

Deep-Learning: general principles Convolutional Neural Networks Deep Belief Networks Recurrent Neural Networks (RNN)

Pr. Fabien Moutarde Robotics Lab (CAOR) MINES ParisTech PSL Research University

Fabien.Moutarde@mines-paristech.fr http://people.mines-paristech.fr/fabien.moutarde

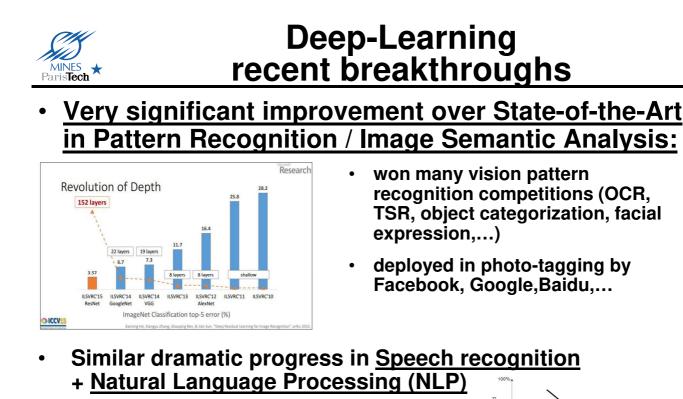
Deep-Learning: principles+convNets+DBN+RNN, Pr. Fabien Moutarde, Robotics Lab, MINES ParisTech March.2017 1

Acknowledgements

During preparation of these slides, I got inspiration and borrowed some slide content from several sources, in particular:

- Yann LeCun + MA Ranzato: slides on « *Deep Learning* » from the corresponding course at NYU http://cilvr.cs.nyu.edu/doku.php?id=deeplearning:slides:start
- Hinton+Bengio+LeCun: slides of the NIPS'2015 tutorial on Deep Learning http://www.iro.umontreal.ca/~bengioy/talks/DL-Tutorial-NIPS2015.pdf
- Fei-Fei Li + A.Karpathy + J.Johnson: Stanford course lecture slides on « Convolutional Neural Networks » <u>http://cs231n.stanford.edu/slides/winter1516_lecture7.pdf</u>
- I. Kokkinos: slides of a CentraleParis course on Deep Belief Networks
 http://cvn.ecp.fr/personnel/iasonas/course/DL5.pdf

- Introduction to Deep Learning
- Convolutional Neural Networks (CNN or ConvNets)
 - Intro + Short reminder on Neural Nets
 - Convolution & Pooling layers + global architecture
 - Training algorithm + Dropout Regularization
- Useful pre-trained convNets and coding frameworks
- Transfer Learning
- Deep Belief Networks (DBN)
- Autoencoders
- Recurrent Neural Networks (RNN)



Some examples of Deep-Learning important/striking applications

[C. Farabet, C. Couprie, L. Najman & Yann LeCun: Learning Hierarchical Features for Scene Labeling, IEEE Trans. PAMI, Aug.2013.

Video analysis for self-driving cars

Photos search

Image-to-text

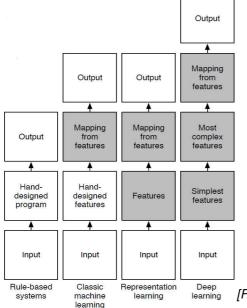
A woman is throwing a frisbee in a park.

'Painting' Photos in "style" of any artist

Deep-Learning: principles+convNets+DBN+RNN, Pr. Fabien Moutarde, Robotics Lab, MINES ParisTech March.2017 5

What is Deep-Learning?

Learning a *hierarchy* of increasingly abstract *representations*



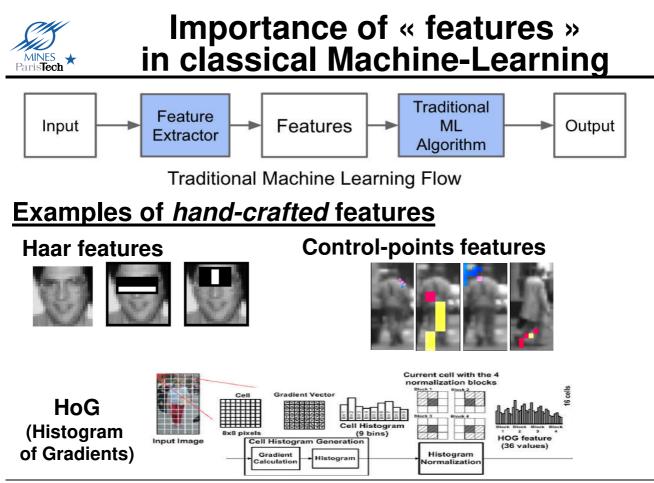
Increasing level of abstraction Each stage ~ trainable feature transform

Image recognition

Pixel \rightarrow edge \rightarrow texton \rightarrow motif \rightarrow part \rightarrow object **Speech** Sample \rightarrow spectral band $\rightarrow \dots \rightarrow$ phoneme \rightarrow word **Text**

 $\begin{array}{l} Character \rightarrow word \rightarrow word \; group \rightarrow clause \rightarrow \\ sentence \rightarrow story \end{array}$

learning [Figure from Goodfellow]

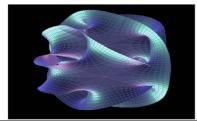


Why features should be learnt?

Real data examples for a given task are usually not spreaded everywhere in input space, but rather clustered on a low-dimension « manifold »

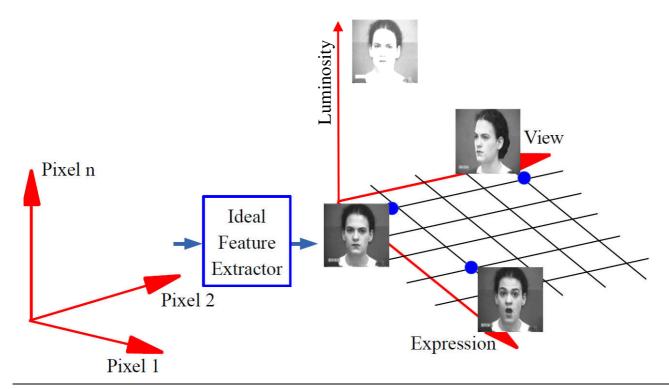
Example: Face images of 1000x1000 pixels

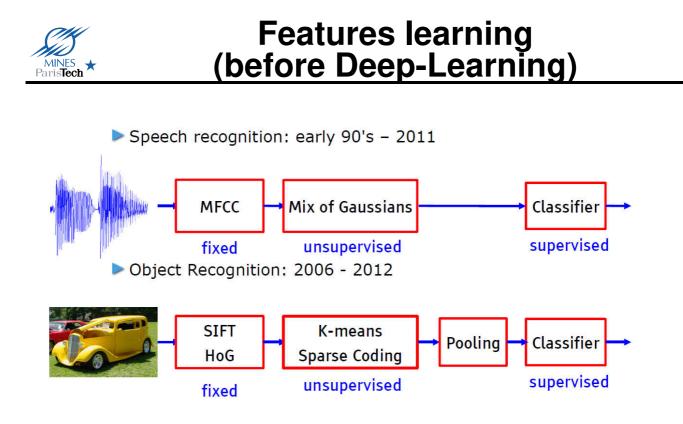
- → « raw » examples are vectors in R¹⁰⁰⁰⁰⁰⁰ !!
- <u>BUT:</u>
 - position = 3 cartesian coord
 - orientation 3 Euler angles
 - 50 muscles in face
 - Luminosity, color
- → Set of all images of ONE person has \leq 69 dim



→ Examples of face images of 1 person are all in a LOW-dim manifold inside a HUGE-dim space

Good features ~ good « mapping » on manifold

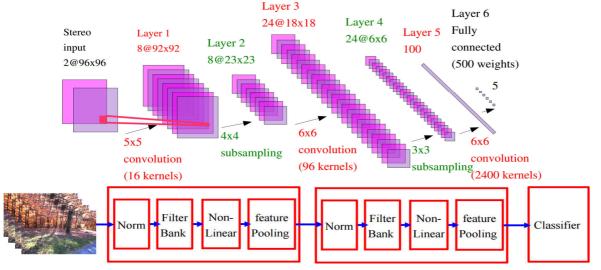




- Introduction to Deep Learning
- <u>Convolutional Neural Networks (CNN or ConvNets)</u>
 - Intro + Short reminder on Neural Nets
 - Convolution & Pooling layers + global architecture
 - Training algorithm + Dropout Regularization
- Useful pre-trained convNets and coding frameworks
- Transfer Learning
- Deep Belief Networks (DBN)
- Autoencoders
- Recurrent Neural Networks (RNN)

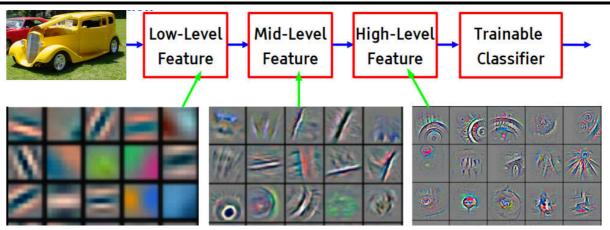
Convolutional Neural Networks (CNN, or ConvNet)

• Proposed in 1998 by Yann LeCun (french prof.@ NYU, recently appointed AI research director of Facebook)



For inputs with correlated dims (2D *image*, 1D signal,...)
Supervised learning

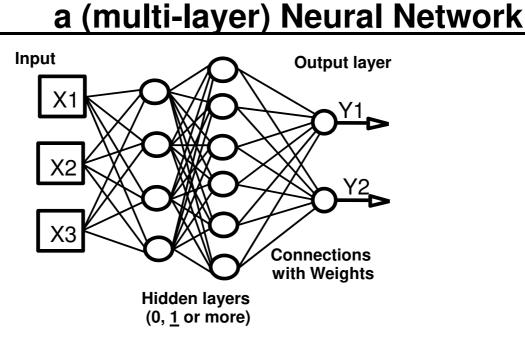
CNN (2)



- Recently won many vision pattern recognition competitions/challenges (OCR, TSR, object categorization, facial expression,...)
- Deployed in photo-tagging by Facebook, Google, Baidu,...
- Also used in real-time video analysis for self-driving cars

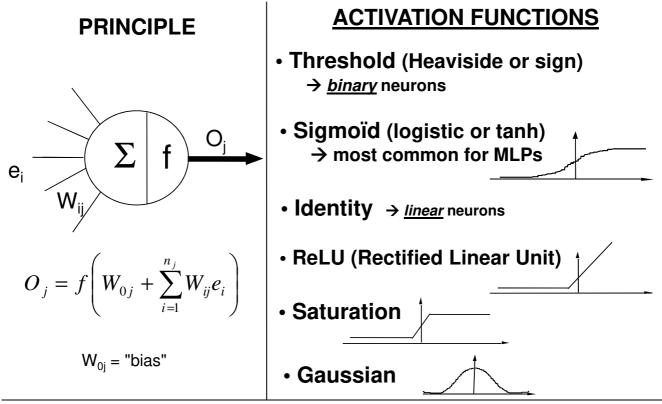
Deep-Learning: principles+convNets+DBN+RNN, Pr. Fabien Moutarde, Robotics Lab, MINES ParisTech March.2017 13

Short reminder on what is



For "Multi-Layer Perceptron" (MLP), neurons type generally "summating with sigmoid activation"

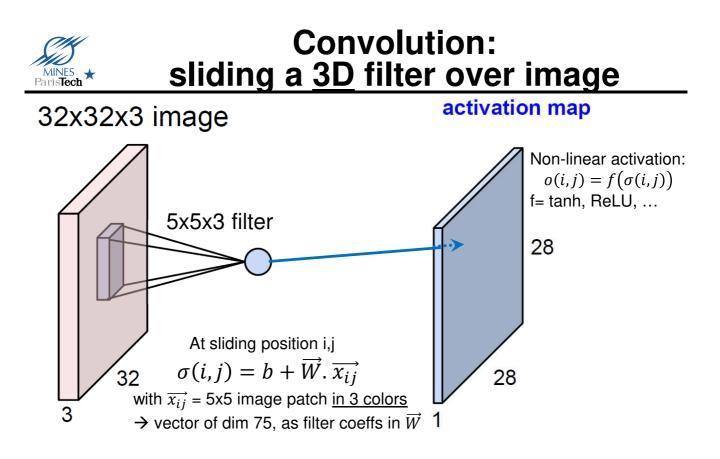
Reminder on artificial "neurons"



Deep-Learning: principles+convNets+DBN+RNN, Pr. Fabien Moutarde, Robotics Lab, MINES ParisTech March.2017 15

Outline

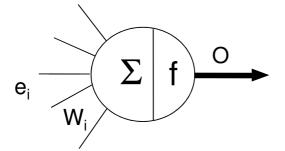
- Introduction to Deep Learning
- <u>Convolutional Neural Networks (CNN or ConvNets)</u>
 - Intro + Short reminder on Neural Nets
 - Convolution & Pooling layers + global architecture
 - Training algorithm + Dropout Regularization
- Useful pre-trained convNets and coding frameworks
- Transfer Learning
- Deep Belief Networks (DBN)
- Autoencoders
- Recurrent Neural Networks (RNN)



See illustrative animation at: http://cs231n.github.io/convolutional-networks/

Deep-Learning: principles+convNets+DBN+RNN, Pr. Fabien Moutarde, Robotics Lab, MINES ParisTech March.2017 17

« Neural » view of convolution filters and layers



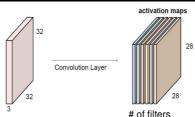
$$O = f\left(W_0 + \sum_{i=1}^n W_i e_i\right)$$

 W_0 = "bias" f = activation function

Each convolution FILTER is one set of neuron parameters

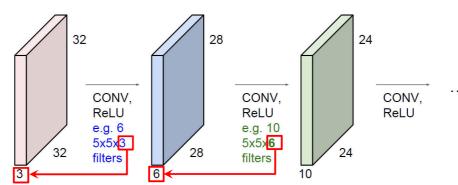
Each convolution LAYER is a set of ~imageSize neurons, but they all have <u>same SHARED weights</u> (perform SAME convolution)

Convolutional layers



One "activation map" for each convolution filter

A convNet: succession of Convolution+activation Layers



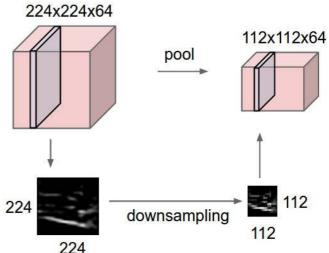
NB: each convolution layer processes FULL DEPTH of previous activation map (3D convolution!)

Deep-Learning: principles+convNets+DBN+RNN, Pr. Fabien Moutarde, Robotics Lab, MINES ParisTech March.2017 19

Pooling layers

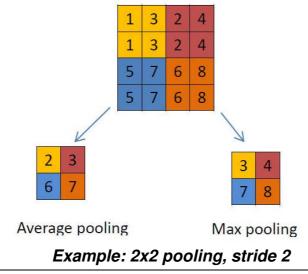
<u>Goal:</u>

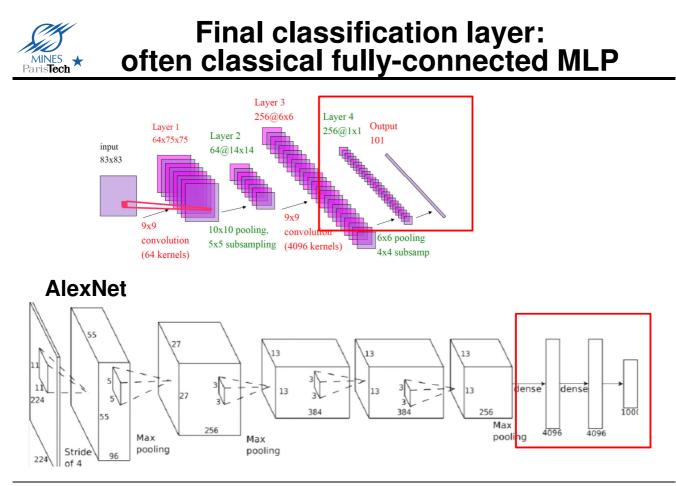
- aggregation over space
- noise reduction,
- small-translation invariance,
- small-scaling invariance



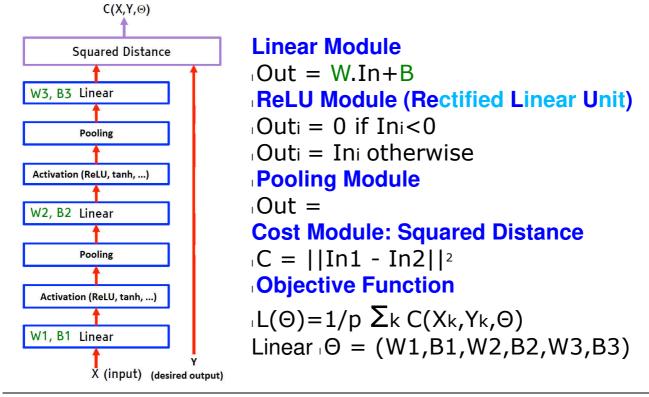
Parameters:

- pooling size (often 2x2)
- pooling stride (usually = pooling_size)
- Pooling operation: <u>max</u>, average, Lp,...





ConvNet typical architecture: cascade of modules



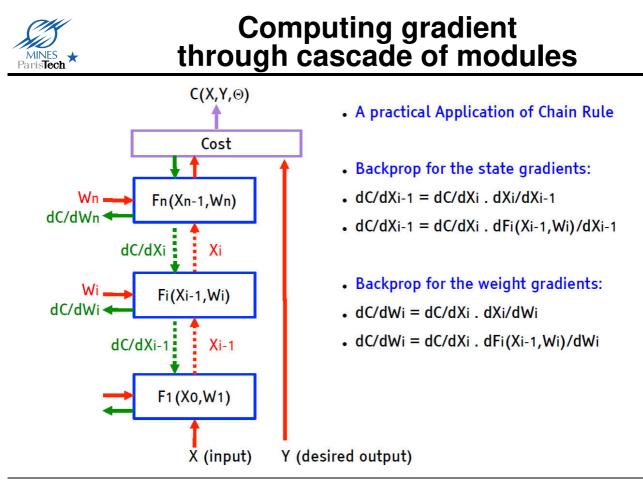
Deep-Learning: principles+convNets+DBN+RNN, Pr. Fabien Moutarde, Robotics Lab, MINES ParisTech March.2017 23

Outline

- Introduction to Deep Learning
- Convolutional Neural Networks (CNN or ConvNets)
 - Intro + Short reminder on Neural Nets
 - Convolution layers & Pooling layers + global architecture
 - Training algorithm + Dropout Regularization
- Useful pre-trained convNets and coding frameworks
- Transfer Learning
- Deep Belief Networks (DBN)
- Autoencoders
- Recurrent Neural Networks (RNN)

All successive layers of a convNet forms a Deep neural network (with weigh-sharing inside each conv. Layer, and specific pooling layers).

- Training by <u>Stochastic Gradient Descent</u> (SGD), using *back-propagation*:
 - Input 1 random training sample
 - Propagate
 - Calculate error (loss)
 - Back-propagate through all layers from end to input, to compute gradient
 - Update convolution filter weights



Smart method for efficient computing of gradient (w.r.t. weights) of a Neural Network cost function, based on chain rule for derivation.

Cost function is $Q(t) = \Sigma_m loss(Y_m, D_m)$, where m runs over training set examples

Usually, $loss(Y_m, D_m) = ||Y_m - D_m||^2$ [quadratic error]

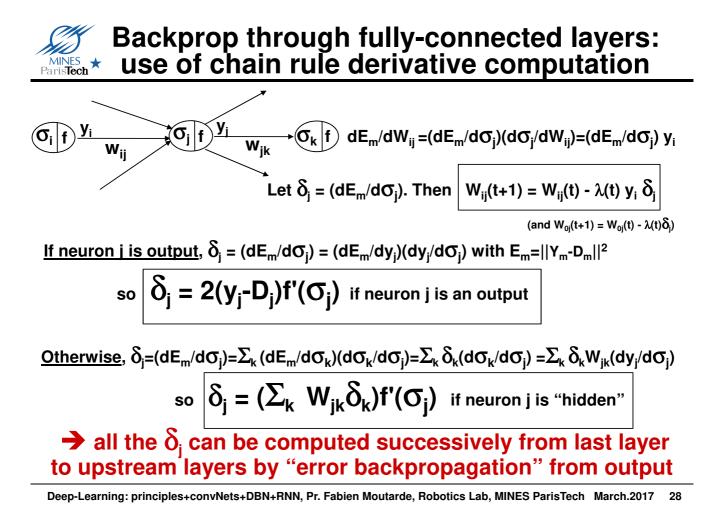
Total gradient:

 $W(t+1) = W(t) - \lambda(t) \operatorname{grad}_{W}(Q(t)) + \mu(t)(W(t)-W(t-1))$ Stochastic gradient:

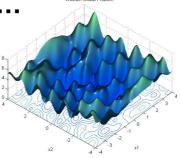
 $W(t+1) = W(t) - \lambda(t) \operatorname{grad}_{W}(Q_{m}(t)) + \mu(t)(W(t)-W(t-1))$

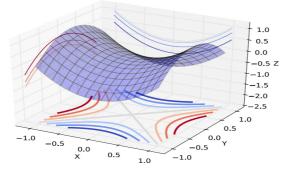
where $Q_m = IOSS(Y_m, D_m)$, is error computed on <u>only ONE</u> example randomly drawn from training set at every iteration and $\lambda(t) = Iearning rate (fixed, decreasing or adaptive), \mu(t) = momentum$

Now, how to compute dQ_m/dW_{ii} ?



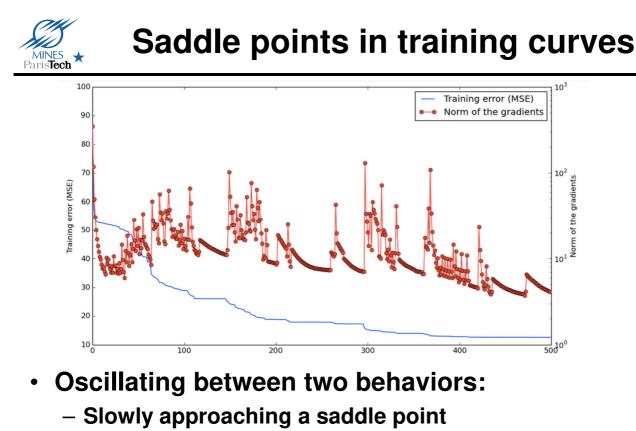
 ...but recent work has shown <u>saddle points</u> dominate in high-Dim





• Furthermore, most local minima are close to the global minimum

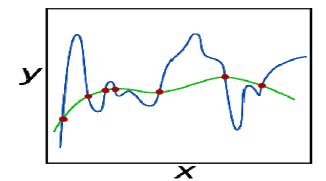
Deep-Learning: principles+convNets+DBN+RNN, Pr. Fabien Moutarde, Robotics Lab, MINES ParisTech March.2017 29



- Escaping it

- Importance of input normalization
 (zero mean, unit variance)
- Importance of <u>weights initialization</u> random but SMALL and prop. to 1/sqrt(nblnputs)
- Decreasing (or adaptive) learning rate
- Importance of training set size ConvNets often have a LARGE number of free parameters → train them with a sufficiently large training-set !
- Avoid overfitting by:
 - Use of L1 or L2 regularization (after some epochs)
 - Use « *Dropout* » <u>regularization</u> (esp. on large FC layers)

Avoid <u>overfitting</u> using L1/L2 regularization (« weight decay »)



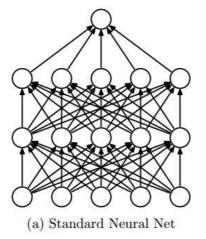
Trying to fit too many free parameters with not enough information can lead to overfitting

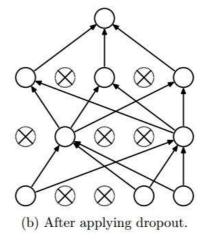
<u>Regularization</u> = penalizing too complex models Often done by adding a special term to cost function

For neural network, the regularization term is just norm L2 or L1 of vector of all weights:

K = Σ_m(loss(Y_m,D_m)) + β Σ_{ij} |W_{ij}|^p with p=2 (L2) or p=1 (L1) → name "Weight decay"

DropOut Regularization for convNet training





At each training stage, individual nodes can be temporarily "dropped out" of the net with probability p (usually ~0.5), or re-installed with last values of weights

Deep-Learning: principles+convNets+DBN+RNN, Pr. Fabien Moutarde, Robotics Lab, MINES ParisTech March.2017 33

Outline

- Introduction to Deep Learning
- Convolutional Neural Networks (CNN or ConvNets)
 - Intro + Short reminder on Neural Nets
 - Convolution layers & Pooling layers + global architecture
 - Training algorithm + Dropout Regularization
- <u>Useful pre-trained convNets and coding frameworks</u>
- Transfer Learning
- Deep Belief Networks (DBN)
- Autoencoders
- Recurrent Neural Networks (RNN)

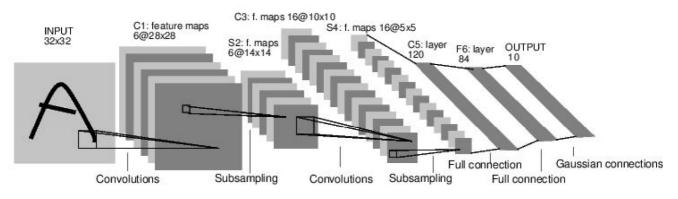
Examples of successful ConvNets

- LeNet: 1st successful applications of ConvNets, by Yann LeCun in 1990's. Used to read zip codes, digits, etc.
- AlexNet: Beginning of ConvNet "buzz": largely outperformed competitors in ImageNet_ILSVRC2012 challenge. Developped by Alex Krizhevsky et al., architecture similar to LeNet (but deeper+larger, and some chained ConvLayers before Pooling). 60 M parameters !
- **ZF Net:** ILSVRC 2013 winner. Developped by Zeiler&Fergus, by modif of AlexNet on some architecture hyperparameters.
- GoogLeNet: ILSVRC 2014 winner, developed by Google. Introduced an *Inception Module*, + AveragePooling instead of FullyConnected layer at output. Dramatic reduction of number of parameters (4M, compared to AlexNet with 60M).
- VGGNet: Runner-up in ILSVRC 2014. Very deep (16 CONV/FC layers)
 → 140M parameters !!
- **ResNet:** ILSVRC 2015, "Residual Network" introducing "skip" connections. Currently ~ SoA in convNet. Very long training but fast execution.

Deep-Learning: principles+convNets+DBN+RNN, Pr. Fabien Moutarde, Robotics Lab, MINES ParisTech March.2017 35

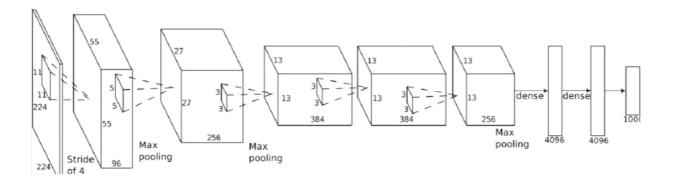
LeNet, for digits/letters recognition [LeCun et al., 1998]

Input: 32x32 image



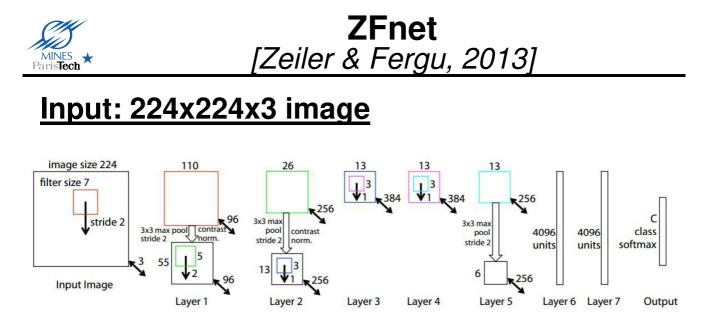
Conv filters were 5x5, applied at stride 1 Subsampling (Pooling) layers were 2x2 applied at stride 2 i.e. architecture is [CONV-POOL-CONV-POOL-CONV-FC]

Input: 224x224x3 image



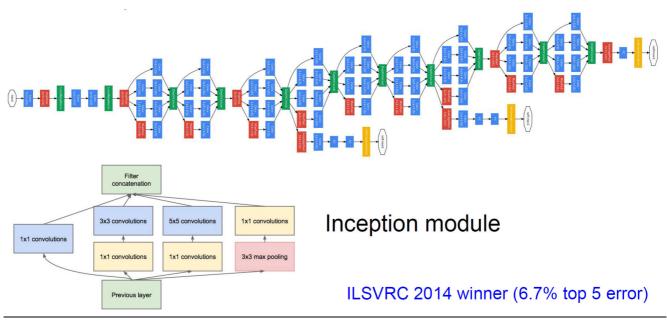
60 million parameters !...

Deep-Learning: principles+convNets+DBN+RNN, Pr. Fabien Moutarde, Robotics Lab, MINES ParisTech March.2017 37

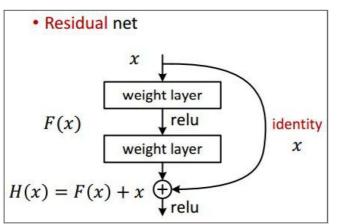


AlexNet but: CONV1: change from (11x11 stride 4) to (7x7 stride 2) CONV3,4,5: instead of 384, 384, 256 filters use 512, 1024, 512

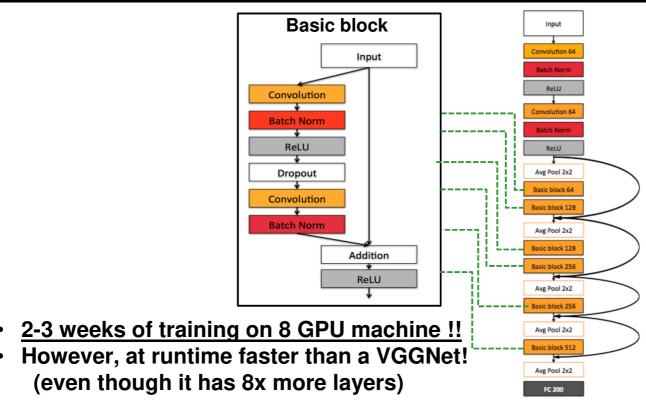
GoogleNet [Szegedy et al., 2014]



- ILSVRC 2015 <u>large</u> winner in 5 main tracks (3.6% top 5 error)
- 152 layers!!!
- But novelty = <u>"skip" connections</u>

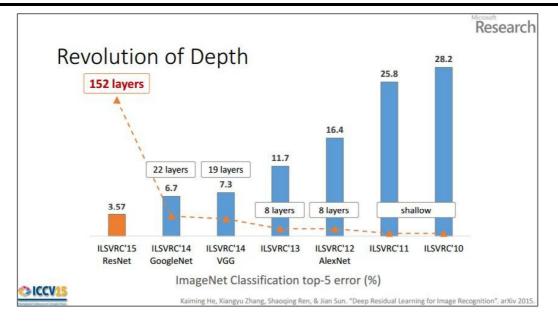


ResNet global architecture



Deep-Learning: principles+convNets+DBN+RNN, Pr. Fabien Moutarde, Robotics Lab, MINES ParisTech March.2017 41

Summary of recent ConvNet history



But most important is the choice of <u>ARCHITECTURAL STRUCTURE</u>

Programming environments for Deep-Learning

- Caffe <u>http://caffe.berkeleyvision.org/</u> C++ library, hooks from Python → notebooks
- Torch http://torch.ch/
- TensorFlow <u>https://www.tensorflow.org</u>
- Theano http://www.deeplearning.net/software/theano/
- Lasagne <u>http://lasagne.readthedocs.io</u> lightweight library to build+train neural nets in Theano
- KERAS <u>https://keras.io</u>
 Python <u>front-end APIs</u> mapped either on Tensor-Flow or Theano back-end

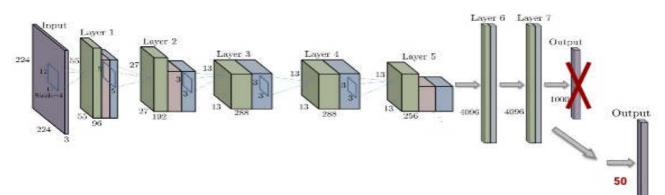
All of them handle transparent use of GPU, and most of them are used in Python code/notebook


```
Example of convNet code in Keras
```

```
model = Sequential()
# Convolution+Pooling layers, with Dropout
model.add(Convolution2D(conv_depth_1, kernel_size, kernel_size,
             border_mode='valid', input_shape=(depth, height, width)))
model.add( MaxPooling2D(pool_size=(pooling_size, pooling_size)) )
model.add(Activation('relu'))
model.add(Dropout(drop_prob))
# Now flatten to 1D, and apply 1 Fully_Connected layer
model.add(Flatten())
model.add(Dense(hidden_size1, init='lecun_uniform'))
model.add(Activation('sigmoid'))
# Finally add a Softmax output layer, with 1 neuron per class
model.add(Dense(num_classes, init='lecun_uniform'))
model.add(Activation('softmax'))
# Training "session
sgd = SGD(lr=learning_rate, momentum=0.8) # Optimizer
model.compile(loss='categorical_crossentropy', optimizer=sgd)
model.fit(X_train, Y_train, batch_size=32, nb_epoch=2, verbose=1,
                                   validation_split=valid_proportion)
# Evaluate the trained model on the test set
model.evaluate(X_test, Y_test, verbose=1)
```


- Introduction to Deep Learning
- Convolutional Neural Networks (CNN or ConvNets)
 - Intro + Short reminder on Neural Nets
 - Convolution layers & Pooling layers + global architecture
 - Training algorithm + Dropout Regularization
- Useful pre-trained convNets and coding frameworks
- <u>Transfer Learning</u>
- Deep Belief Networks (DBN)
- Autoencoders
- Recurrent Neural Networks (RNN)

Generality of learnt representation + Transfer learning

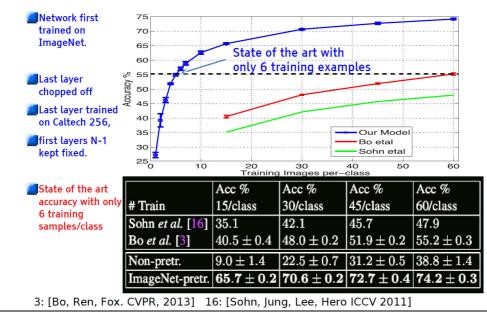


By <u>removing last layer(s)</u> (those for classification) of a convNet trained on ImageNet, one obtains a <u>transformation of any</u> <u>input image into a semi-abstract representation</u>, which can be used for learning SOMETHING ELSE (« transfer learning »):

- either by just using learnt representation as features

 or by creating new convNet output and perform <u>learning</u> of new output layers + fine-tuning of re-used layers

Using a CNN pre-trained on a large dataset, possible to <u>adapt it to another task</u>, <u>using only</u> <u>a SMALL training set</u>!

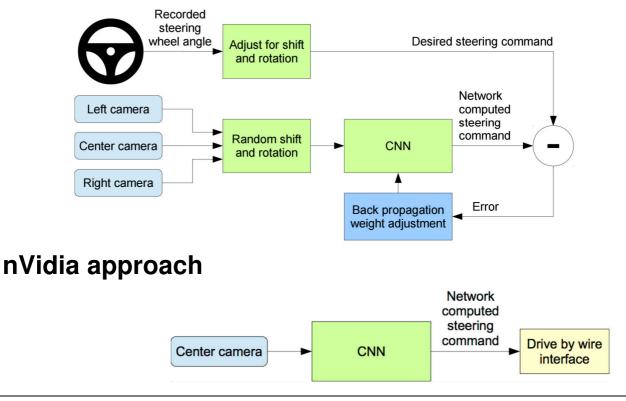


Deep-Learning: principles+convNets+DBN+RNN, Pr. Fabien Moutarde, Robotics Lab, MINES ParisTech March.2017 47

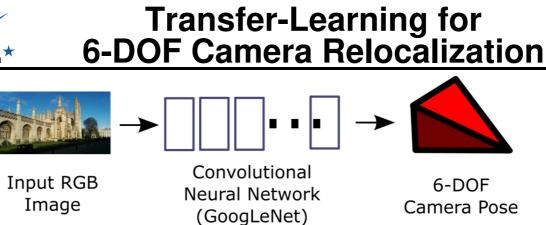
Examples of transfer-learning applications

- Recognition/classification for OTHER categories or classes
- Direct control of driving wheel! (DeepDrive)
- Precise localisation (position+bearing) = PoseNet
- ... or even 3D informations from monovision!

Learning to drive with transfer-learning



Deep-Learning: principles+convNets+DBN+RNN, Pr. Fabien Moutarde, Robotics Lab, MINES ParisTech March.2017 49



[A. Kendall, M. Grimes & R. Cipolla, "PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization«, ICCV'2015, pp. 2938-2946]

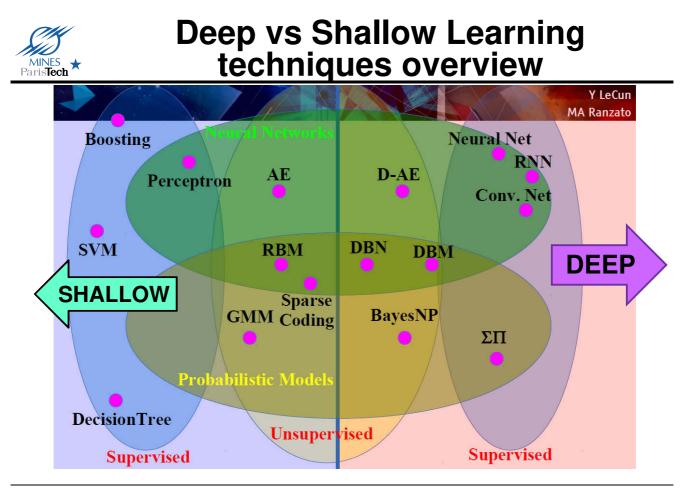
Summary and perspectives on ConvNets & Deep-Learning

- Proven advantage of learning features empirically from data
- Large ConvNets require huge amounts of labelled examples data for training
- Current research/progresses = finding efficient global architecture of ConvNets
- Enormous potential of transfer learning on small datasets for restricted/specialized problems
- Next frontier: methods for combining <u>UNsupervised</u> <u>deep-learning on unlabelled data</u> with supervised training on smaller labelled dataset

Deep-Learning: principles+convNets+DBN+RNN, Pr. Fabien Moutarde, Robotics Lab, MINES ParisTech March.2017 51

Outline

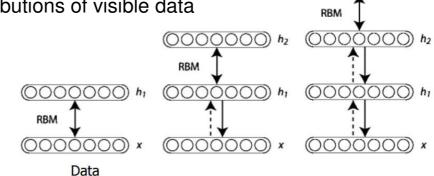
- Introduction to Deep Learning
- Convolutional Neural Networks (CNN or ConvNets)
 - Intro + Short reminder on Neural Nets
 - Convolution layers & Pooling layers + global architecture
 - Training algorithm + Dropout Regularization
- Useful pre-trained convNets and coding frameworks
- Transfer Learning
- Deep Belief Networks (DBN)
- Autoencoders
- Recurrent Neural Networks (RNN)



Deep Belief Networks (DBN)

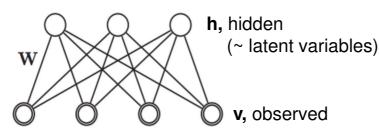
- One of first Deep-Learning models
- Proposed by G. Hinton in 2006
- Generative probabilistic model (mostly UNSUPERVISED)

For capturing high-order *correlations* of observed/visible data (→ pattern analysis, or synthesis); and/or characterizing *joint* statistical distributions of visible data



 $(000000) h_3$

Greedy successive UNSUPERVISED learning of layers of Restricted Boltzmann Machine (RBM)



NB: connections are BI-DIRECTIONAL (with same weight)

Modelling probability distribution as:

 $P(\mathbf{v}, \mathbf{h}; \theta) = \frac{\exp(-E(\mathbf{v}, \mathbf{h}; \theta))}{\sum_{\mathbf{v}, \mathbf{h}} \exp(-E(\mathbf{v}, \mathbf{h}; \theta))}$

with <u>« Energy</u> » E given by

 $E(\mathbf{v}, \mathbf{h}; \theta) = -\mathbf{v}^{\top} W \mathbf{h} - \mathbf{b}^{\top} \mathbf{v} - \mathbf{a}^{\top} \mathbf{h}$ = $-\sum_{i=1}^{D} \sum_{j=1}^{F} W_{ij} v_i h_j - \sum_{i=1}^{D} b_i v_i - \sum_{j=1}^{F} a_j h_j$

Deep-Learning: principles+convNets+DBN+RNN, Pr. Fabien Moutarde, Robotics Lab, MINES ParisTech March.2017 55

Use of trained RBM

- Input data "completion" : set some v_i then compute h, and generate compatible full samples
- Generating representative samples

Finding $\theta = (W,a,b)$ maximizing likelihood $\prod_{v \in S} p_{\theta}(v)$ of dataset S

 $\Leftrightarrow \text{ minimize NegLogLikelihood } -\sum_{v \in S} \log(p_{\theta}(v))$

Independance within layers $\rightarrow p(v|h) = \prod_{i} p(v_i|h)$ and $p(h|v) = \prod_{j} p(h_j|v)$

So objective = find
$$\theta_* = \underset{\theta}{\operatorname{argMin}} \left(-\sum_{v \in S} \sum_j \log(p_{\theta}(v_j)) \right)$$

In *binary* input case: $\begin{array}{l}
p(v_i = 1 \mid h) = \sigma(a_i + W_{:,i}h) \\
p(h_j = 1 \mid v) = \sigma(b_j + W_{j,:}v)
\end{array}$ with $\sigma(u) = \frac{e^u}{e^u + 1}$

Algo: Contrastive Divergence

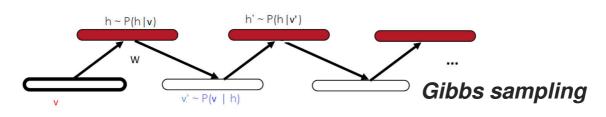
≈ Gibbs sampling used inside a gradient descent procedure

Deep-Learning: principles+convNets+DBN+RNN, Pr. Fabien Moutarde, Robotics Lab, MINES ParisTech March.2017 57

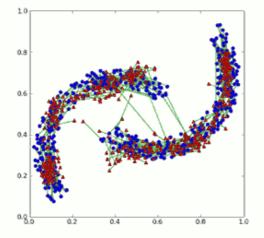
Contrastive Divergence algo

Repeat:

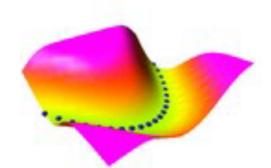
- **1.** Take a training sample *v*, compute $p(h_j = 1 | v) = \sigma(b_j + W_{j,:}v)$ and sample a vector *h* from this probability distribution
- 2. Compute <u>positive gradient</u> as outer product $G_+ = v \otimes h = vh^T$
- 3. From *h*, compute $p(v'_i = 1 | h) = \sigma(a_i + W_{:,i}h)$ and sample reconstructed *v*', then resample *h*' using $p(h'_j = 1 | v') = \sigma(b_j + W_{j,:}v')$ [Gibbs sampling single step; should theoretically be repeated until convergence]
- 4. Compute <u>negative gradient</u> as outer product $G_{-} = v' \otimes h' = v' h'^{T}$
- 5. Update weight matrix by $\delta W = \varepsilon (G_+ G_-) = \varepsilon (\nu h^T \nu' h'^T)$
- 6. Update biases *a* and *b* analogously: $\delta a = \varepsilon(v v')$ and $\delta b = \varepsilon(h h')$



Modeling of input data distribution obtained by trained RBM



Initial data is in blue, reconstructed in red (and green line connects each data point with reconstructed one).

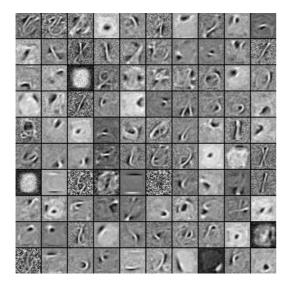


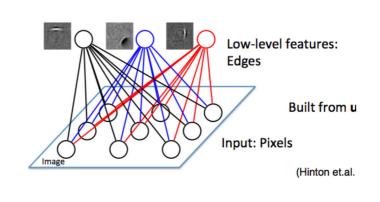
Learnt energy function: minima created where data points are

Deep-Learning: principles+convNets+DBN+RNN, Pr. Fabien Moutarde, Robotics Lab, MINES ParisTech March.2017 59

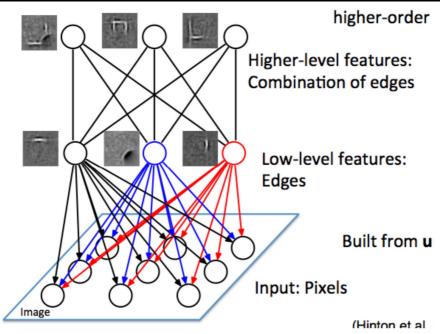
Interpretation of trained RBM hidden layer

Look at weights of hidden nodes → low-level features





Why go deeper with DBN ?

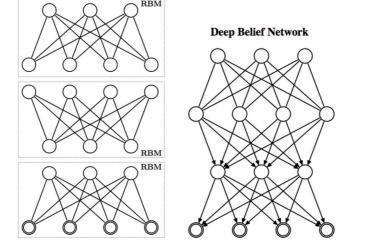


DBN: upper layers \rightarrow more « abstract » features

Deep-Learning: principles+convNets+DBN+RNN, Pr. Fabien Moutarde, Robotics Lab, MINES ParisTech March.2017 61

Learning of DBN

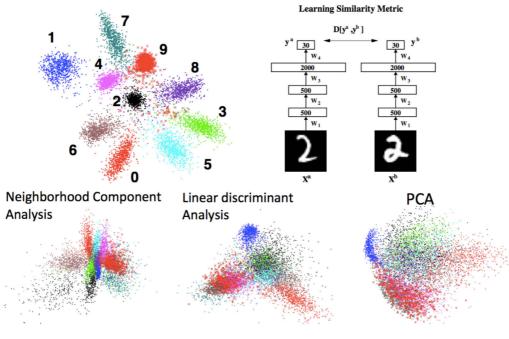
Greedy learning of successive layers



Algorithm 1 Recursive Greedy Learning Procedure for the DBN.

- 1: Fit parameters W^1 of the 1st layer RBM to data.
- Freeze the parameter vector W¹ and use samples h¹ from Q(h¹|v) = P(h¹|v, W¹) as the data for training the next layer of binary features with an RBM.
- 3: Freeze the parameters W^2 that define the 2nd layer of features and use the samples h^2 from
- $Q(\mathbf{h}^2|\mathbf{h}^1) = P(\mathbf{h}^2|\mathbf{h}^1,W^2)$ as the data for training the 3rd layer of binary features.
- 4: Proceed recursively for the next layers.

Using low-dim final features for clustering



Much better results than clustering in input space or using other dimension reduction (PCA, etc...)

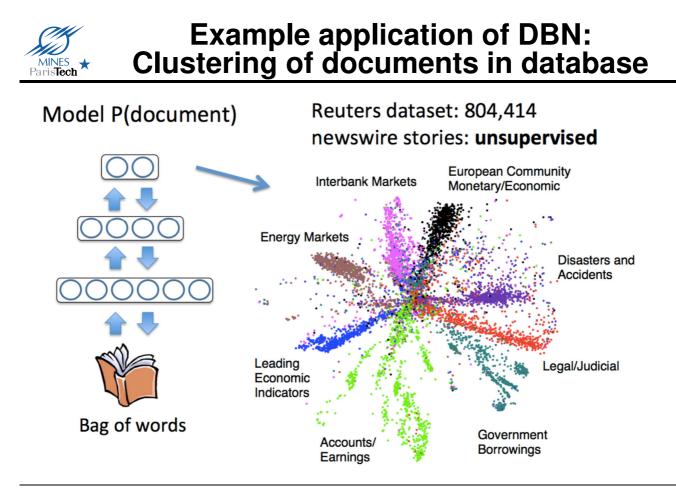
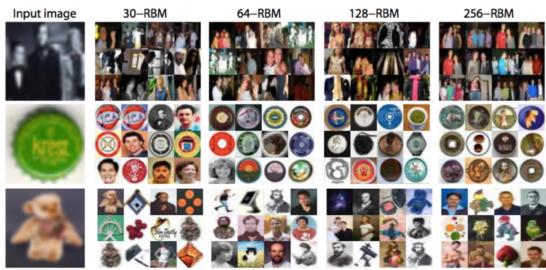


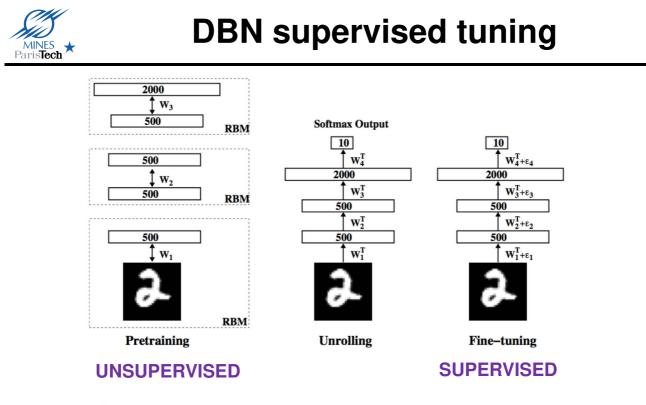
Image Retrieval application example of DBN

• Map images into binary codes for fast retrieval.



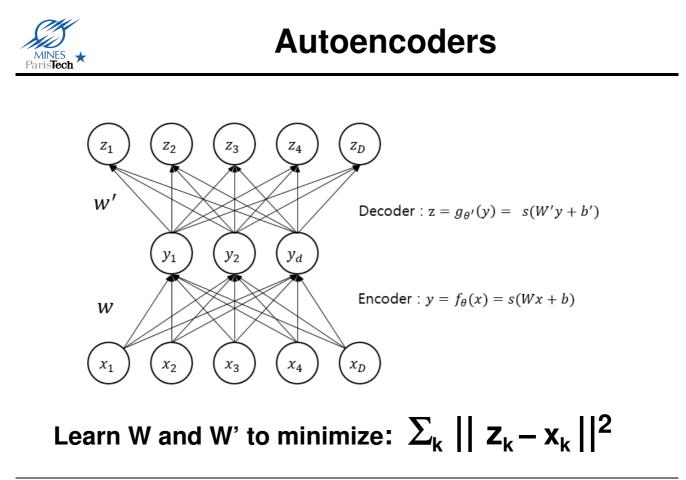
- Small Codes, Torralba, Fergus, Weiss, CVPR 2008
- Spectral Hashing, Y. Weiss, A. Torralba, R. Fergus, NIPS 2008
- Kulis and Darrell, NIPS 2009, Gong and Lazebnik, CVPR 20111
- Norouzi and Fleet, ICML 2011,

Deep-Learning: principles+convNets+DBN+RNN, Pr. Fabien Moutarde, Robotics Lab, MINES ParisTech March.2017 65



• After layer-by-layer **unsupervised pretraining**, discriminative fine-tuning by backpropagation achieves an error rate of 1.2% on MNIST. SVM's get 1.4% and randomly initialized backprop gets 1.6%.

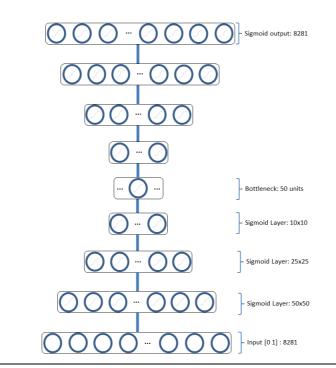
- Introduction to Deep Learning
- Convolutional Neural Networks (CNN or ConvNets)
 - Intro + Short reminder on Neural Nets
 - Convolution layers & Pooling layers + global architecture
 - Training algorithm + Dropout Regularization
- Useful pre-trained convNets and coding frameworks
- Transfer Learning
- Deep Belief Networks (DBN)
- <u>Autoencoders</u>
- Recurrent Neural Networks (RNN)



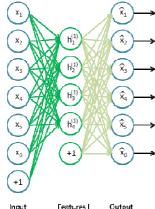
- <u>Denoising</u> autoencoders
- <u>Sparse</u> autoencoders
- Stochastic autoencoders
- Contractive autoencoders
- ...

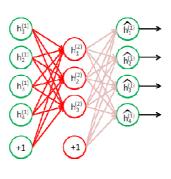
Deep Stacked Autoencoders

Proposed by Yoshua Bengio in 2007



Training of Stacked Autoencoers





etc...

Features I Output

Features II Output Input: (Features I)

Greedy layerwise training: for each layer k, use *backpropagation* to minimize $|| \mathbf{A}_{k}(\mathbf{h}^{(k)}) - \mathbf{h}^{(k)} ||^{2}$ (+ regularization cost $\lambda \Sigma_{ii} |W_{ii}|^{2}$) possibly + additional term for "sparsity"

Deep-Learning: principles+convNets+DBN+RNN, Pr. Fabien Moutarde, Robotics Lab, MINES ParisTech March.2017 71

Use of Deep Autoencoders

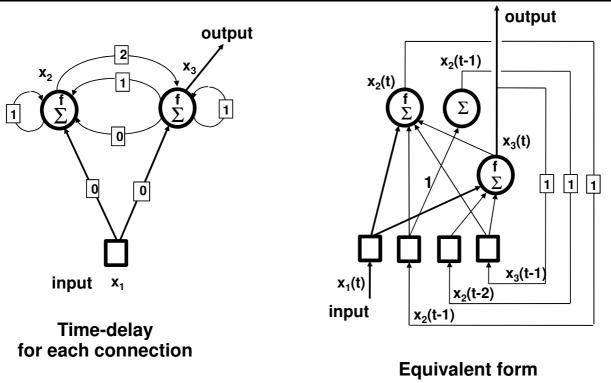
- Data compression / dimension reduction
- Learn a compact "code " → Information Retrieval
- Noise removal
- Manifold learning

- Intrinsicly UNSUPERVISED
 Can be used on UNLABELLED DATA
- Impressive results in Image Retrieval
- DBN/RBM/DBM = <u>Generative</u> probabilistic models
- Strong potential for enhancement of datasets
- Interest for "creative« /artistic computing?

Outline

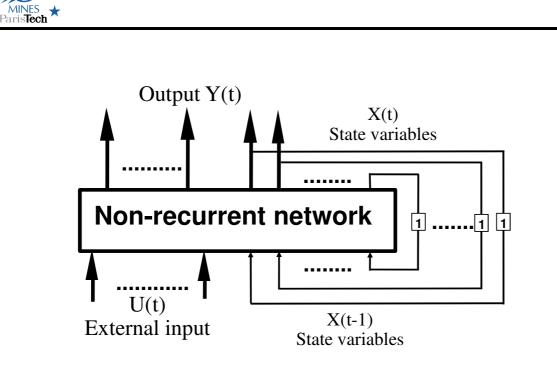
- Introduction to Deep Learning
- Convolutional Neural Networks (CNN or ConvNets)
 Intro + Short reminder on Neural Nets
 - Convolution layers & Pooling layers + global architecture
 - Training algorithm + Dropout Regularization
- Useful pre-trained convNets and coding frameworks
- Transfer Learning
- Deep Belief Networks (DBN)
- Autoencoders
- <u>Recurrent Neural Networks (RNN)</u>

Recurrent Neural Networks (RNN)

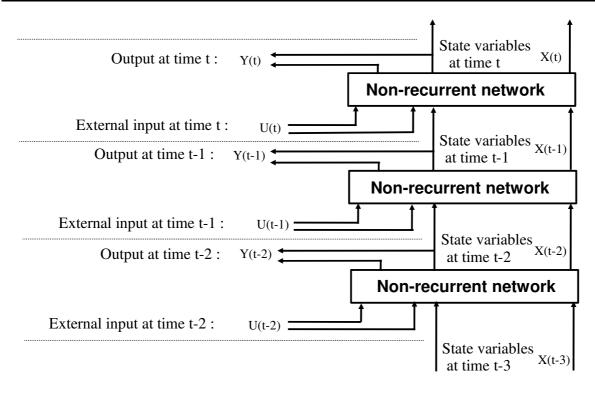


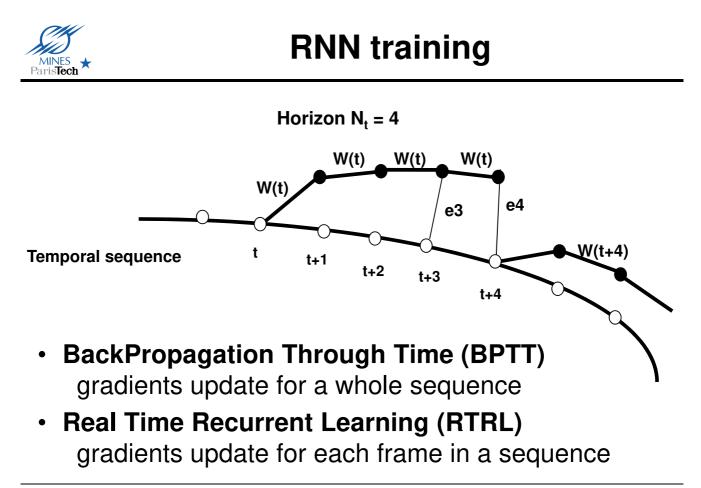
Deep-Learning: principles+convNets+DBN+RNN, Pr. Fabien Moutarde, Robotics Lab, MINES ParisTech March.2017 75

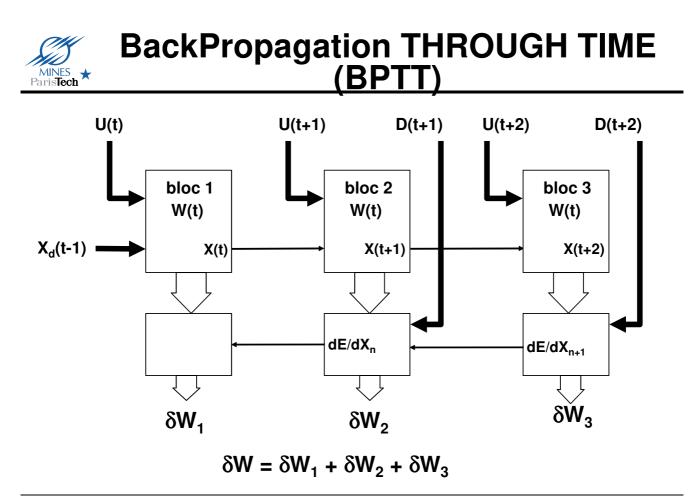
Canonical form of RNN

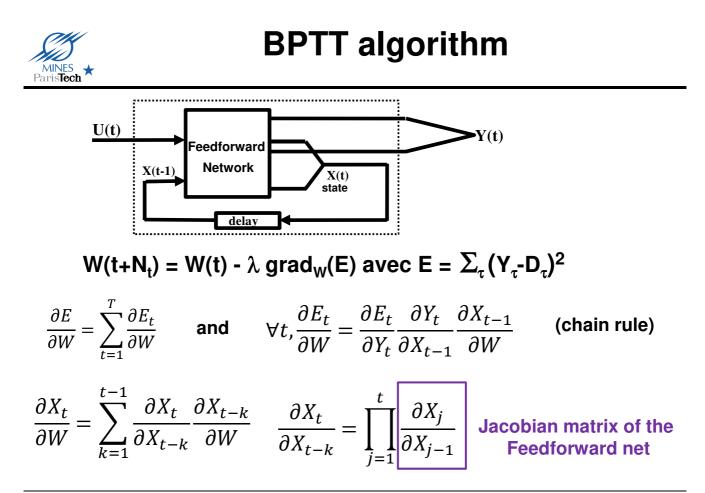


Time unfolding of RNN









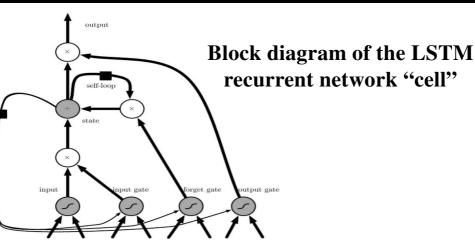
- If eigenvalues of Jacobian matrix >1, then <u>gradients tend to explode</u>
 → Learning will never converge.
- Conversely, if eigenvalues of Jacobian matrix <1, then <u>gradients tend to vanish</u>

➔ Error signals can only affect small time lags

→ short-term memory.

Deep-Learning: principles+convNets+DBN+RNN, Pr. Fabien Moutarde, Robotics Lab, MINES ParisTech March.2017 81

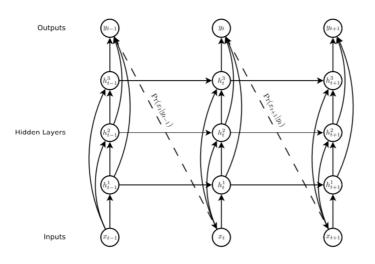
Long Short-Term Memory (LSTM)



Cells are connected recurrently to each other, replacing the usual hidden units of ordinary recurrent networks. An input feature is computed with a regular artificial neuron unit. Its value can be accumulated into the state if the sigmoidal input gate allows it. The state unit has a linear self-loop whose weight is controlled by the forget gate. The output of the cell can be shut off by the output gate. All the gating units have a sigmoid nonlinearity, while the input unit can have any squashing nonlinearity. The state unit can also be used as an extra input to the gating units. The black square indicates a delay of a single time step.

[Figure and caption taken from <u>Deep Learning</u> book by I. Goodfellow, Y. Bengio & A. Courville]

Deep RNNs



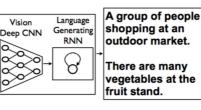
Deep-Learning: principles+convNets+DBN+RNN, Pr. Fabien Moutarde, Robotics Lab, MINES ParisTech March.2017 83

Applications of RNN/LSTM

Wherever data is intrinsicly SEQUENTIAL

- Speech recognition
- Natural Language Processing (NLP) - Machine-Translation

 - Image caption generator



- **Gesture recognition**
- Potentially any kind of time-series!!

- For <u>SEQUENTIAL</u> data (speech, text, ..., gestures, ...)
- Impressive results in Natural Language Processing (in particular Automated Real-Time Translation)
- Training of standard RNNs can be tricky (vanishing gradient...)
- Increasing interest on LSTM / deep RNN

Any QUESTIONS ?