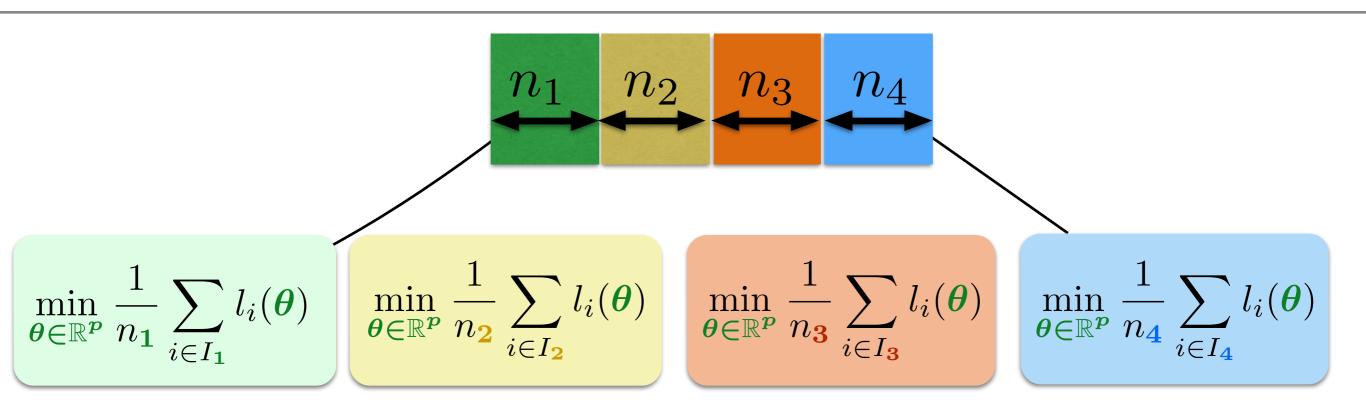


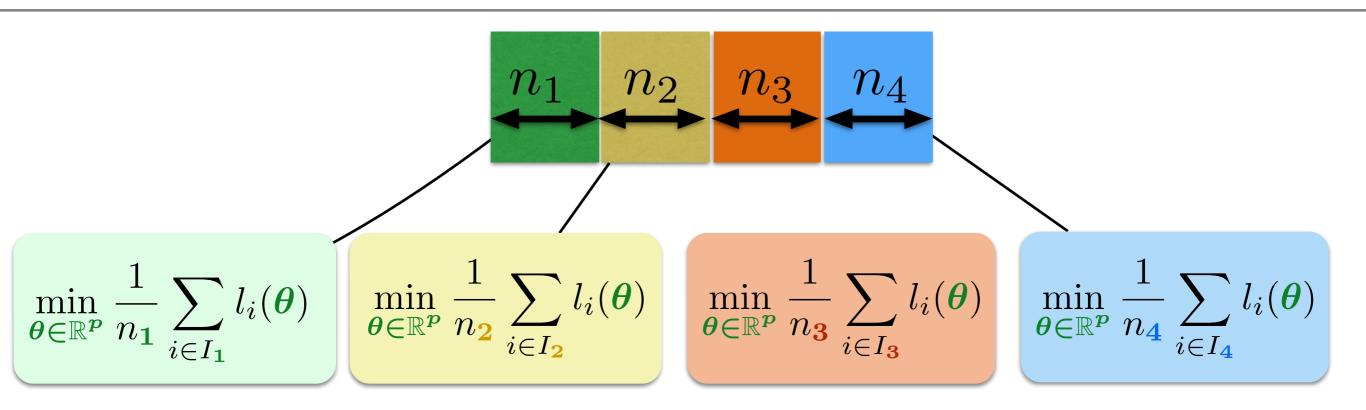


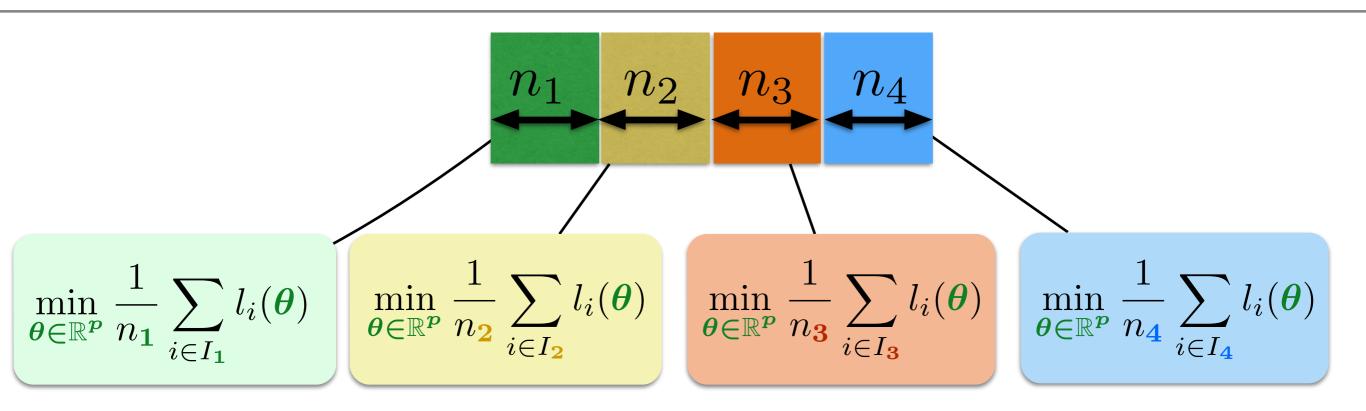
$$n_1$$
 n_2 n_3 n_4

$$\min_{\theta \in \mathbb{R}^p} \frac{1}{n_1} \sum_{i \in I_1} l_i(\theta) \qquad \min_{\theta \in \mathbb{R}^p} \frac{1}{n_2} \sum_{i \in I_2} l_i(\theta) \qquad \min_{\theta \in \mathbb{R}^p} \frac{1}{n_3} \sum_{i \in I_3} l_i(\theta) \qquad \min_{\theta \in \mathbb{R}^p} \frac{1}{n_4} \sum_{i \in I_4} l_i(\theta)$$



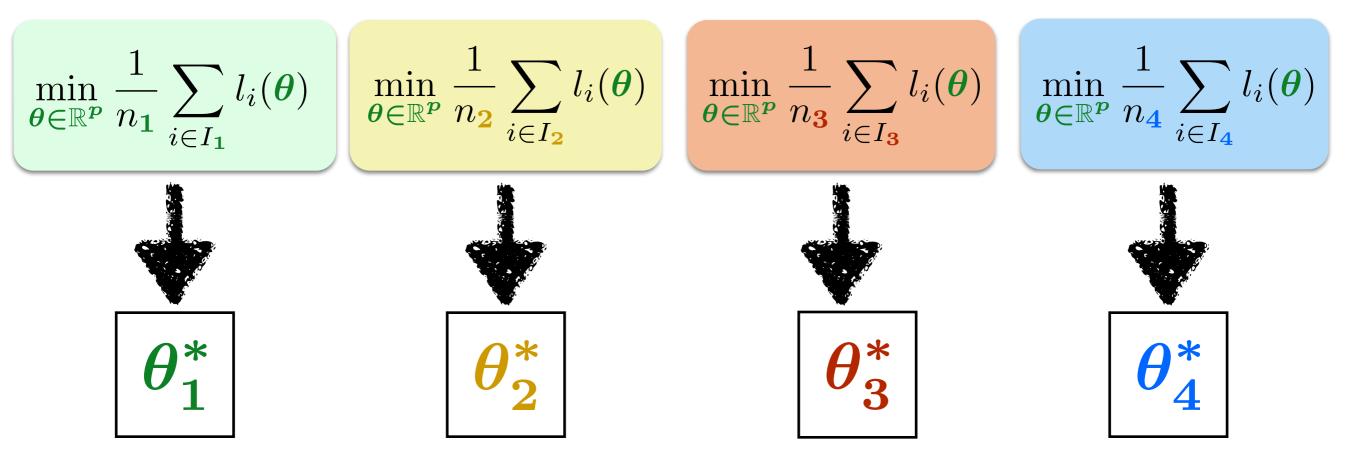


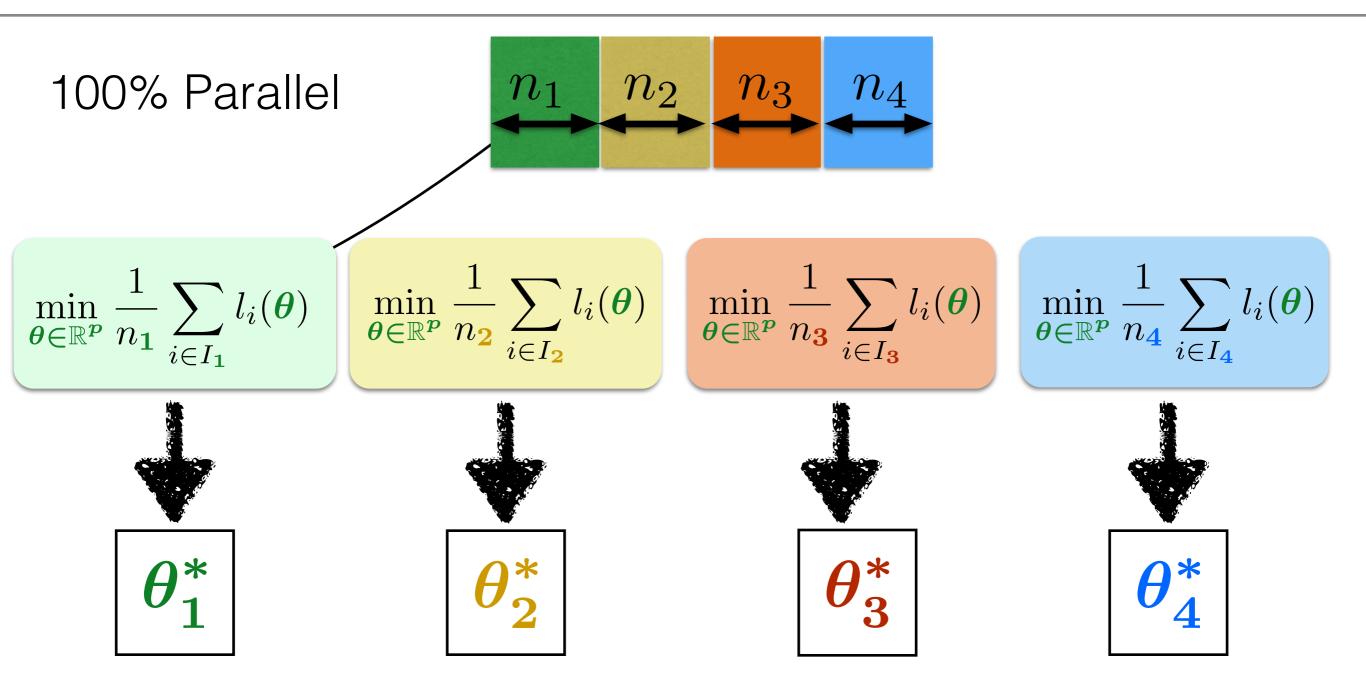


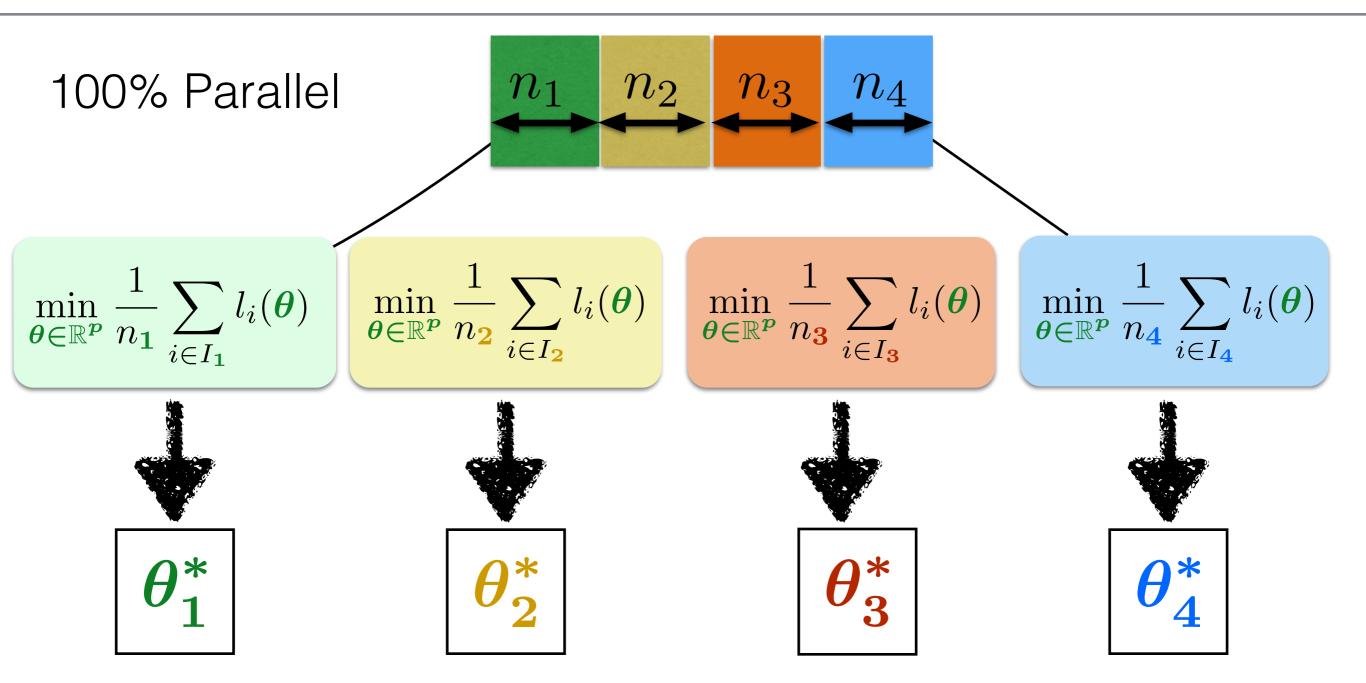


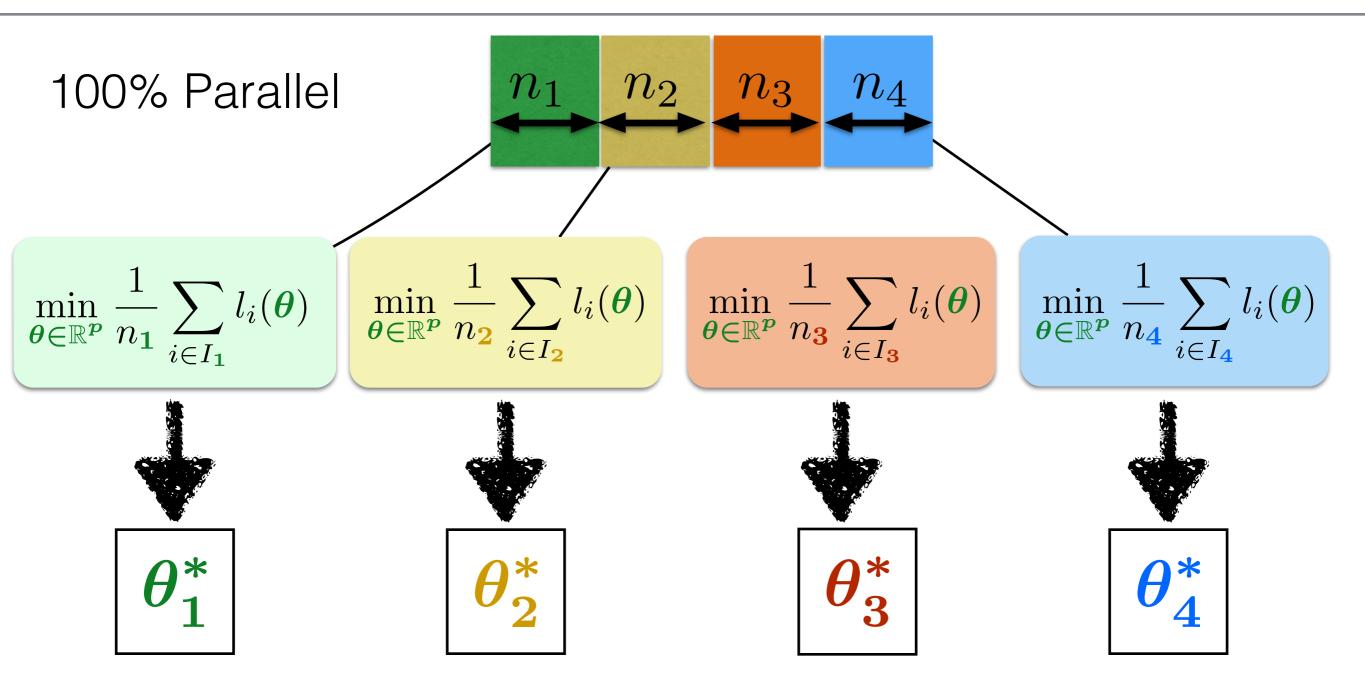
100% Parallel

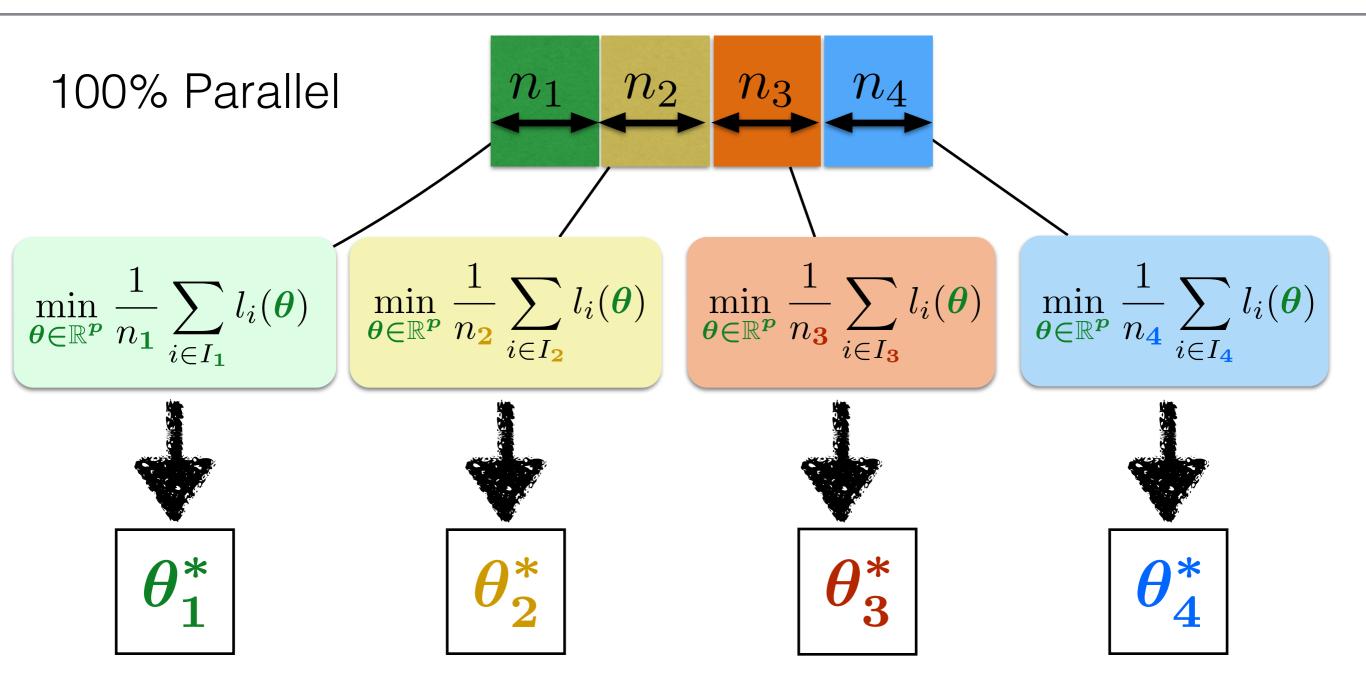
$$n_1$$
 n_2 n_3 n_4

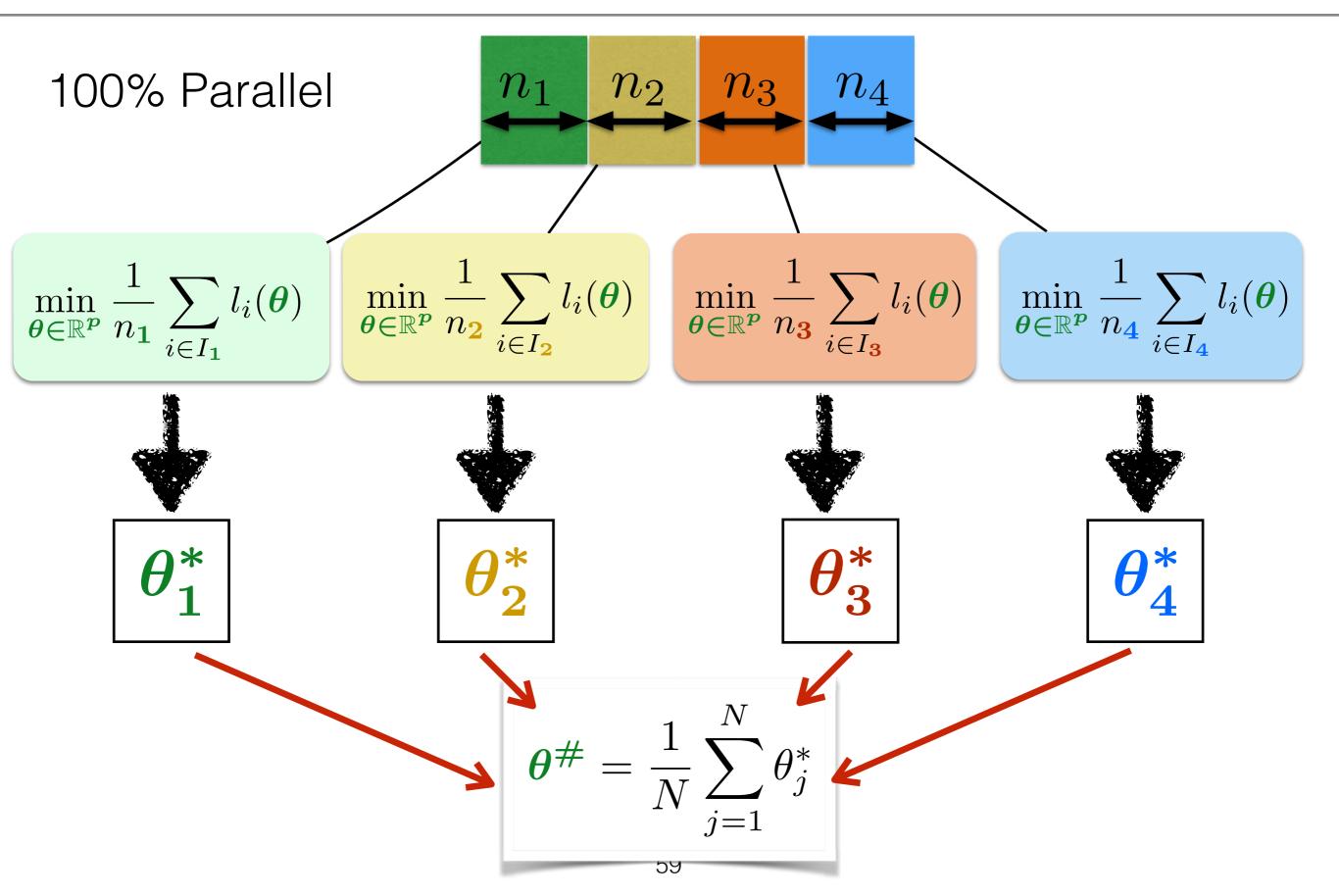


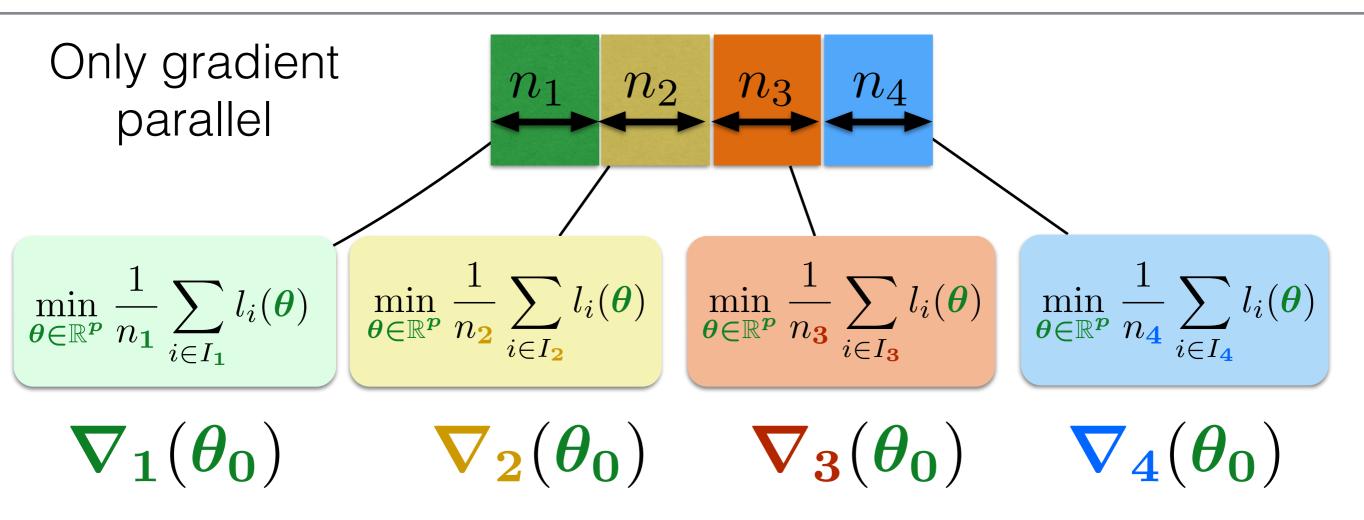




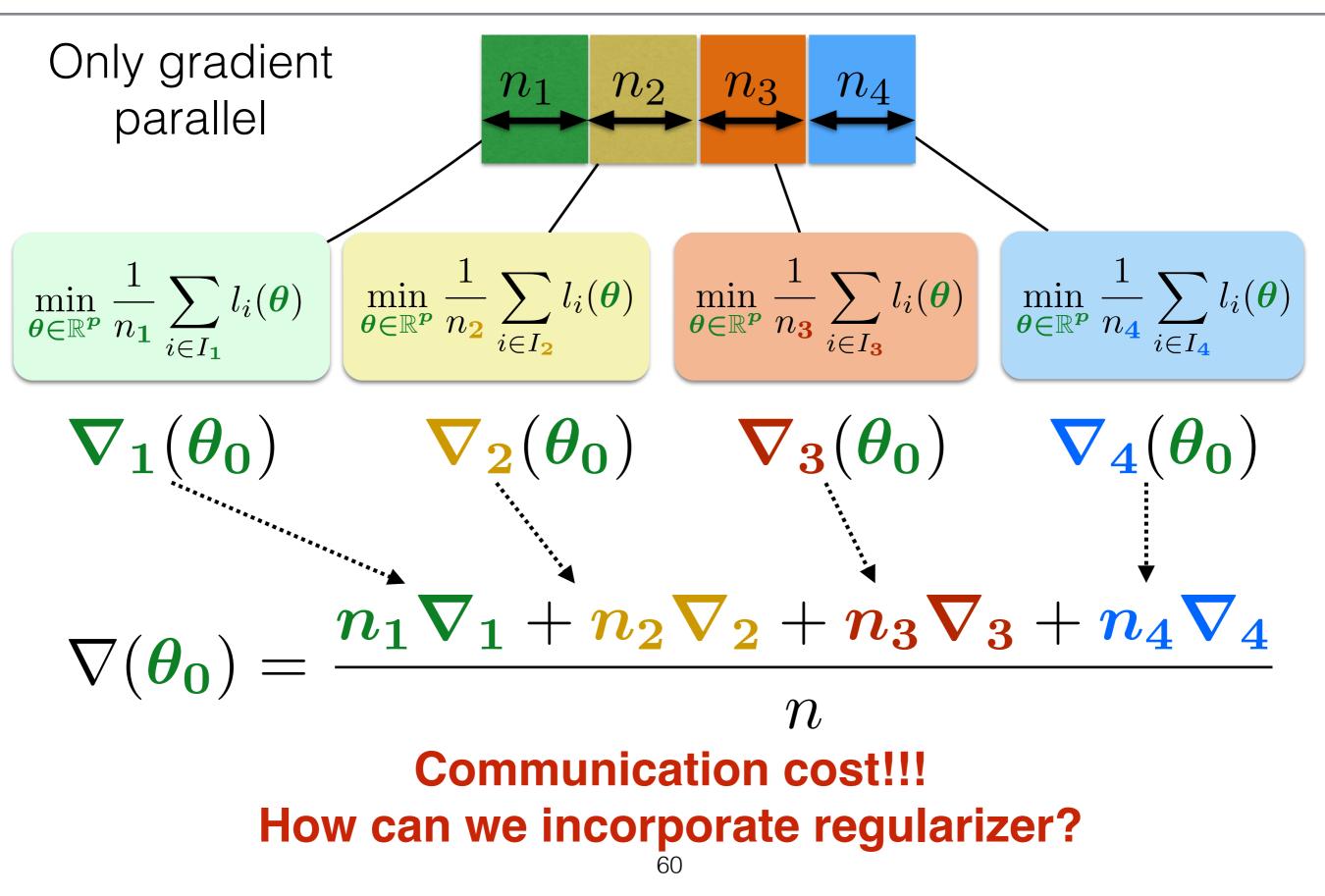


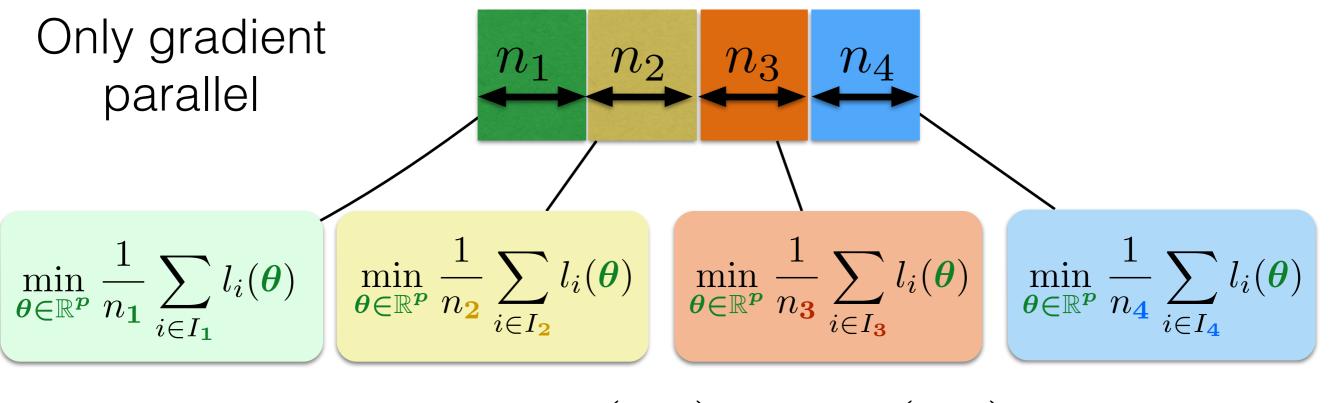






Communication cost!!! How can we incorporate regularizer?





 $\boldsymbol{\theta_1} = \nabla(\boldsymbol{\theta_0}) - \rho \nabla(\boldsymbol{\theta_0})$

Communication cost!!! How can we incorporate regularizer?

 $\min_{\boldsymbol{\theta} \in \mathbb{R}^{p}} \sum_{j=1}^{N} \left(\frac{1}{n_{j}} \sum_{i \in I_{j}} l_{i}(\boldsymbol{\theta}) \right) = \min_{\boldsymbol{\theta} \in \mathbb{R}^{p}} \sum_{j=1}^{N} f_{j}(\boldsymbol{\theta})$

 $\min_{\boldsymbol{\theta} \in \mathbb{R}^{p}} \sum_{j=1}^{N} f_{j}(\boldsymbol{\theta}) = \min_{\substack{\boldsymbol{\theta}_{1}, \dots, \boldsymbol{\theta}_{N} \in \mathbb{R}^{p} \\ \boldsymbol{\theta}_{1} = \boldsymbol{\theta}_{2} = \dots = \boldsymbol{\theta}_{N}}} \sum_{j=1}^{N} f_{j}(\boldsymbol{\theta}_{j})$

$$\min_{\substack{\boldsymbol{\theta_1},\dots,\boldsymbol{\theta_N}\in\mathbb{R}^p\\\boldsymbol{\rho}=\boldsymbol{\theta_1}=\boldsymbol{\theta_2}=\cdots=\boldsymbol{\theta_N}}}\sum_{j=1}^N f_j(\boldsymbol{\theta_j}) + \boldsymbol{\psi}(\boldsymbol{\rho})$$

The generic splitting problem we will address:

$$\min_{\substack{\boldsymbol{\theta_1},\dots,\boldsymbol{\theta_N}\in\mathbb{R}^p\\\boldsymbol{\rho}=\boldsymbol{\theta_1}=\boldsymbol{\theta_2}=\dots=\boldsymbol{\theta_N}}}\sum_{j=1}^N f_j(\boldsymbol{\theta_j}) + \boldsymbol{\psi}(\boldsymbol{\rho})$$

$$\min_{\substack{\boldsymbol{\theta_1},\dots,\boldsymbol{\theta_N}\in\mathbb{R}^p\\\boldsymbol{\rho}=\boldsymbol{\theta_1}=\boldsymbol{\theta_2}=\cdots=\boldsymbol{\theta_N}}}\sum_{j=1}^N f_j(\boldsymbol{\theta_j}) + \boldsymbol{\psi}(\boldsymbol{\rho})$$

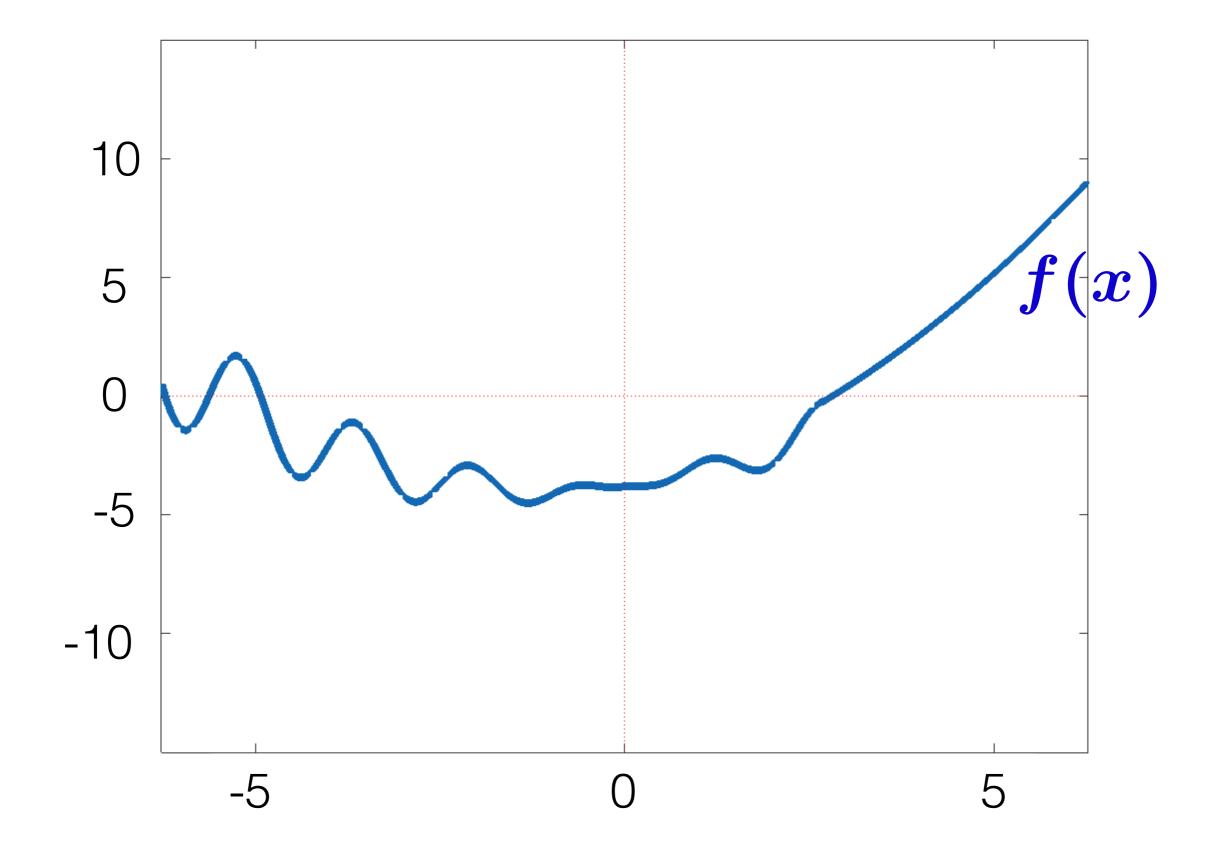
repeat for $t = 0, \ldots, T$

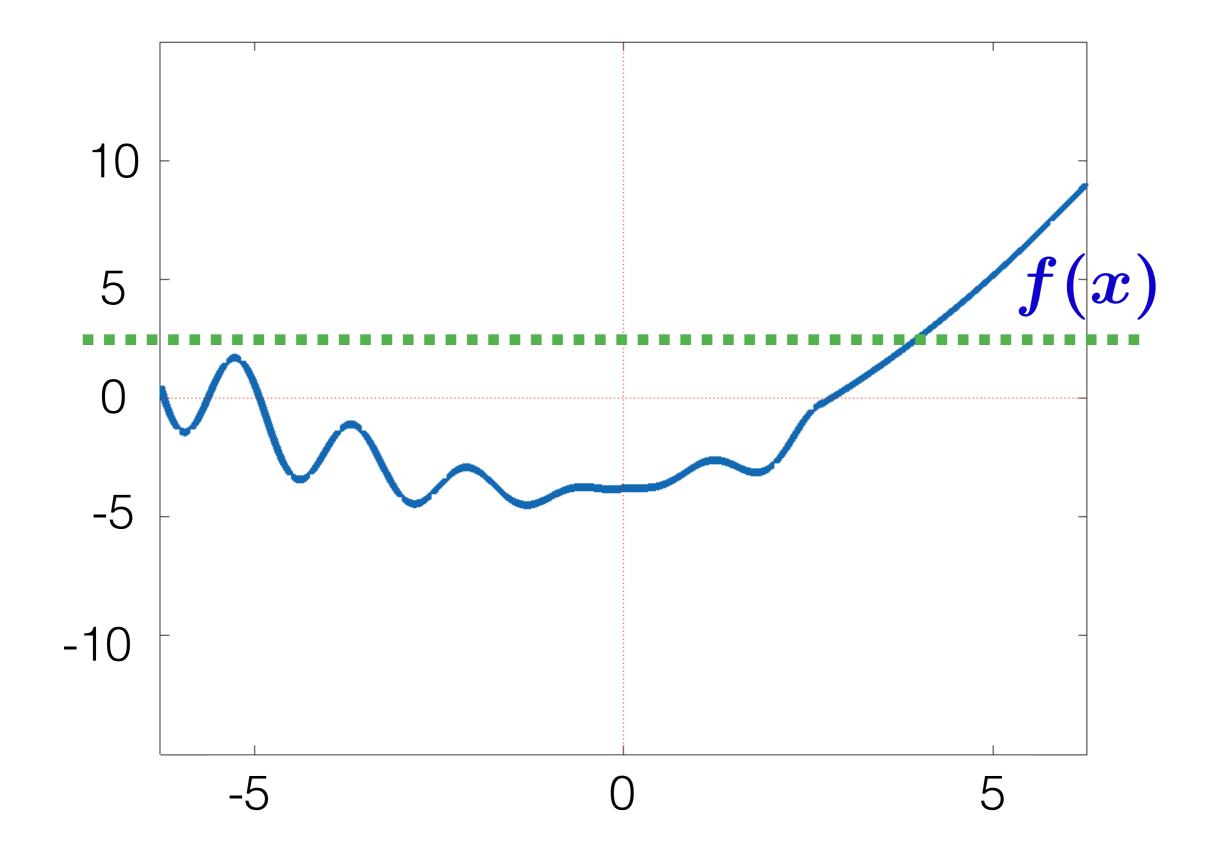
$$\begin{aligned} \boldsymbol{\theta}_{1}^{t+1} &= \operatorname*{argmin}_{\boldsymbol{\theta}} f_{1}(\boldsymbol{\theta}) + \frac{\tau}{2} \|\boldsymbol{\theta} - \boldsymbol{\rho}^{t} + u_{1}^{t}\|^{2} \\ &\vdots \\ \boldsymbol{\theta}_{N}^{t+1} &= \operatorname*{argmin}_{\boldsymbol{\theta}} f_{N}(\boldsymbol{\theta}) + \frac{\tau}{2} \|\boldsymbol{\theta} - \boldsymbol{\rho}^{t} + u_{N}^{t}\|^{2} \\ \boldsymbol{\rho}^{t+1} &= \operatorname*{argmin}_{\boldsymbol{\theta}} \boldsymbol{\psi}(\boldsymbol{\theta}) + (N\tau/2) \|\boldsymbol{\theta} - \boldsymbol{\theta}^{t+1} - \bar{u}^{t}\|^{2} \\ u_{i}^{t+1} &= u_{i}^{t} + \boldsymbol{\theta}_{i}^{t+1} - \boldsymbol{\rho}^{t+1}, i \leq N \end{aligned}$$

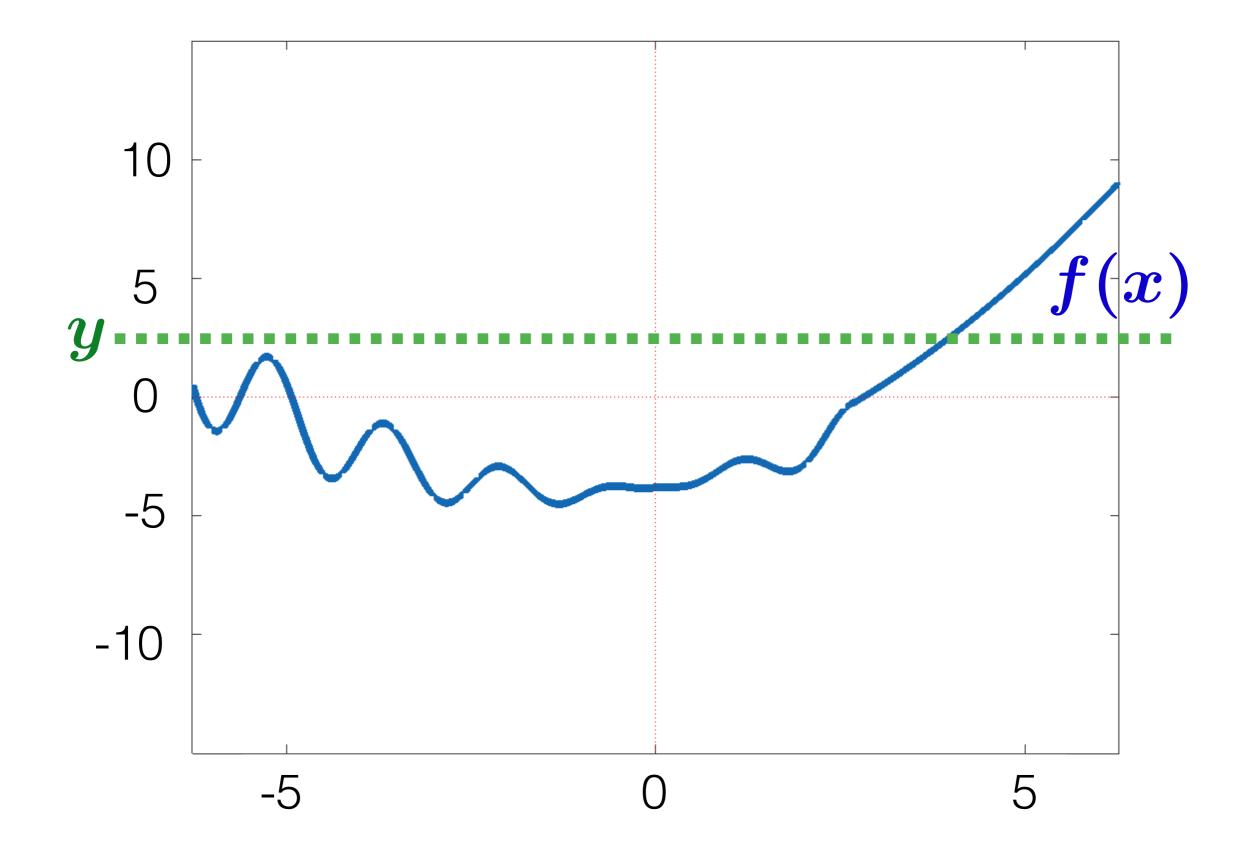
Dual Methods

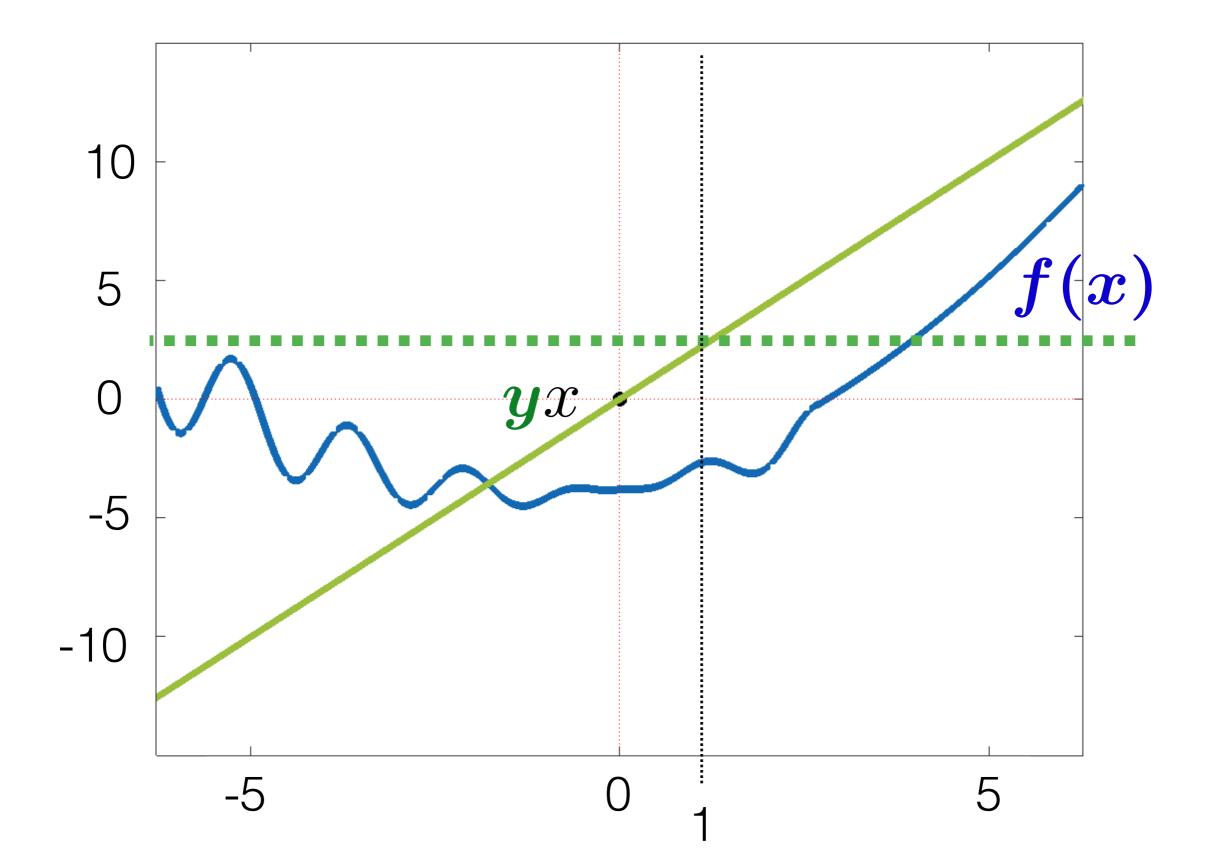
Def

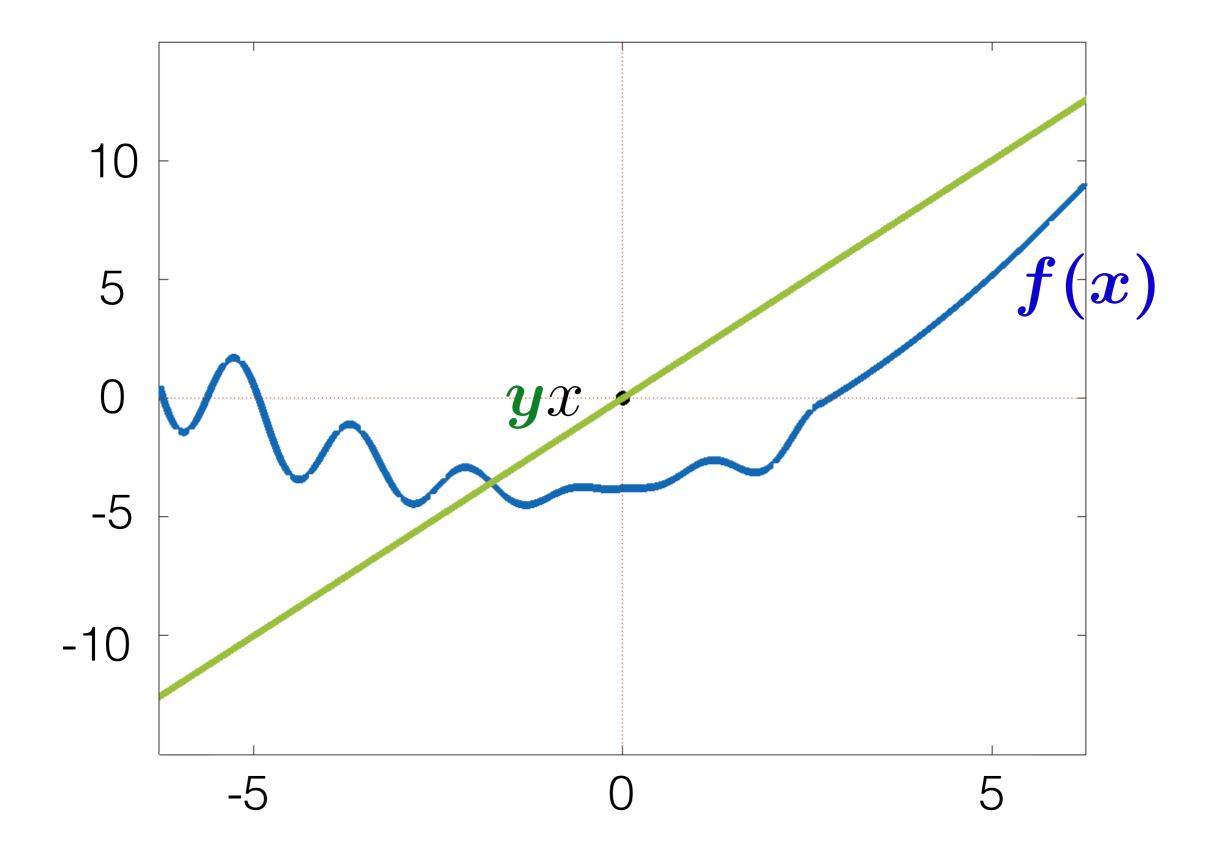
For a (possibly non convex) function $f : \mathbb{R}^p \to \overline{\mathbb{R}}$, the convex conjugate of f is, $\forall y \in \mathbb{R}^p$, $f^*(y) = \sup_{\boldsymbol{x} \in \mathbb{R}^p} \langle \boldsymbol{x}, y \rangle - f(\boldsymbol{x})$

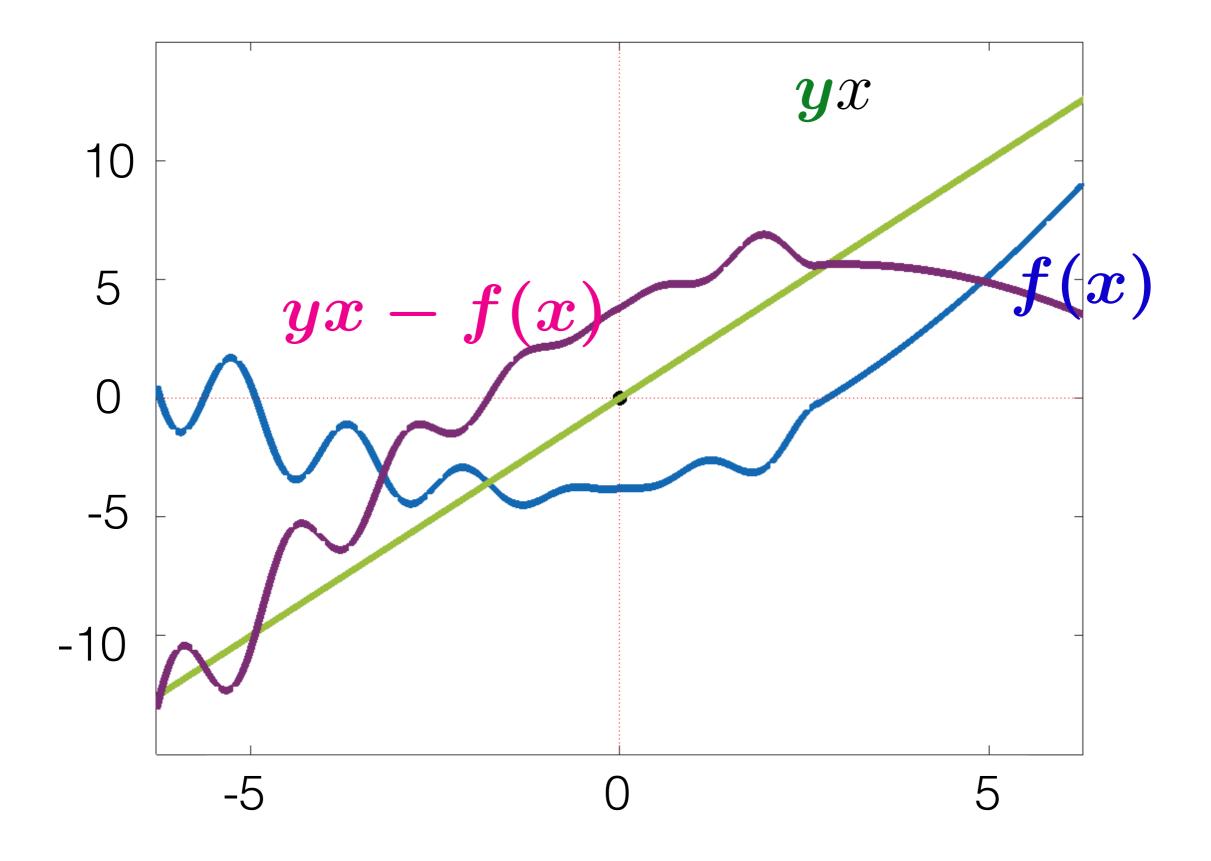


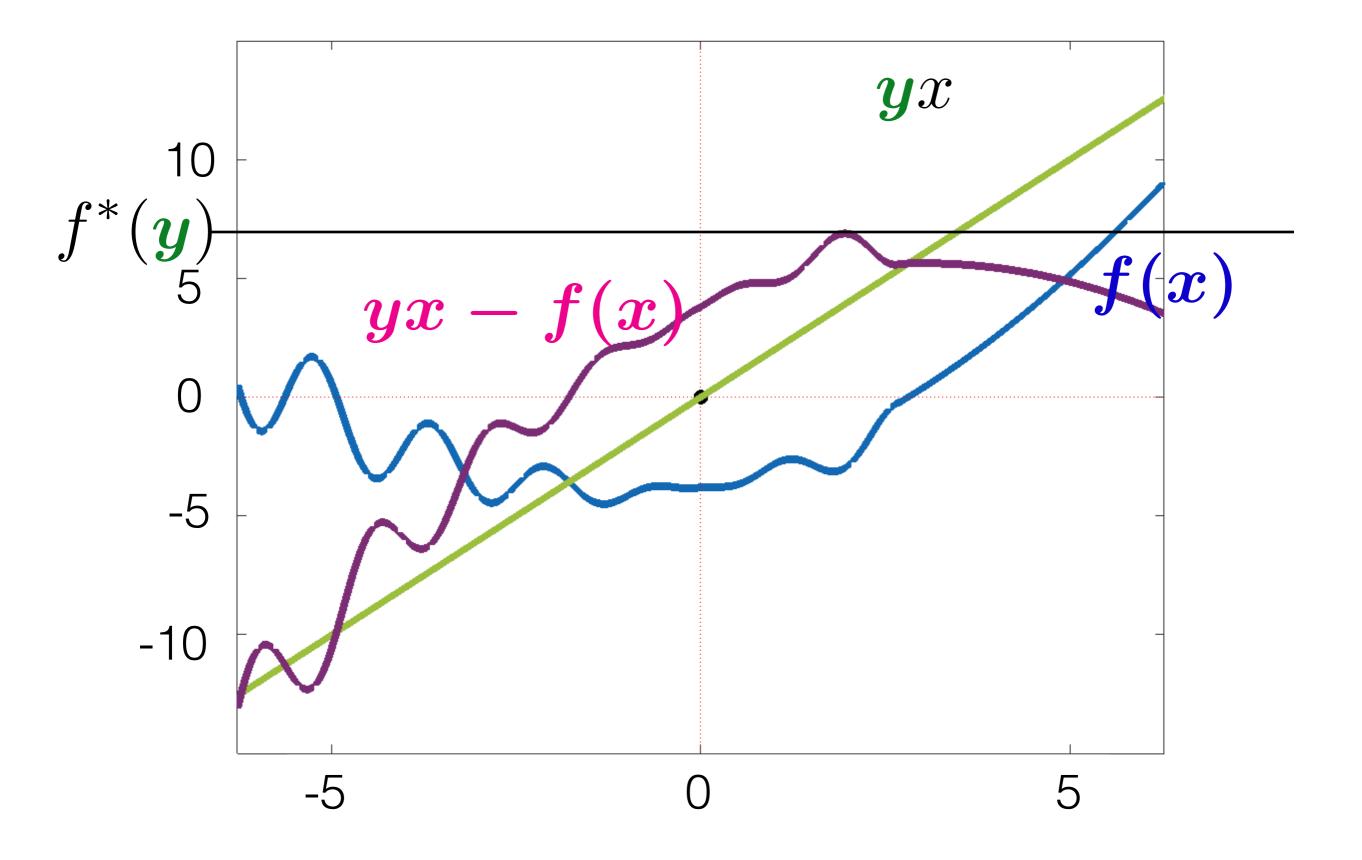


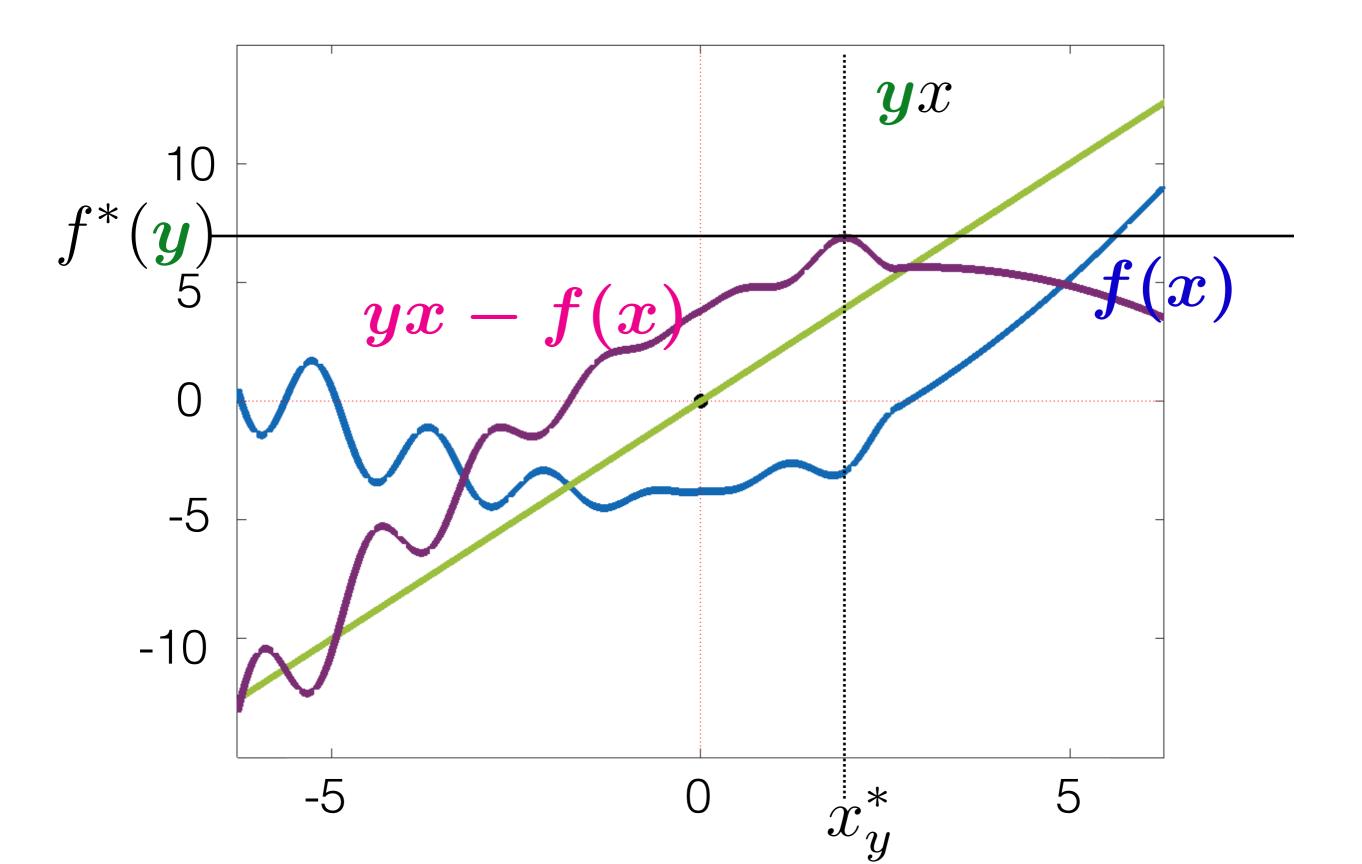


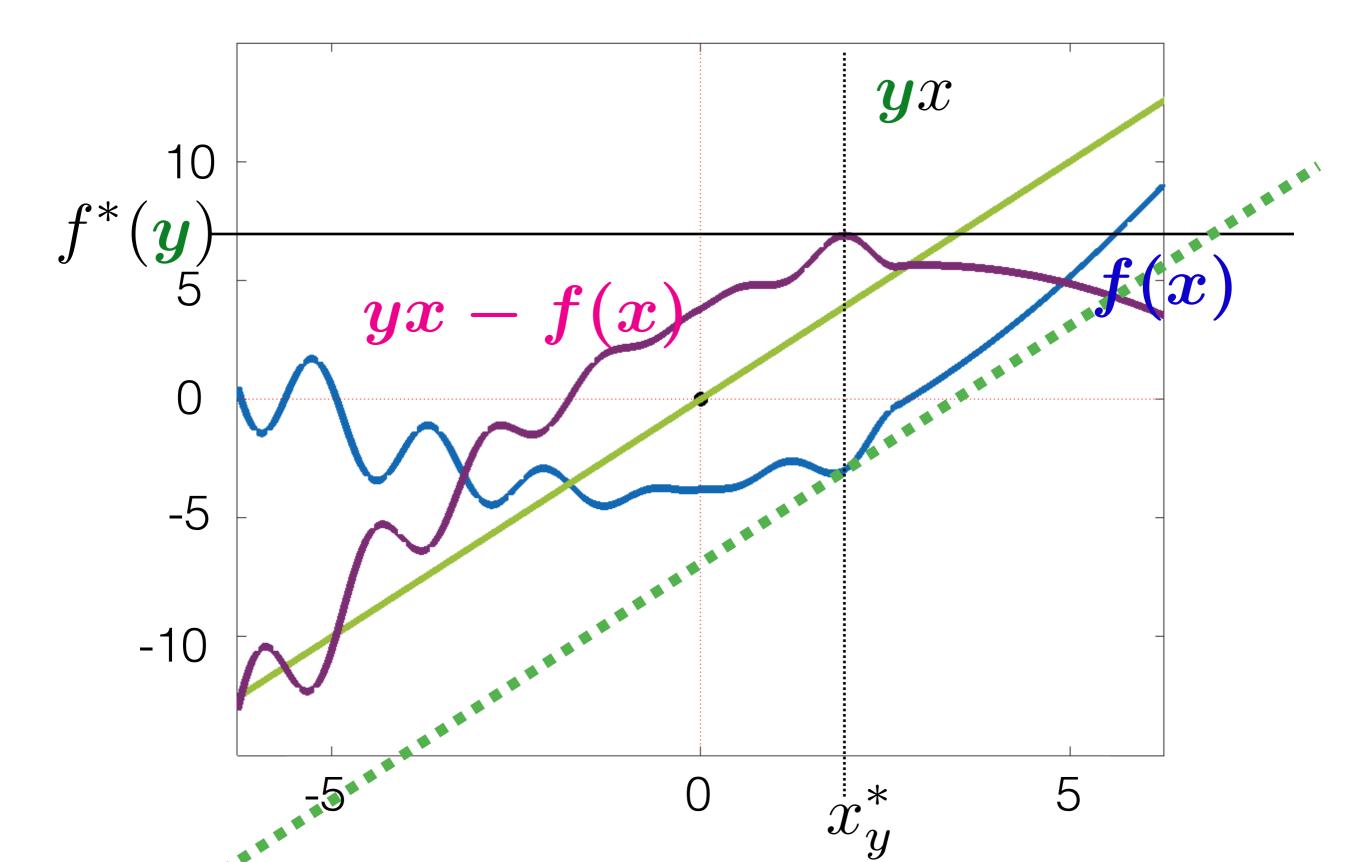


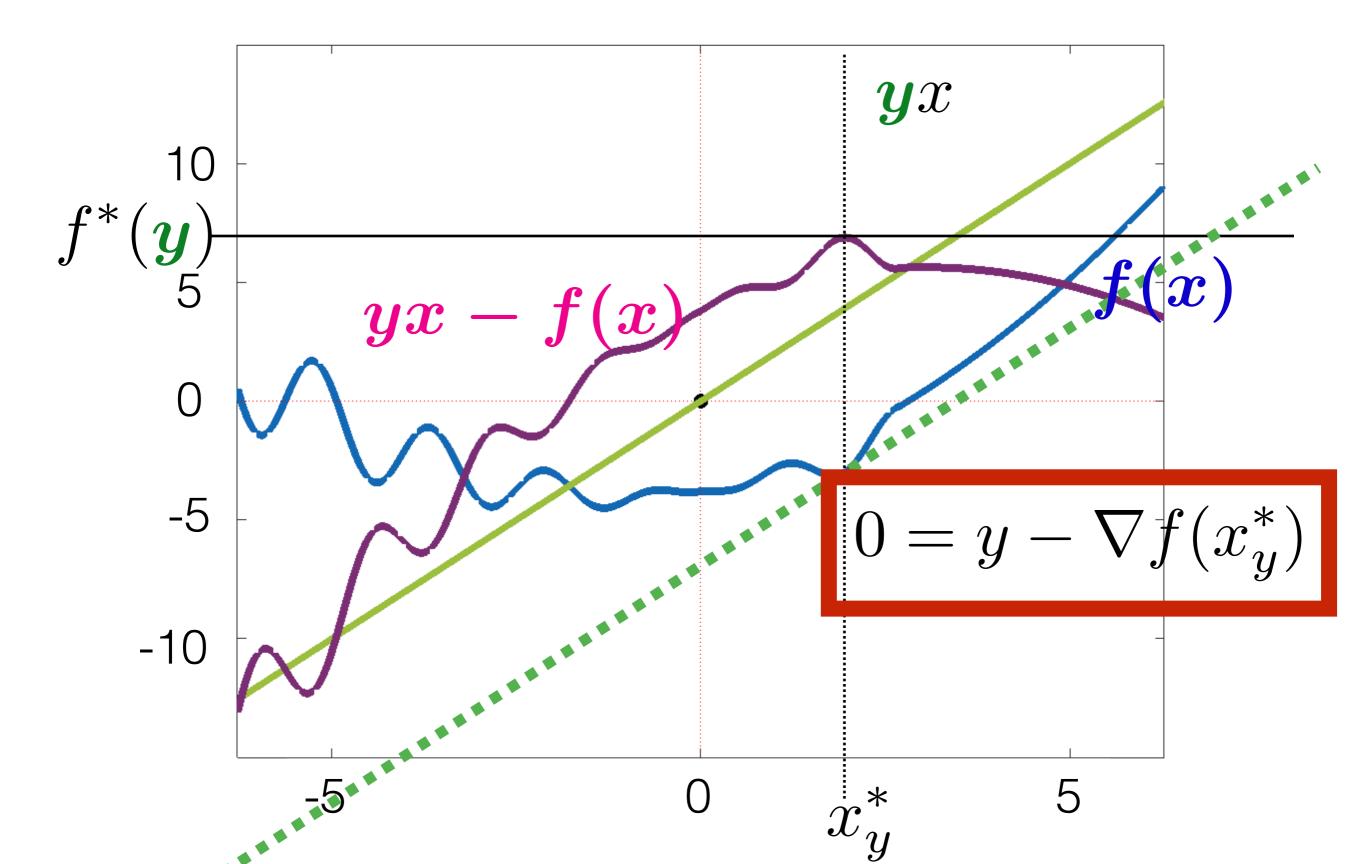


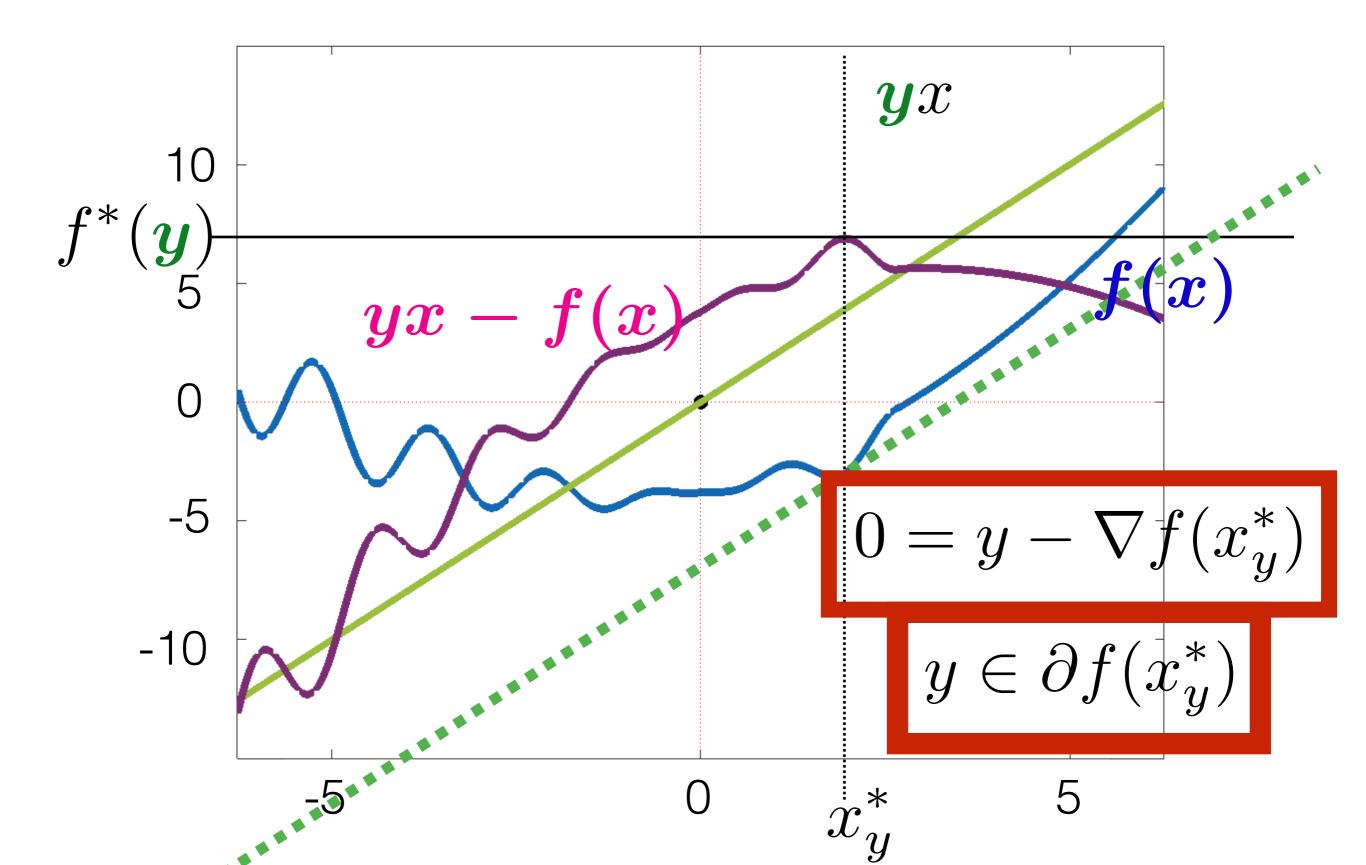


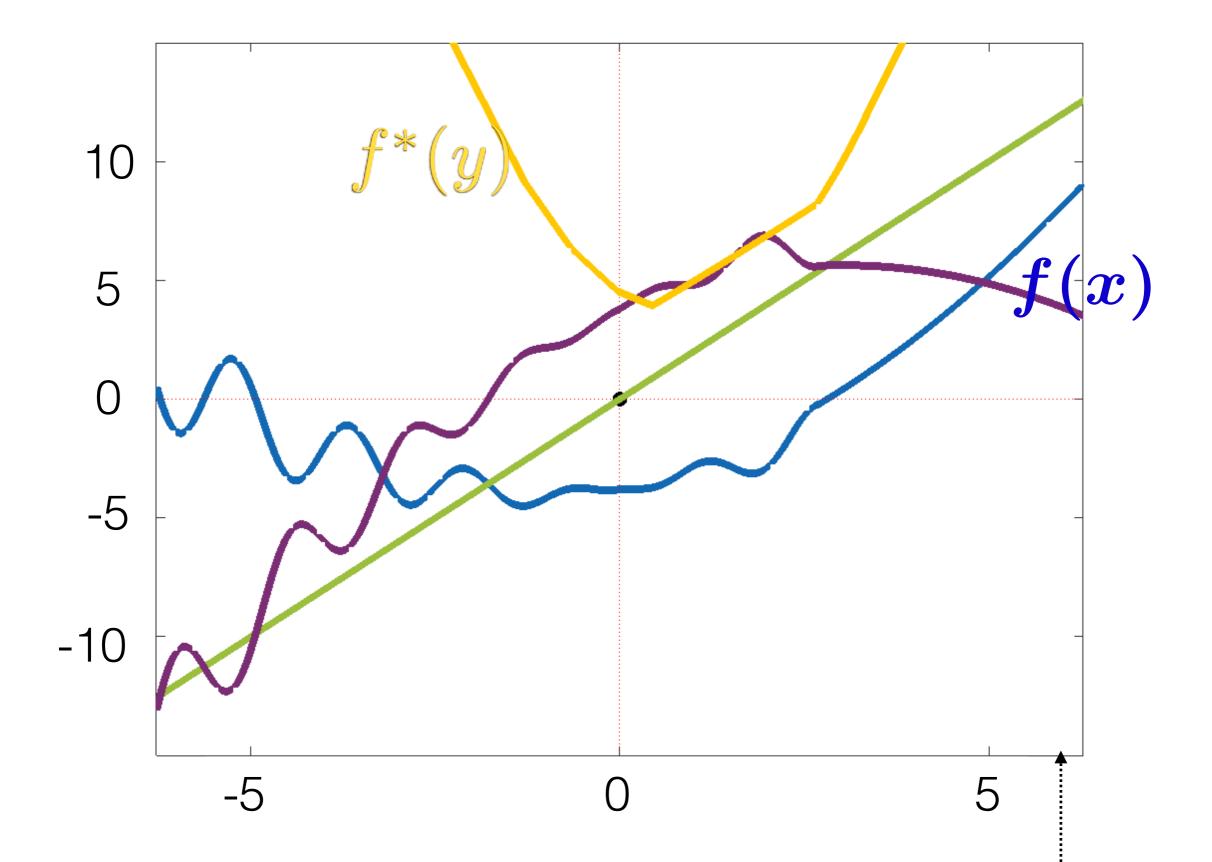


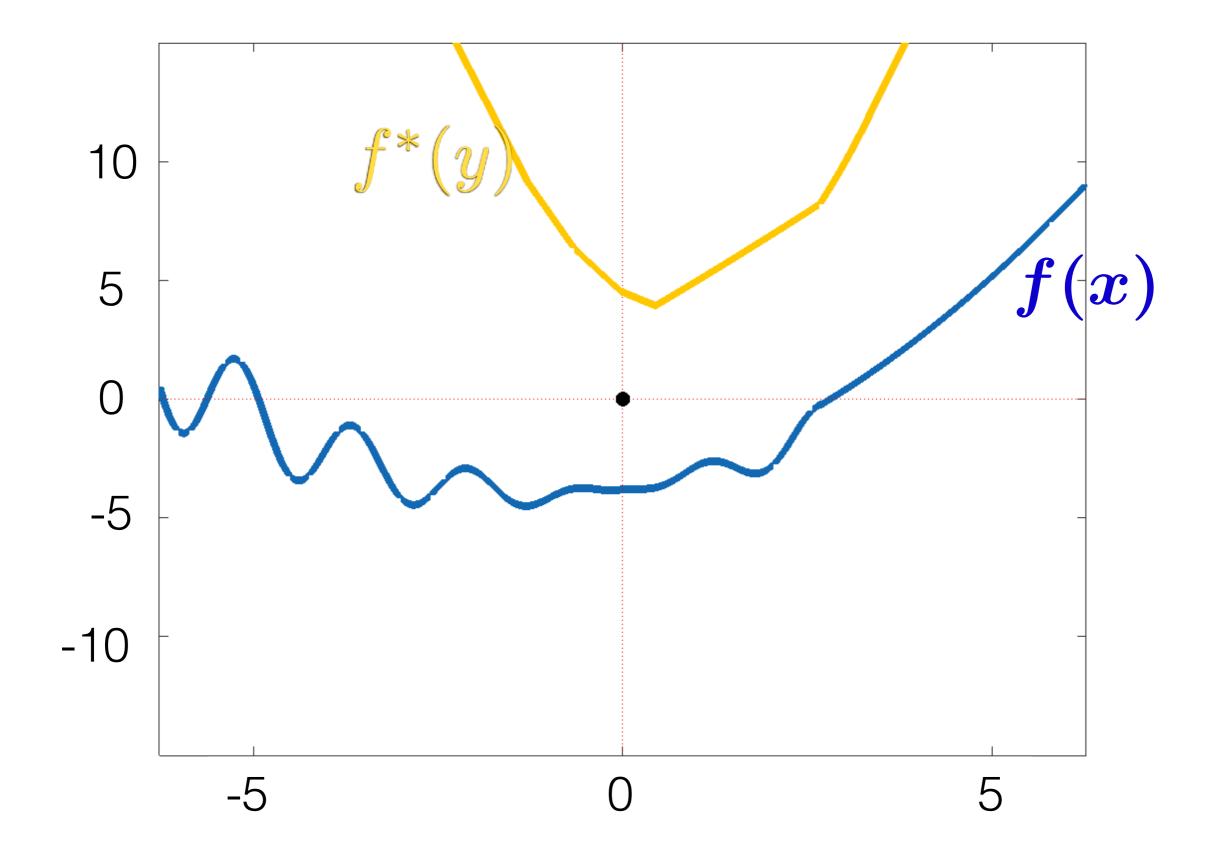


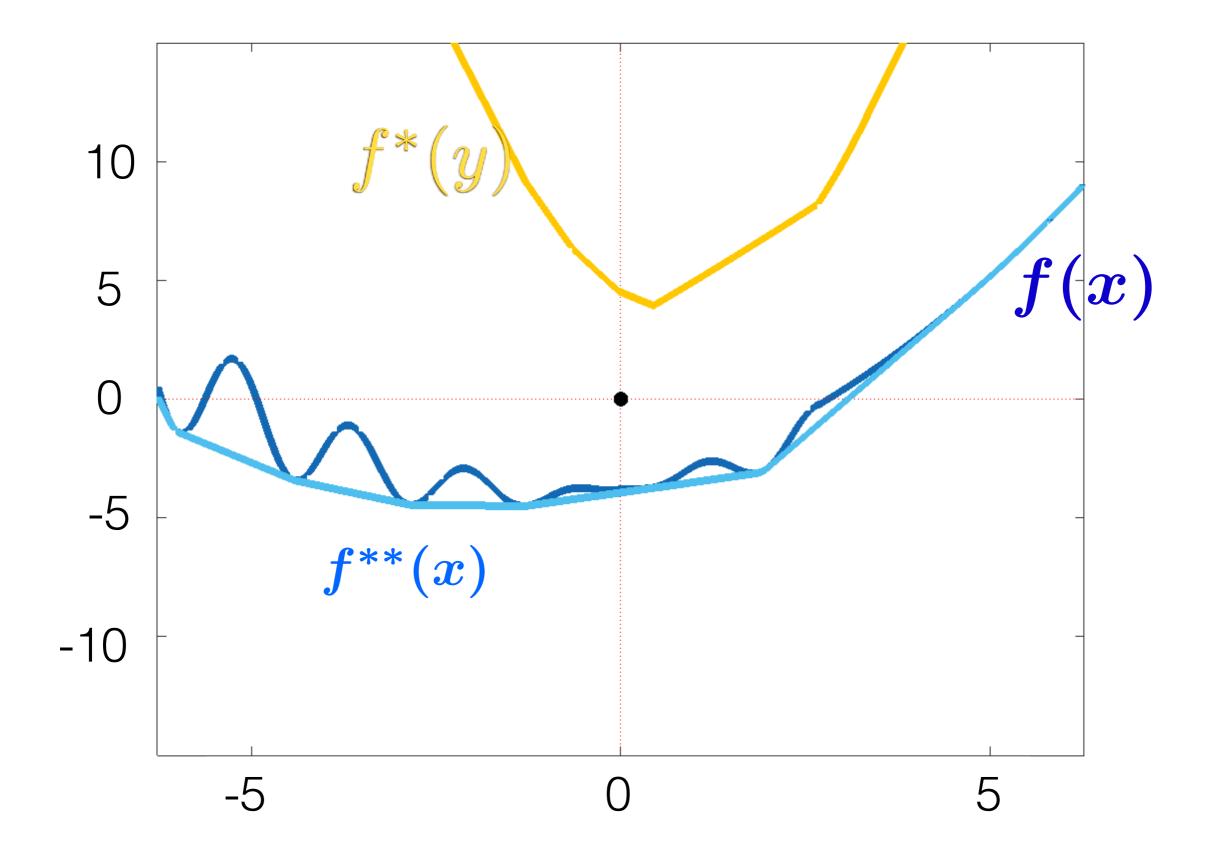












Def

For a (possibly non convex) function $f : \mathbb{R}^p \to \overline{\mathbb{R}}$, the convex conjugate of f is $\forall y \in \mathbb{R}^p$,

$$f^*(y) = \sup_{x \in \mathbb{R}^p} \langle x, y \rangle - f(x)$$

	f(x)	$f^*(y)$
Squared loss	$\frac{1}{2}x^2$	$\frac{1}{2}y^2$
Hinge loss	$\max\{1-x,0\}$	$egin{array}{cc} y & (-1 \leq y \leq 0), \ \infty & (ext{otherwise}). \end{array}$
Logistic loss	$\log(1+\exp(-x))$	$\begin{cases} (-y)\log(-y) + (1+y)\log(1+y) & (-1 \le y \le 0), \\ \infty & (\text{otherwise}). \end{cases}$
L_1 regularization	$\ x\ _1$	$egin{cases} 0 & (\max_j y_j \leq 1), \ \infty & (ext{otherwise}). \end{cases}$
L_p regularization	$\sum_{j=1}^d x_j ^p$	$\sum_{j=1}^{d} \frac{p-1}{p^{\frac{p}{p-1}}} y_j ^{\frac{p}{p-1}}$
(p>1)		μ ^μ -

Def

For a (possibly non convex) function $f : \mathbb{R}^p \to \overline{\mathbb{R}}$, the convex conjugate of f is $\forall y \in \mathbb{R}^p$,

$$f^*(y) = \sup_{x \in \mathbb{R}^p} \langle x, y \rangle - f(x)$$

$$f^*$$
 is convex, even if f is not.

$$y \in \partial f(x) \Leftrightarrow f(x) + f^*(y) = \langle x, y \rangle \Leftrightarrow x \in \partial f^*(y)$$

$$\forall x, y, f(x) + f^*(y) \ge \langle x, y \rangle$$

Fenchel Duality Theorem

Theorem

Let $f : \mathbb{R}^p \to \overline{R}$ and $g : \mathbb{R}^q \to \overline{R}$ be closed convex, and $A \in \mathbb{R}^{q \times p}$ a linear map. Suppose that either condition (a) or (b) is satisfied. Then

$$\inf_{x \in \mathbb{R}^p} f(x) + g(Ax) = \sup_{y \in \mathbb{R}^q} -f^*(A^T y) - g^*(-y)$$

 $(a) \exists x \in \mathbb{R}^p \text{ s.t. } x \in \operatorname{ri}(\operatorname{dom}(f)) \text{ and } Ax \in \operatorname{ri}(\operatorname{dom}(g))$ $(b) \exists y \in \mathbb{R}^q \text{ s.t. } A^T y \in \operatorname{ri}(\operatorname{dom}(f^*)) \text{ and } -y \in \operatorname{ri}(\operatorname{dom}(g^*))$

Fenchel Duality and ERM

$$\left|\min_{\boldsymbol{\theta}\in\mathbb{R}^p}\frac{1}{n}\sum_{i=1}^n l_{\boldsymbol{\theta}}(z_i) + \psi(\boldsymbol{\theta})\right| \quad l_{\boldsymbol{\theta}}(z_i) = l(y_i, x_i^T\boldsymbol{\theta})$$

$$\frac{1}{n} \sum_{i} l_{\boldsymbol{\theta}}(z_{i}) = \mathbf{l}(\mathbf{y}, X\boldsymbol{\theta}) = g(X\boldsymbol{\theta}) \quad X \in \mathbb{R}^{n \times p}$$

$$\sup_{\boldsymbol{y}\in\mathbb{R}^{\boldsymbol{n}}} -\psi^*(-X^T\boldsymbol{y}) - g^*(\boldsymbol{y}) = -\inf_{\boldsymbol{y}\in\mathbb{R}^{\boldsymbol{n}}} g^*(\boldsymbol{y}) + \psi^*(-X^T\boldsymbol{y})$$

$$\sup_{\boldsymbol{y}\in\mathbb{R}^{\boldsymbol{n}}}\sum_{i}l_{i}^{*}(y_{i})+\psi^{*}(-X^{T}y)$$

Fenchel Duality and ERM

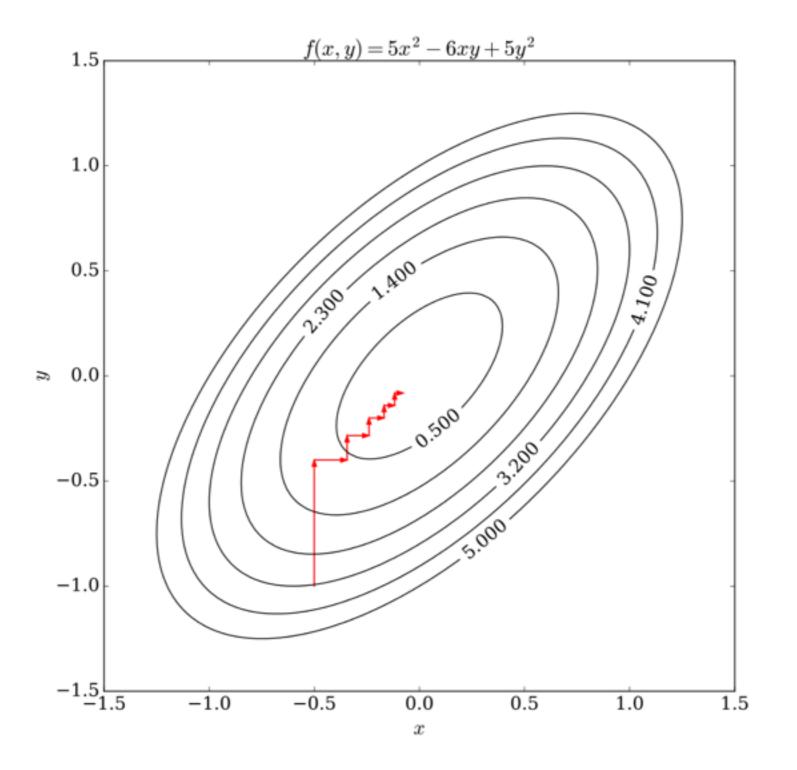
$$\begin{split} & \min_{\boldsymbol{\theta} \in \mathbb{R}^{p}} \frac{1}{n} \sum_{i=1}^{n} l_{\boldsymbol{\theta}}(z_{i}) + \psi(\boldsymbol{\theta}) \\ & \frac{1}{n} \sum_{i} l_{\boldsymbol{\theta}}(z_{i}) = \mathbf{l}(\mathbf{y}, X\boldsymbol{\theta}) = g(X\boldsymbol{\theta}) \\ & \frac{1}{n} \sum_{i} l_{\boldsymbol{\theta}}(z_{i}) = \mathbf{l}(\mathbf{y}, X\boldsymbol{\theta}) = g(X\boldsymbol{\theta}) \\ & \text{sup}_{\boldsymbol{y} \in \mathbb{R}^{n}} - \psi^{*}(-X^{T} - g^{*}(y) = -\inf_{\boldsymbol{y} \in \mathbb{R}^{n}} g^{*}(y) + \psi^{*}(-X^{T}y) \\ & \frac{\sup_{\boldsymbol{y} \in \mathbb{R}^{n}} \sum_{i} l_{i}^{*}(y_{i}) + \psi^{*}(-X^{T}y)}{u_{i}^{*}(-X^{T}y)} \\ & \frac{1}{n} \sum_{i=1}^{n} \sum_{i=1}^{n} l_{i}^{*}(y_{i}) + \psi^{*}(-X^{T}y)}{u_{i}^{*}(-X^{T}y)} \\ & \frac{1}{n} \sum_{i=1}^{n} \sum_{i=1}^{n} l_{i}^{*}(y_{i}) + \psi^{*}(-X^{T}y)}{u_{i}^{*}(-X^{T}y)} \end{split}$$

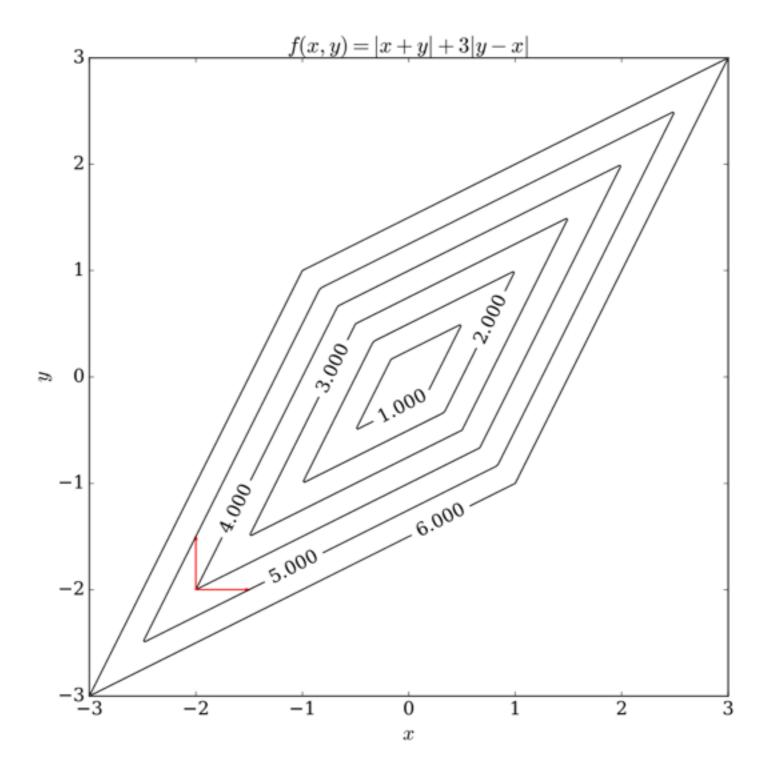
- Set $\mathbf{x}^0 = (x_1^0, \dots, x_n^0),$
- For k = 1, ..., K

$$-x_{i}^{k+1} = \underset{y \in \mathbb{R}}{\arg\min} f(x_{1}^{k+1}, \dots, x_{i-1}^{k+1}, y, x_{i+1}^{k}, \dots, x_{n}^{k})$$

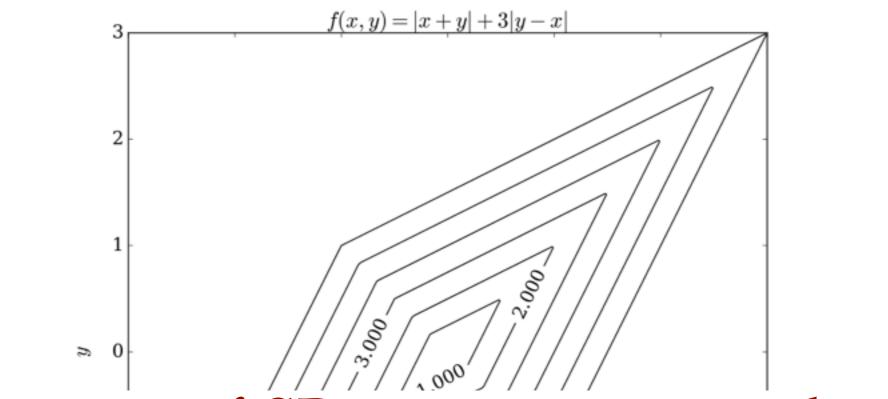
- Set $\mathbf{x}^0 = (x_1^0, \dots, x_n^0)$,
- For k = 1, ..., K

$$-x_{i}^{k+1} = \underset{y \in \mathbb{R}}{\arg\min} f(x_{1}^{k+1}, \dots, x_{i-1}^{k+1}, y, x_{i+1}^{k}, \dots, x_{n}^{k})$$





Reminders on Coordinate Descent



To ensure success of CD, some progress must be guaranteed. Separability of the objective function helps.



- Set $\theta^0 = (\theta_1^0, \dots, \theta_p^0)$,
- For k = 1, ..., K
 - Sample j.
 - Compute $g_j = \partial f(\theta) / \partial \theta_j$
 - $\begin{array}{l} \theta_j \leftarrow \arg\min_{y \in \mathbb{R}} g_j y + \psi_j(y) + \frac{1}{2\eta_t} \|y \theta_j\|^2 \\ y \in \mathbb{R} \end{array}$

Coordinate Descent on Primal Problem

- Set $\theta^0 = (\theta_1^0, \dots, \theta_p^0),$
- For k = 1, ..., K
 - Sample j.
 - Compute $g_j = \partial f(\theta) / \partial \theta_j$
 - $\theta_j \leftarrow \underset{y \in \mathbb{R}}{\operatorname{arg\,min}} g_j y + \psi_j(y) + \frac{1}{2\eta_t} \|y \theta_j\|^2$

Regularizer must be separable.

Fenchel Duality Theorem

Theorem

Let $f : \mathbb{R}^p \to \overline{R}$ and $g : \mathbb{R}^q \to \overline{R}$ be closed convex, and $A \in \mathbb{R}^{q \times p}$ a linear map. Suppose that either condition (a) or (b) is satisfied. Then

$$\inf_{x \in \mathbb{R}^p} f(x) + g(Ax) = \sup_{y \in \mathbb{R}^q} -f^*(A^T y) - g^*(-y)$$

$$\begin{split} \min_{\boldsymbol{\theta} \in \mathbb{R}^{p}} \frac{1}{n} \sum_{i=1}^{n} l_{\boldsymbol{\theta}}(z_{i}) + \psi(\boldsymbol{\theta}) & l_{\boldsymbol{\theta}}(z_{i}) = l(y_{i}, x_{i}^{T} \boldsymbol{\theta}) \\ \\ \sup_{\boldsymbol{y} \in \mathbb{R}^{n}} \frac{1}{n} \sum_{i} l_{i}^{*}(y_{i}) + \psi^{*}(-X^{T} y/n) \\ \end{split}$$

$$\boldsymbol{\theta^*} = \nabla \psi^* (-X^T \boldsymbol{y^*}/n)$$

Fenchel Duality and ERM

$$\left| \min_{\boldsymbol{\theta} \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n l_{\boldsymbol{\theta}}(z_i) + \psi(\boldsymbol{\theta}) \right| \quad l_{\boldsymbol{\theta}}(z_i) = l(y_i, x_i^T \boldsymbol{\theta})$$

$$\frac{1}{n} \sum_{i} l_{\boldsymbol{\theta}}(z_{i}) = \mathbf{l}(\mathbf{y}, X\boldsymbol{\theta}) = g(X\boldsymbol{\theta}) \quad X \in \mathbb{R}^{n \times p}$$

$$\sup_{\boldsymbol{y}\in\mathbb{R}^{\boldsymbol{n}}} -\psi^*(-X^T\boldsymbol{y}) - g^*(\boldsymbol{y}) = -\inf_{\boldsymbol{y}\in\mathbb{R}^{\boldsymbol{n}}} g^*(\boldsymbol{y}) + \psi^*(-X^T\boldsymbol{y})$$

$$\sup_{\boldsymbol{y}\in\mathbb{R}^{n}}\sum_{i}l_{i}^{*}(y_{i})+\psi^{*}(-X^{T}y)$$

Fenchel Duality and ERM

$$\begin{split} & \min_{\boldsymbol{\theta} \in \mathbb{R}^{p}} \frac{1}{n} \sum_{i=1}^{n} l_{\boldsymbol{\theta}}(z_{i}) + \psi(\boldsymbol{\theta}) \\ & \frac{1}{n} \sum_{i} l_{\boldsymbol{\theta}}(z_{i}) = \mathbf{l}(\mathbf{y}, X\boldsymbol{\theta}) = g(X\boldsymbol{\theta}) \\ & \frac{1}{n} \sum_{i} l_{\boldsymbol{\theta}}(z_{i}) = \mathbf{l}(\mathbf{y}, X\boldsymbol{\theta}) = g(X\boldsymbol{\theta}) \\ & \text{sup}_{\boldsymbol{y} \in \mathbb{R}^{n}} - \psi^{*}(-X^{T} - g^{*}(y) = -\inf_{\boldsymbol{y} \in \mathbb{R}^{n}} g^{*}(y) + \psi^{*}(-X^{T}y) \\ & \frac{\sup_{\boldsymbol{y} \in \mathbb{R}^{n}} \sum_{i} l_{i}^{*}(y_{i}) + \psi^{*}(-X^{T}y)}{u_{i}^{*}(-X^{T}y)} \\ & \frac{1}{n} \sum_{i=1}^{n} \sum_{i=1}^{n} l_{i}^{*}(y_{i}) + \psi^{*}(-X^{T}y)}{u_{i}^{*}(-X^{T}y)} \\ & \frac{1}{n} \sum_{i=1}^{n} \sum_{i=1}^{n} l_{i}^{*}(y_{i}) + \psi^{*}(-X^{T}y)}{u_{i}^{*}(-X^{T}y)} \end{split}$$

SDCA

SDCA (Shalev-Shwartz and Zhang, 2013a)

Iterate the following for t = 1, 2, ...

- Pick up an index $i \in \{1, ..., n\}$ uniformly at random.
- Opdate the *i*-th coordinate y_i so that the objective function is decreased.

SDCA

SDCA (Shalev-Shwartz and Zhang, 2013a)

Iterate the following for t = 1, 2, ...

- Pick up an index $i \in \{1, ..., n\}$ uniformly at random.
- ② Update the *i*-th coordinate y_i : (let $A_{\setminus i} = [a_1, \dots, a_{i-1}, a_{i+1}, \dots, a_n]$, and $y_{\setminus i} = (y_j)_{j \neq i}$)

•
$$y_i^{(t)} \in \underset{y_i \in \mathbb{R}}{\operatorname{argmin}} \left\{ f_i^*(y_i) + n\psi^* \left(-\frac{1}{n} (a_i y_i + A_{\setminus i} y_{\setminus i}^{(t-1)}) \right) + \frac{1}{2\eta} \|y_i - y_i^{(t-1)}\|^2 \right\},$$

• $y_j^{(t)} = y_j^{(t-1)}$ (for $j \neq i$).

SDCA

SDCA (linearized version) (Shalev-Shwartz and Zhang, 2013a)

Iterate the following for t = 1, 2, ...

- Pick up an index $i \in \{1, ..., n\}$ uniformly at random.
- 2 Calculate $x^{(t-1)} = \nabla \psi^* (-Ay^{(t-1)}/n)$.
- ③ Update the *i*-th coordinate y_i :

•
$$y_i^{(t)} \in \operatorname*{argmin}_{y_i \in \mathbb{R}} \left\{ f_i^*(y_i) - \langle x^{(t-1)}, a_i y_i \rangle + \frac{1}{2\eta} \| y_i - y_i^{(t-1)} \|^2 \right\}$$

•
$$y_j^{(t)} = y_j^{(t-1)}$$
 (for $j \neq i$).

SDCA : SVM

$$E(\mathbf{w}) = \frac{\lambda}{2} \|\mathbf{w}\|^2 + \frac{1}{n} \sum_{i=1}^n \ell_i(\langle \mathbf{w}, \mathbf{x} \rangle).$$
$$D(\boldsymbol{\alpha}) = -\frac{1}{2\lambda n^2} \boldsymbol{\alpha}^\top X^\top X \boldsymbol{\alpha} + \frac{1}{n} \sum_{i=1}^n -\ell_i^*(-\alpha_i)$$

SDCA : SVM

Name	Loss $\ell_i(z)$	Conjugate loss $\mathscr{E}_i^*(u)$
Hinge	$\max\{0, 1 - y_i z\}$	$\mathscr{C}_i^*(u) = \begin{cases} y_i u, & -1 \le y_i u \le 0, \\ +\infty, & \text{otherwise} \end{cases}$
Square hinge	$\max\{0, 1 - y_i z\}^2$	$\mathscr{C}_{i}^{*}(u) = \begin{cases} y_{i}u + \frac{u^{2}}{4}, & y_{i}u \leq 0, \\ +\infty, & \text{otherwise} \end{cases}$
Linear or I1	$ y_i - z $	$\ell_i^*(u) = \begin{cases} y_i u, & -1 \le y_i u \le 1, \\ +\infty, & \text{otherwise} \end{cases}$
Square or I2	$(y_i - z)^2$	$\mathscr{C}_i^*(u) = y_i u + \frac{u^2}{4}$
Insensitive I1	$\max\{0, y_i - z - \epsilon\}.$	
Logistic	$\log(1+e^{-y_i z})$	$\label{eq:log_integral} \begin{aligned} \mathscr{C}^*_i(u) &= \begin{cases} (1+u)\log(1+u) - u\log(-u), & -1 \leq y_i u \leq 0, \\ +\infty, & \text{otherwise} \end{cases} \end{aligned}$

SDCA : SVM

$$E(\mathbf{w}) = \frac{\lambda}{2} \|\mathbf{w}\|^2 + \frac{1}{n} \sum_{i=1}^n \mathscr{C}_i(\langle \mathbf{w}, \mathbf{x} \rangle).$$

$$D(\boldsymbol{\alpha}) = -\frac{1}{2\lambda n^2} \boldsymbol{\alpha}^{\mathsf{T}} X^{\mathsf{T}} X \boldsymbol{\alpha} + \frac{1}{n} \sum_{i=1}^{n} -\ell_i^*(-\alpha_i)$$

$$\mathbf{w}(\boldsymbol{\alpha}) = \frac{1}{\lambda n} \sum_{i=1}^{n} \mathbf{x}_{i} \alpha_{i} = \frac{1}{\lambda n} X \boldsymbol{\alpha}_{i}$$

SDCA, SVM ascent

$$D(\boldsymbol{\alpha}_t + \mathbf{e}_q \Delta \boldsymbol{\alpha}_q) = \text{const.} - \frac{1}{2\lambda n^2} \mathbf{x}_q^{\mathsf{T}} \mathbf{x}_q (\Delta \boldsymbol{\alpha}_q)^2 - \frac{1}{n} \mathbf{x}_q^{\mathsf{T}} \frac{X \boldsymbol{\alpha}_t}{\lambda n} \Delta \boldsymbol{\alpha}_q - \frac{1}{n} \boldsymbol{\ell}_q^* (-\boldsymbol{\alpha}_q - \Delta \boldsymbol{\alpha}_q)$$

$$\mathbf{w}_t = \frac{X \boldsymbol{\alpha}_t}{\lambda n}, \quad \mathbf{w}_{t+1} = \mathbf{w}_t + \frac{1}{\lambda n} \mathbf{x}_q \mathbf{e}_q \Delta \boldsymbol{\alpha}_q.$$

SDCA, SVM ascent

$$D(\boldsymbol{\alpha}_{t} + \mathbf{e}_{q} \Delta \boldsymbol{\alpha}_{q}) = \text{const.} - \frac{1}{2\lambda n^{2}} \mathbf{x}_{q}^{\mathsf{T}} \mathbf{x}_{q} (\Delta \boldsymbol{\alpha}_{q})^{2} - \frac{1}{n} \mathbf{x}_{q}^{\mathsf{T}} \frac{X \boldsymbol{\alpha}_{t}}{\lambda n} \Delta \boldsymbol{\alpha}_{q} - \frac{1}{n} \ell_{q}^{*} (-\boldsymbol{\alpha}_{q} - \Delta \boldsymbol{\alpha}_{q})$$
$$D(\boldsymbol{\alpha}_{t} + \mathbf{e}_{q} \Delta \boldsymbol{\alpha}_{q}) \propto -\frac{A}{2} (\Delta \boldsymbol{\alpha}_{q})^{2} - B \Delta \boldsymbol{\alpha}_{q} - \ell_{q}^{*} (-\boldsymbol{\alpha}_{q} - \Delta \boldsymbol{\alpha}_{q}),$$
$$A = \frac{1}{\lambda n} \mathbf{x}_{q}^{\mathsf{T}} \mathbf{x}_{q} = \frac{1}{\lambda n} ||\mathbf{x}_{q}||^{2},$$
$$B = \mathbf{x}_{q}^{\mathsf{T}} \frac{X \boldsymbol{\alpha}_{t}}{\lambda n} = \mathbf{x}_{q}^{\mathsf{T}} \mathbf{w}_{t}.$$

$$\mathbf{w}_t = \frac{X \boldsymbol{\alpha}_t}{\lambda n}, \quad \mathbf{w}_{t+1} = \mathbf{w}_t + \frac{1}{\lambda n} \mathbf{x}_q \mathbf{e}_q \Delta \boldsymbol{\alpha}_q.$$

SDCA, SVM ascent, hinge

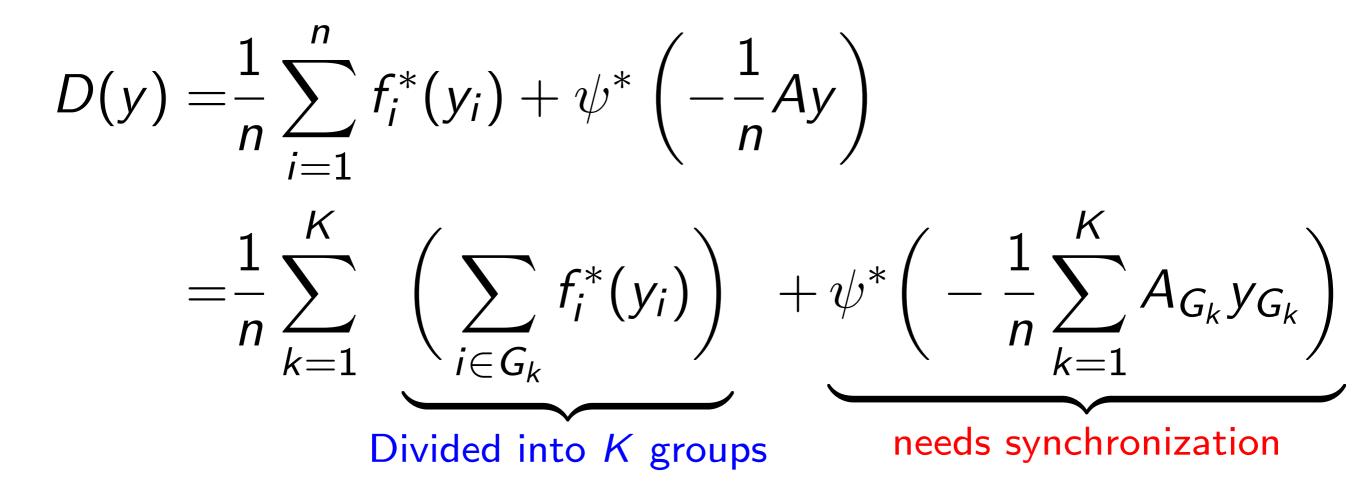
 $\mathscr{C}_q^*(u) = \begin{cases} y_q u, & -1 \le y_q u \le 0, \\ +\infty, & \text{otherwise.} \end{cases}$

Setting derivative to 0

 $\Delta \alpha_q = y_q \max\{0, \min\{1, y_q(\Delta \alpha_q + \alpha_q)\}\} - \alpha_q.$

COCOA: A Dual Approach

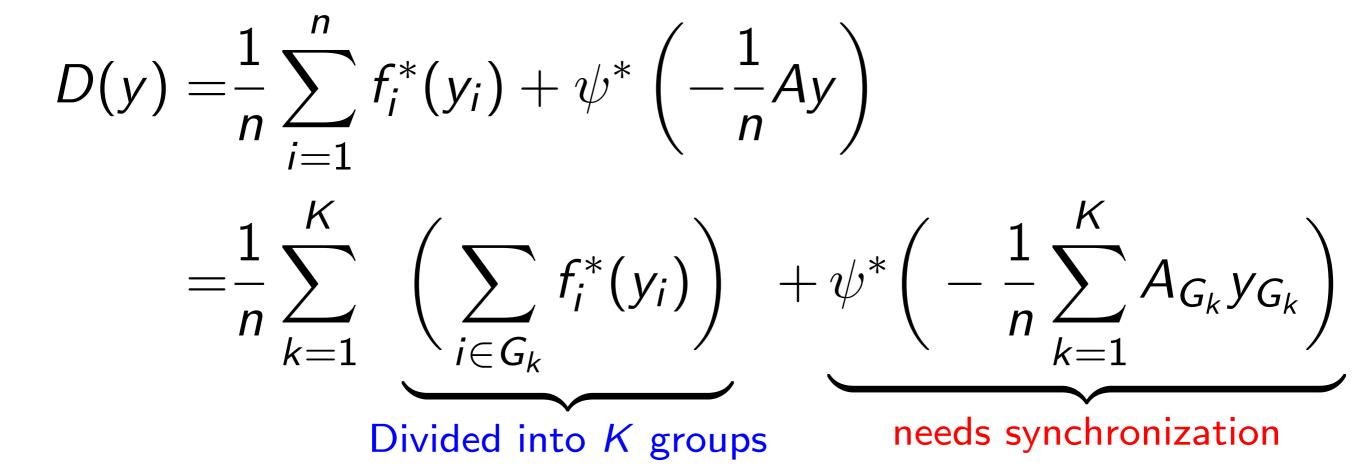
 $\{1,\ldots,n\}=\bigcup_{k=1}^{K}G_k,\ G_k\cap G_{k'}=\emptyset.$



COCOA: A Dual Approach

Samples divided into subsets

$$\{1,\ldots,n\}=\bigcup_{k=1}^{K}G_k,\ G_k\cap G_{k'}=\emptyset.$$



COCOA: Ex. Quadratic Reg.

$$\min_{w \in \mathbb{R}^d} \quad \left[P(\boldsymbol{w}) := \frac{\lambda}{2} \|\boldsymbol{w}\|^2 + \frac{1}{n} \sum_{i=1}^n \ell_i(\boldsymbol{w}^T \boldsymbol{x}_i) \right]$$

$$\max_{\boldsymbol{\alpha}\in\mathbb{R}^n} \left[D(\boldsymbol{\alpha}) := -\frac{\lambda}{2} \|A\boldsymbol{\alpha}\|^2 - \frac{1}{n} \sum_{i=1}^n \ell_i^*(-\alpha_i) \right]$$

Algorithm 1: COCOA: Communication-Efficient Distributed Dual Coordinate Ascent

Input: $T \ge 1$, scaling parameter $1 \le \beta_K \le K$ (default: $\beta_K := 1$). Data: $\{(x_i, y_i)\}_{i=1}^n$ distributed over K machines Initialize: $\alpha_{[k]}^{(0)} \leftarrow \mathbf{0}$ for all machines k, and $w^{(0)} \leftarrow \mathbf{0}$ for t = 1, 2, ..., Tfor all machines k = 1, 2, ..., K in parallel $(\Delta \alpha_{[k]}, \Delta w_k) \leftarrow \text{LOCALDUALMETHOD}(\alpha_{[k]}^{(t-1)}, w^{(t-1)})$ $\alpha_{[k]}^{(t)} \leftarrow \alpha_{[k]}^{(t-1)} + \frac{\beta_K}{K} \Delta \alpha_{[k]}$ end reduce $w^{(t)} \leftarrow w^{(t-1)} + \frac{\beta_K}{K} \sum_{k=1}^K \Delta w_k$ end

COCOA: Ex. Quadratic Reg.

Procedure A: LOCALDUALMETHOD: Dual algorithm for prob. (2) on a single coordinate block k

Input: Local $\alpha_{[k]} \in \mathbb{R}^{n_k}$, and $w \in \mathbb{R}^d$ consistent with other coordinate blocks of α s.t. $w = A\alpha$ **Data**: Local $\{(x_i, y_i)\}_{i=1}^{n_k}$ **Output**: $\Delta \alpha_{[k]}$ and $\Delta w := A_{[k]} \Delta \alpha_{[k]}$

Procedure B: LOCALSDCA: SDCA iterations for problem (2) on a single coordinate block k

Input: $H \ge 1$, $\alpha_{[k]} \in \mathbb{R}^{n_k}$, and $w \in \mathbb{R}^d$ consistent with other coordinate blocks of α s.t. $w = A\alpha$ Data: Local $\{(x_i, y_i)\}_{i=1}^{n_k}$ Initialize: $w^{(0)} \leftarrow w$, $\Delta \alpha_{[k]} \leftarrow 0 \in \mathbb{R}^{n_k}$ for h = 1, 2, ..., H $\begin{vmatrix} choose \ i \in \{1, 2, ..., n_k\} \ uniformly \ at \ random$ $find \ \Delta \alpha \ maximizing \ -\frac{\lambda n}{2} \|w^{(h-1)} + \frac{1}{\lambda n} \Delta \alpha \ x_i\|^2 - \ell_i^* \left(-(\alpha_i^{(h-1)} + \Delta \alpha) \right)$ $\alpha_i^{(h)} \leftarrow \alpha_i^{(h-1)} + \Delta \alpha$ $(\Delta \alpha_{[k]})_i \leftarrow (\Delta \alpha_{[k]})_i + \Delta \alpha$ $w^{(h)} \leftarrow w^{(h-1)} + \frac{1}{\lambda n} \Delta \alpha \ x_i$ end

Output: $\Delta \boldsymbol{\alpha}_{[k]}$ and $\Delta \boldsymbol{w} := A_{[k]} \Delta \boldsymbol{\alpha}_{[k]}$

COCOA

