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Deep-Learning 
recent breakthroughs

• Very significant improvement over State-of-the-Art 
in Pattern Recognition / Image Semantic Analysis:

• won many vision pattern 
recognition competitions (OCR, 
TSR, object categorization, facial 
expression,…)

• deployed in photo-tagging by 
Facebook, Google,Baidu,…

• Similar dramatic progress in Speech recognition 
+ Natural Language Processing (NLP) 
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Some examples of Deep-Learning
important/striking applications

[C. Farabet, C. Couprie, 

L. Najman & Yann LeCun: 

Learning Hierarchical Features

for Scene Labeling, 

IEEE Trans. PAMI, Aug.2013. 

Video analysis for self-driving cars ‘Painting’ Photos 
in “style” of any artist

Image-to-text
Photos search
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What is Deep-Learning?

[Figure from Goodfellow]

Increasing level of abstraction
Each stage ~ trainable feature transform

Image recognition
Pixel → edge → texton → motif → part → object

Speech
Sample → spectral band → … → phoneme → word

Text
Character → word → word group → clause → 

sentence → story

Learning a hierarchy of 
increasingly abstract representations
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Importance of « features » 
in classical Machine-Learning

Examples of hand-crafted features

HoG
(Histogram

of Gradients)

Haar features Control-points features
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Why features should be learnt?

Example: Face images of 1000x1000 pixels 
� « raw » examples are vectors in R1000000 !!

• BUT: 
– position = 3 cartesian coord
– orientation 3 Euler angles 
– 50 muscles in face
– Luminosity, color

� Set of all images of ONE person has ≤ 69 dim

� Examples of face images of 1 person

are all in a LOW-dim manifold 
inside a HUGE-dim space

Real data examples for a given task are usually
not spreaded everywhere in input space, but rather
clustered on a low-dimension « manifold »
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Good features
~ good « mapping » on manifold   
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Features learning
(before Deep-Learning)
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Convolutional Neural Networks 
(CNN, or ConvNet)

• Proposed in 1998 by Yann LeCun (french prof.@ NYU, 
recently appointed AI research director of Facebook)

• For inputs with correlated dims (2D image, 1D signal,…)
• Supervised learning
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CNN (2)

• Recently won many vision pattern recognition 
competitions/challenges (OCR, TSR, object
categorization, facial expression,…)

• Deployed in photo-tagging by Facebook, Google, Baidu,…

• Also used in real-time video analysis for self-driving cars
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Short reminder on what is
a (multi-layer) Neural Network

Input

Hidden layers 
(0, 1 or more)

Y1

Y2

X1

X2

X3

Output layer

For “Multi-Layer Perceptron” (MLP), 
neurons type generally “summating with sigmoid activation”

Connections
with Weights
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Reminder on artificial “neurons”

PRINCIPLE ACTIVATION FUNCTIONS

• Threshold (Heaviside or sign)
� binary neurons

• Sigmoïd (logistic or tanh)
� most common for MLPs

• Gaussian

• Identity � linear neurons
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• Saturation

• ReLU (Rectified Linear Unit)
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Convolution: 
sliding a 3D filter over image

At sliding position i,j

� �, � = � +�. 
��
with 
�� = 5x5 image patch in 3 colors

� vector of dim 75, as filter coeffs in �

5x5x3 filter

Non-linear activation:

 �, � = � � �, �
f= tanh, ReLU, …

See illustrative animation at: http://cs231n.github.io/convolutional-networks/ 
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« Neural » view of convolution 
filters and layers
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Each convolution FILTER 
is one set of neuron parameters

Each convolution LAYER 
is a set of ~imageSize neurons, but 

they all have same SHARED weights
(perform SAME convolution)
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# of filters

Convolutional layers

A convNet: succession of Convolution+activation Layers

NB: each convolution layer processes FULL DEPTH 
of previous activation map (3D convolution!)

One “activation map” for each 
convolution filter 
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Pooling layers

Goal: 
• aggregation over space
• noise reduction, 
• small-translation invariance, 
• small-scaling invariance
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Pooling layers algorithm details

Parameters: 
• pooling size (often 2x2)
• pooling stride (usually = pooling_size)
• Pooling operation: max, average, Lp,…

Example: 2x2 pooling, stride 2
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Final classification layer:
often classical fully-connected MLP

AlexNet
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ConvNet typical architecture:
cascade of modules

Linear Module

l Out = W.In+B
l ReLU Module (Rectified Linear Unit)

l Outi = 0 if Ini<0
l Outi = Ini otherwise
l Pooling Module

l Out = 
Cost Module: Squared Distance

l C = ||In1 - In2||2

l Objective Function

l L(Θ)=1/p Σk C(Xk,Yk,Θ)

Linear l Θ = (W1,B1,W2,B2,W3,B3)
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ConvNet training

All successive layers of a convNet forms a 
Deep neural network (with weigh-sharing inside
each conv. Layer, and specific pooling layers). 

• Training by Stochastic Gradient Descent (SGD), 
using back-propagation:

– Input 1 random training sample

– Propagate

– Calculate error (loss)

– Back-propagate through all layers from end to input,
to compute gradient

– Update convolution filter weights

Deep-Learning: principles+convNets+DBN+RNN, Pr. Fabien Moutarde, Robotics Lab, MINES ParisTech March.2017     26

Computing gradient 
through cascade of modules
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Recall of back-prop principle

Smart method for efficient computing of gradient
(w.r.t. weights) of a Neural Network cost function, 

based on chain rule for derivation.

Cost function is Q(t) = Σm loss(Ym,Dm), where m runs over 

training set examples

Usually, loss(Ym,Dm) = ||Ym-Dm||2  [quadratic error]

Total gradient: 
W(t+1) = W(t) - λ(t) gradW(Q(t)) + µ(t)(W(t)-W(t-1))

Stochastic gradient: 
W(t+1) = W(t) - λ(t) gradW(Qm(t)) + µ(t)(W(t)-W(t-1))

where Qm=loss(Ym,Dm), is error computed on only ONE example

randomly drawn from training set at every iteration and
λ(t) = learning rate (fixed, decreasing or adaptive), µ(t) = momentum 

Now, how to compute dQm/dWij?
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Backprop through fully-connected layers:
use of chain rule derivative computation

wij

yjyifσi
σj f fσkwjk

Otherwise, δj=(dEm/dσj)=Σk (dEm/dσk)(dσk/dσj)=Σk δk(dσk/dσj) =Σk δkWjk(dyj/dσj)

so   δj = (Σk Wjkδk)f'(σj) if neuron j is “hidden”

dEm/dWij =(dEm/dσj)(dσj/dWij)=(dEm/dσj) yi

Let δj = (dEm/dσj). Then   Wij(t+1) = Wij(t) - λ(t) yi δj

If neuron j is output, δj = (dEm/dσj) = (dEm/dyj)(dyj/dσj) with Em=||Ym-Dm||2

so   δj = 2(yj-Dj)f'(σj) if neuron j is an output

(and W0j(t+1) = W0j(t) - λ(t)δj)

� all the δj can be computed successively from last layer
to upstream layers by “error backpropagation” from output
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Why gradient descent works
despites non-convexity?

• Local minima dominate in low-Dim…

• …but recent work has shown 
saddle points dominate in high-Dim

• Furthermore, most local minima are close to 
the global minimum
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Saddle points in training curves

• Oscillating between two behaviors:

– Slowly approaching a saddle point

– Escaping it
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Some ConvNet training « tricks »

• Importance of input normalization
(zero mean, unit variance)

• Importance of weights initialization
random but SMALL and prop. to 1/sqrt(nbInputs)

• Decreasing (or adaptive) learning rate

• Importance of training set size
ConvNets often have a LARGE number of free parameters
� train them with a sufficiently large training-set !

• Avoid overfitting by:

– Use of L1 or L2 regularization (after some epochs)

– Use « Dropout » regularization (esp. on large FC layers)
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Avoid overfitting using
L1/L2 regularization (« weight decay »)

For neural network, the regularization term is just 
norm L2 or L1 of vector of all weights:

K = Σm(loss(Ym,Dm)) + β Σij |Wij|
p with p=2 (L2) or p=1 (L1)

� name “Weight decay”

Trying to fit too many 
free parameters with 

not enough information 
can lead to overfitting

Regularization = penalizing too complex models
Often done by adding a special term to cost function
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DropOut Regularization for 
convNet training

At each training stage, individual nodes can be temporarily
"dropped out" of the net with probability p (usually ~0.5), 
or re-installed with last values of weights

Deep-Learning: principles+convNets+DBN+RNN, Pr. Fabien Moutarde, Robotics Lab, MINES ParisTech March.2017     34

Outline

• Introduction to Deep Learning

• Convolutional Neural Networks (CNN or ConvNets)
– Intro + Short reminder on Neural Nets
– Convolution layers & Pooling layers + global architecture
– Training algorithm + Dropout Regularization

• Useful pre-trained convNets and coding frameworks

• Transfer Learning

• Deep Belief Networks (DBN)

• Autoencoders

• Recurrent Neural Networks (RNN)



Deep-Learning: principles+convNets+DBN+RNN, Pr. Fabien Moutarde, Robotics Lab, MINES ParisTech March.2017     35

Examples of successful ConvNets

• LeNet: 1st successful applications of ConvNets, by Yann LeCun in 1990’s. 
Used to read zip codes, digits, etc.

• AlexNet: Beginning of ConvNet “buzz”: largely outperformed competitors 
in ImageNet_ILSVRC2012 challenge. Developped by Alex Krizhevsky et 
al., architecture similar to LeNet (but deeper+larger, and some chained 
ConvLayers before Pooling). 60 M parameters !

• ZF Net: ILSVRC 2013 winner. Developped by Zeiler&Fergus, by modif of 
AlexNet on some architecture hyperparameters.

• GoogLeNet: ILSVRC 2014 winner, developed by Google. Introduced 
an Inception Module, + AveragePooling instead of FullyConnected layer at 
output. Dramatic reduction of number of parameters (4M, compared to 
AlexNet with 60M). 

• VGGNet: Runner-up in ILSVRC 2014. Very deep (16 CONV/FC layers) 
� 140M parameters !!

• ResNet: ILSVRC 2015, “Residual Network” introducing “skip” connections. 
Currently ~ SoA in convNet. Very long training but fast execution.
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LeNet, for digits/letters recognition 
[LeCun et al., 1998]

Input: 32x32 image
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AlexNet, for image categorisation
[Krizhevsky et al. 2012]

Input: 224x224x3 image

60 million parameters !...
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ZFnet
[Zeiler & Fergu, 2013]

Input: 224x224x3 image

AlexNet but:

CONV1: change from (11x11 stride 4) to (7x7 stride 2)
CONV3,4,5: instead of 384, 384, 256 filters use 512, 1024, 512
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GoogleNet
[Szegedy et al., 2014]
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ResNet (Residual Net), by Microsoft
[He et al., 2015]

• ILSVRC 2015 large winner in 5 main tracks
(3.6% top 5 error)

• 152 layers!!!

• But novelty = "skip" connections



Deep-Learning: principles+convNets+DBN+RNN, Pr. Fabien Moutarde, Robotics Lab, MINES ParisTech March.2017     41

ResNet global architecture

• 2-3 weeks of training on 8 GPU machine !!
• However, at runtime faster than a VGGNet! 

(even though it has 8x more layers)

Basic block
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Summary of recent ConvNet history

But most important is the choice of
ARCHITECTURAL STRUCTURE
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Programming environments for 
Deep-Learning 

• Caffe http://caffe.berkeleyvision.org/

C++ library, hooks from Python � notebooks

• Torch http://torch.ch/

• TensorFlow https://www.tensorflow.org

• Theano http://www.deeplearning.net/software/theano/

• Lasagne http://lasagne.readthedocs.io

lightweight library to build+train neural nets in Theano

• KERAS   https://keras.io
Python front-end APIs mapped either

on Tensor-Flow or Theano back-end

All of them handle transparent use of GPU,
and most of them are used in Python code/notebook
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Example of convNet code in Keras

model = Sequential()

# Convolution+Pooling layers, with Dropout
model.add(Convolution2D(conv_depth_1, kernel_size, kernel_size, 

border_mode='valid', input_shape=(depth, height, width)))
model.add( MaxPooling2D(pool_size=(pooling_size, pooling_size)) )
model.add(Activation('relu'))
model.add(Dropout(drop_prob))

# Now flatten to 1D, and apply 1 Fully_Connected layer
model.add(Flatten())
model.add(Dense(hidden_size1, init='lecun_uniform'))
model.add(Activation('sigmoid'))

# Finally add a Softmax output layer, with 1 neuron per class
model.add(Dense(num_classes, init='lecun_uniform'))
model.add(Activation('softmax'))

# Training "session
sgd = SGD(lr=learning_rate, momentum=0.8) # Optimizer
model.compile(loss='categorical_crossentropy', optimizer=sgd)
model.fit(X_train, Y_train, batch_size=32, nb_epoch=2, verbose=1, 

validation_split=valid_proportion)

# Evaluate the trained model on the test set
model.evaluate(X_test, Y_test, verbose=1)
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Generality of learnt representation + 
Transfer learning

By removing last layer(s) (those for classification) of a convNet
trained on ImageNet, one obtains a transformation of any
input image into a semi-abstract representation, which can be
used for learning SOMETHING ELSE (« transfer learning »):

– either by just using learnt representation as features

– or by creating new convNet output and perform learning
of new output layers + fine-tuning of re-used layers
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Transfer Learning and fine-tuning

• Using a CNN pre-trained on a large dataset, 
possible to adapt it to another task, using only
a SMALL training set!
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Examples of transfer-learning
applications

• Recognition/classification for OTHER categories
or classes

• Direct control of driving wheel! (DeepDrive)

• Precise localisation (position+bearing) = PoseNet

• … or even 3D informations from monovision!
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Learning to drive 
with transfer-learning

nVidia approach
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Transfer-Learning for 
6-DOF Camera Relocalization

[A. Kendall, M. Grimes & R. Cipolla, "PoseNet: A Convolutional Network 

for Real-Time 6-DOF Camera Relocalization« , ICCV’2015, pp. 2938-2946]
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Summary and perspectives on 
ConvNets & Deep-Learning

• Proven advantage of learning features empirically
from data

• Large ConvNets require huge amounts of
labelled examples data for training

• Current research/progresses = finding efficient 
global architecture of ConvNets

• Enormous potential of transfer learning on small
datasets for restricted/specialized problems

• Next frontier: methods for combining UNsupervised
deep-learning on unlabelled data with supervised
training on smaller labelled dataset
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Deep vs Shallow Learning 
techniques overview

DEEP
SHALLOW
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Deep Belief Networks (DBN)

• One of first Deep-Learning models
• Proposed by G. Hinton in 2006
• Generative probabilistic model (mostly UNSUPERVISED)

For capturing high-order correlations of 
observed/visible data (� pattern analysis, 
or synthesis); and/or characterizing
joint statistical distributions of visible data

Greedy successive UNSUPERVISED learning of layers
of Restricted Boltzmann Machine (RBM)
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Restricted Boltzmann Machine (RBM)

h, hidden
(~ latent variables) 

v, observed

Modelling probability distribution as:

with « Energy » E given by

NB: connections are
BI-DIRECTIONAL

(with same weight) 
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Use of trained RBM

• Input data "completion" : set some vi then
compute h, and generate compatible full samples

• Generating representative samples

• Classification if trained
with inputs=data+label
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Training RBM

Finding θ=(W,a,b) maximizing likelihood ∏ ��(v)�∈� of dataset S 

� minimize NegLogLikelihood −∑ log ��(�)�∈�

So objective = find  ∗ = argMin
�

−''log
(

��(��)
�∈�

Algo: Contrastive Divergence 

≈ Gibbs sampling used inside a gradient descent procedure

In binary input case: with
� �� = 1	 	ℎ) = 	� ,� +�:,�ℎ � .  =

/0
/0 + 1� ℎ� = 1	 	�) = 	� �� +��,:�

Independance within layers � � � ℎ) = 	1 � �� ℎ�
� ℎ �) = 	1 � ℎ� ��and
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Repeat:

1. Take a training sample v, compute 2 3( = 4	 	�) = 	5 6( +7(,:�
and sample a vector h from this probability distribution

2. Compute positive gradient as outer product 89 = �⨂3 = �3;
3. From h, compute 2 �′= = 4	 	3) = 	5 >= +7:,=3 and sample reconstructed v',

then resample h' using 2 3′( = 4	 	�′) = 	5 6( +7(,:�′
[Gibbs sampling single step; should theoretically be repeated until convergence] 

4. Compute negative gradient as outer product 8? = �′⨂3′ = �′3′;
5. Update weight matrix by @7 = A 89 − 8? = A �3; − �B3′;
6. Update biases a and b analogously: @> = A � − �′ and @6 = A 3 − 3′

Contrastive Divergence algo

Gibbs sampling
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Modeling of input data distribution 
obtained by trained RBM

Initial data is in blue, reconstructed in red 
(and green line connects each data point with 

reconstructed one).

Learnt energy function: 
minima created where data points are
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Interpretation of trained RBM 
hidden layer

• Look at weights of hidden nodes � low-level features



Deep-Learning: principles+convNets+DBN+RNN, Pr. Fabien Moutarde, Robotics Lab, MINES ParisTech March.2017     61

Why go deeper with DBN ?

DBN: upper layers � more « abstract » features
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Learning of DBN

Greedy learning of successive layers
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Using low-dim final features
for clustering

Much better results than clustering in input space
or using other dimension reduction (PCA, etc…)
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Example application of DBN:
Clustering of documents in database
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Image Retrieval
application example of DBN
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DBN supervised tuning

UNSUPERVISED SUPERVISED
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Outline

• Introduction to Deep Learning

• Convolutional Neural Networks (CNN or ConvNets)
– Intro + Short reminder on Neural Nets
– Convolution layers & Pooling layers + global architecture
– Training algorithm + Dropout Regularization

• Useful pre-trained convNets and coding frameworks

• Transfer Learning

• Deep Belief Networks (DBN)

• Autoencoders

• Recurrent Neural Networks (RNN)
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Autoencoders

Learn W and W’ to minimize:  Σk  || zk – xk ||2
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Variants of autoencoders

• Denoising autoencoders

• Sparse autoencoders

• Stochastic autoencoders

• Contractive autoencoders

• …
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Deep Stacked Autoencoders

Proposed by Yoshua Bengio in 2007
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Training of Stacked Autoencoers

Greedy layerwise training: 

for each layer k, use backpropagation to minimize
|| Ak(h

(k))-h(k) ||2 (+ regularization cost λ Σij |Wij|
2)     

possibly + additional term for "sparsity"

etc…
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Use of Deep Autoencoders

• Data compression / dimension reduction

• Learn a compact "code " � Information Retrieval

• Noise removal

• Manifold learning
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Summary and perspectives on 
DBN/RBM/DBM / AE

• Intrinsicly UNSUPERVISED

� can be used on UNLABELLED DATA

• Impressive results in Image Retrieval

• DBN/RBM/DBM = Generative probabilistic models

• Strong potential for enhancement of datasets

• Interest for "creative« /artistic computing?
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Outline

• Introduction to Deep Learning

• Convolutional Neural Networks (CNN or ConvNets)
– Intro + Short reminder on Neural Nets
– Convolution layers & Pooling layers + global architecture
– Training algorithm + Dropout Regularization

• Useful pre-trained convNets and coding frameworks

• Transfer Learning

• Deep Belief Networks (DBN)

• Autoencoders

• Recurrent Neural Networks (RNN)
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Recurrent Neural Networks (RNN)

Time-delay 
for each connection

Equivalent form

f f

0

1

11

2

x2

output

x1

x3

input

Σ Σ

00

output

f

f

x2(t)

x1(t)

x3(t)

input

1

x2(t-1)

1

x3(t-1)

x2(t-1)

1

x2(t-2)

1Σ

ΣΣ
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Canonical form of RNN

Non-recurrent network

U(t)
External input

............

..........
........

Output Y(t) 

1 1 1.......

........

X(t-1)
State variables

X(t)
State variables
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Time unfolding of RNN

State variables
at time tOutput at time t :  

Non-recurrent network

External input at time t :
State variables
at time t-1Output at time t-1 :

External input at time t-1 :
State variables
at time t-2Output at time t-2 :

External input at time t-2 : 

State variables
at time t-3

Non-recurrent network

Non-recurrent network

Y(t)

Y(t-1)

Y(t-2)

U(t-2)

U(t-1)

U(t)

X(t-2)

X(t-3)

X(t-1)

X(t)
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RNN training

• BackPropagation Through Time (BPTT)
gradients update for a whole sequence 

• Real Time Recurrent Learning (RTRL)
gradients update for each frame in a sequence

t+1t

t+2 t+3
t+4

Temporal sequence

W(t)W(t)W(t)

e3 e4
W(t)

W(t+4)

Horizon Nt = 4
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BackPropagation THROUGH TIME 
(BPTT)

Xd(t-1)

bloc 1

W(t)

X(t)

U(t) U(t+1)

bloc 2

W(t)

X(t+1)

U(t+2)

bloc 3

W(t)

X(t+2)

D(t+2)D(t+1)

dE/dXn+1
dE/dXn

δW3δW2δW1

δW = δW1 + δW2 + δW3
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BPTT algorithm

W(t+Nt) = W(t) - λ gradW(E) avec E = Στ (Yτ-Dτ)
2

∀D, EFGE� = EFG
EHG

EHG
EIG?J

EIG?J
E�

EF
E� ='EFG

E�
K

GLJ

Feedforward

Network

U(t) Y(t)

X(t)

delay

X(t-1)

state

EIG
E� = ' EIG

EIG?M
G?J

MLJ

EIG?M
E�

and (chain rule)

EIG
EIG?M =1 EI�

EI�?J
G

�LJ
Jacobian matrix of the 

Feedforward net
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Vanishing/exploding gradient 
problem

• If eigenvalues of Jacobian matrix >1, 
then gradients tend to explode 

� Learning will never converge. 

• Conversely, if eigenvalues of Jacobian matrix <1, 
then gradients tend to vanish 

� Error signals can only affect small time lags 

� short-term memory. 
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Long Short-Term Memory (LSTM)

Cells are connected recurrently to each other, replacing the usual hidden units of ordinary recurrent networks.
An input feature is computed with a regular artificial neuron unit. Its value can be accumulated into the state if
the sigmoidal input gate allows it. The state unit has a linear self-loop whose weight is controlled by the forget
gate. The output of the cell can be shut off by the output gate. All the gating units have a sigmoid nonlinearity,
while the input unit can have any squashing nonlinearity. The state unit can also be used as an extra input to
the gating units. The black square indicates a delay of a single time step.

[ Figure and caption taken from Deep Learning book by I. Goodfellow, Y. Bengio & A. Courville]

Block diagram of the LSTM 

recurrent network “cell” 
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Deep RNNs
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Applications of RNN/LSTM

Wherever data is intrinsicly SEQUENTIAL

• Speech recognition
• Natural Language Processing (NLP)

– Machine-Translation
– Image caption generator

• Gesture recognition 
• Potentially any kind of time-series!!
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Summary and perspectives on 
Recurrent Networks

• For SEQUENTIAL data 
(speech, text, …, gestures, …)

• Impressive results in 
Natural Language Processing (in particular
Automated Real-Time Translation)

• Training of standard RNNs can be tricky
(vanishing gradient…)

• Increasing interest on LSTM / deep RNN
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Any QUESTIONS ?


