Extensions of Marginalized Graph Kernels

Pierre Mahé

PIERRE.MAHEQENSMP.FR

Ecole des Mines de Paris, 35 rue Saint Honoré, 77300 Fontainebleau, France

Nobuhisa Ueda
Tatsuya Akutsu
Jean-Luc Perret

UEDAQKUICR.KYOTO-U.AC.JP
TAKUTSUQKUICR.KYOTO-U.AC.JP
LUCQKUICR.KYOTO-U.AC.JP

Bioinformatics Center, Kyoto University, Uji, Kyoto 611-0011, Japan

Jean-Philippe Vert

JEAN-PHILIPPE.VERTQENSMP.FR

Ecole des Mines de Paris, 35 rue Saint Honoré, 77300 Fontainebleau, France

Abstract

Positive definite kernels between labeled
graphs have recently been proposed. They
enable the application of kernel methods,
such as support vector machines, to the anal-
ysis and classification of graphs, for example,
chemical compounds. These graph kernels
are obtained by marginalizing a kernel be-
tween paths with respect to a random walk
model on the graph vertices along the edges.
We propose two extensions of these graph
kernels, with the double goal to reduce
their computation time and increase their
relevance as measure of similarity between
graphs. First, we propose to modify the la-
bel of each vertex by automatically adding
information about its environment with the
use of the Morgan algorithm. Second, we
suggest a modification of the random walk
model to prevent the walk from coming back
to a vertex that was just visited. These ex-
tensions are then tested on benchmark exper-
iments of chemical compounds classification,
with promising results.

1. Introduction

Many real-world data, such as natural language texts
or molecular structures, can be represented as graphs.
A number of applications, such as mining molecular
databanks to predict activity or toxicology of poten-

Appearing in Proceedings of the 21°* International Confer-
ence on Machine Learning, Banff, Canada, 2004. Copyright
2004 by the first author.

tial drugs, require the analysis, comparison, and clas-
sification of these graphs. Among the many different
ways to tackle this problem, two mainstream research
directions have emerged during the last decades. One
direction involves the use of graph algorithms to com-
pare or classify graphs, for instance by finding maximal
or frequent common subgraphs. Such approaches usu-
ally suffer from their computational complexity (NP-
hardness of subgraph isomorphism, exponential num-
ber of potential subgraphs), and are usually based on
heuristic or restricted to small-size graphs and data-
banks. The second mainstream direction, particu-
larly in chemoinformatics, consists in transforming the
graphs into vectors using molecular descriptors—what
one would usually call features in the machine learn-
ing community—, before applying the whole panoply
of statistical or machine learning tools to the vector
representations. This usually requires the selection of
a small number of features of interest.

An alternative direction has been explored recently by
Kashima et al. (2003) and Géartner et al. (2003), using
the theory of positive definite kernels and kernel meth-
ods (Scholkopf & Smola, 2002). The authors introduce
positive definite kernels between labeled graphs, based
on the detection of common paths between different
graphs. These kernels correspond to a dot product
between the graphs mapped to an infinite-dimensional
feature space, but can be computed in polynomial time
with respect to the graph sizes. Encouraging experi-
mental results suggest that this approach might be a
valid alternative to the two mainstream directions.

These graph kernels, however, are subject to several
limitations which we try to address in this contri-
bution. First, the choice of representing implicitly
each graph by the set of path probabilities under a

simple random walk model might be questioned. In
many applications, such as chemoinformatics, sub-
graphs are believed to be more relevant features than
paths. Moreover, the random walk model used is sub-
ject to "tottering”, in the sense that it can move to
one direction and instantly come back to its original
position, resulting in redundant paths which might
decrease the characterization of a given graph once
mapped to the feature space of these graph kernels.
Second, the graph kernel has a computational com-
plexity roughly proportional to the product of the sizes
of the two graphs to be compared, which results in slow
implementation for real-world problem.

We propose two extensions of the original graph ker-
nel, which try to address these issues. The first exten-
sion is to relabel each vertex automatically in order
to insert information about the environment of each
vertex in its label. This has both an effect in terms
of feature relevance, because label paths contain infor-
mation about their environment as well, and compu-
tation time, because the number of identical labeled
paths significantly decreases. Second, we show how to
modify the random walk model in order to remove tot-
ters, without increasing the complexity of the imple-
mentation. Each method is validated on a benchmark
experiment of chemical compounds classification.

2. Marginalized graph kernel

In this section we define the basic notations and briefly
review the graph kernel introduced in Kashima et al.
(2003) and Gértner et al. (2003).

2.1. Labeled graphs

A labeled graph G = (V, E) is defined by a finite set of
vertices V (of size |V]), a set of edges E C V xV, and
a labeling function [: VU E +— A which assigns a label
I(x) to any vertex or edge . We assume below that a
set of labels A has been fixed, and consider different la-
beled graphs. For a given graph G = (V, E), we denote
by d(v) the number of edges emanating from the vertex
v (i.e., the number of edges of the form (v, u)), and by
V* = U, V"™ the set of finite-length sequences of ver-
tices. A path h € V* is a finite-length sequence of ver-
tices h = vy ... v, with the property that (v;,v;y1) € E
fori=1,...,n—1. We note |h| the length of the path
h, and H(G) C V* the set of all paths of a graph
G. The labeling function I : VU E — A can be ex-
tended as a function [: H(G) — A* where the label
I(h) of a path h = vy ...v, € H(G) is the succession
of labels of the vertices and edges of the path: I(h) =
(l(U1)7 l(vh U2)7 l(’l)2),) l(“n—l: Un): l(’l}n)) € Azn=t

2.2. Marginalized graph kernels

A positive definite kernel on a space X is a
symmetric function K : X2 = R that satis-
fies 377 aia;K(z;,x;) for any choice of n points
Z1,...,Tn € X and coefficients ay,...,a, € R. Defin-
ing a kernel on a space X paves the way to the use of
kernel methods (Schélkopf & Smola, 2002) for classifi-
cation, regression of clustering, for example.

In order to define a kernel function K (G, G2) between
two graphs G; = (V1, E1) and G = (Va, E»), Kashima
et al. (2003) proposed to use the following formula:

K(G1,G-)

=

(h1,h2)EVyY X Vs

p1(h1)p2(h2) Ky (I(h1),1(h2)), (1)

where p; and ps are probability distributions on V;*
and V5 and the function Ky, : A* x A* » Rin (1) is
a kernel between label sequences. Equation (1) can be
seen as a marginalized kernel (Tsuda et al., 2002) and
is therefore a valid kernel on the set of graphs.

Kashima et al. (2003) focus on the particular case
where, for a graph G = (V, E), the kernel between
label sequences in (1) is the Dirac kernel:

1 lf ll = l2,
0 otherwise,

KL(ll,lQ) = {

and where the probability p on V* used in the kernel
definition (1) factorizes as:

p(v1...vn) = ps(v1) [[pe(vilvi-a). (2)

=2

In order to ensure that (2) defines a probability dis-
tribution on V* (i.e., > oy p(v) = 1), we must im-
pose constraints on ps; and py. This can be done, for
example, by choosing parameters 0 < p,(v) < 1 for
v € V, an initial probability distribution py on V
(> pev Po(v) = 1), a transition matrix p, on V x V
(> uwey Pa(ulv) = 1 for v € V) positive only along
edges (pq(v|u) > 0 = (u,v) € E), and by setting, for
any u,v € V2,

{ps (v) = po(v)pq (v),
pe(ulo) = L2 py (ufo)p, (u).

Under these conditions it can easily be checked that
(2) is a probability distribution on V* corresponding
to a random walk on the graph with initial distribution
Do, transition probability p,, and stopping probability
pq at each step. In particular, this implies that only
paths have positive probabilities under p : p(h) > 0 =
h € H(G).

2.3. Graph kernel computation

While the kernel definition (1) involves a summation
over an infinite number of paths, it can be computed
efficiently using product graphs and matrix inversions
(Gértner et al., 2003), as briefly recalled below. Given
two labeled graphs G; = (V1, E1) and Gy = (Va, E2),
the product graph is defined as the labeled graph G =
(V, &) whose vertices V C V; x Vz are pairs of vertices
with identical labels ((vi,v2) € V iff I(v1) = l(v2)),
and an edge connects the vertices (u1,u2) and (v1,v2)
iff (u;,v;) € Ey, for i = 1,2, and (u1,v1) = l(u2,v2).
Let us now defines a functional 7 on the set of paths
H(G) by

m (w1, v1)(u2,v2) ... (Un,vn))

=T (ul,vl) H?rt ((Uiavi)‘(uiflavifl)) >

=2
with
{”sml,m = p{ (u)pS” (u2),
(2)

(01, 02)| (w1, us)) = Py (01 |ur)p” (v |us),

where pgl) and pil) (resp. p§2) and p§2)) are the func-
tions used to define the probabilities of random paths
in (2) on the graph Gp (resp. G2). It can then be

shown that:
Z w(h).
heH(G)

K(Gl,Gz) =

If one now defines the |V|-dimensional vector 7, =
(ms(v))vey and the |V| x |V| transition matrix I, =
(m¢(v|w)) (u,0)ev2, then it can be checked that:

Z w(h) = 7, TIP1,
heH(G),|h|=n

where 1 is the |V|-dimensional vector with all entries
equal to 1, and therefore:

o

K(G1,G2)=Z Z

n=1 \h€H(G),|h|=n
=x] (I-1,) '1.

w(h)

While the size of the matrix IT; can be in the worst case
|V1]|V2|, it is sparse and its inversion can be approxi-
mated by a finite sum of the first terms in the power
series expansion of the matrix inverse, involving only
sparse matrix products and resulting in a complexity of
order O(|I;|d™), where |II;| is the number of non-zero
elements in the matrix II;, d is the maximum degree of
the product graph, and N is the number of iterations
used to approximate the inverse (Kashima et al., 2003;
Smola & Kondor, 2003).

3. Label enrichment with the Morgan
index

We observed in practice that the computation of the
graph kernel is time-consuming (about one day on a
recent desktop PC to compute a Gram matrix for a
dataset of 400 molecules), and largely dominates the
cost of training the SVM (which takes a few seconds
on the same dataset). Moreover the computation time
increases drastically when more sophisticated random
walk models are used (see Section 4). This suggests
that speeding up the kernel computation is required
for real-world applications where datasets of several
10,000’s molecules are common. Second, one might
expect the search of common paths to be too naive
to detect interesting patterns between chemical com-
pounds.

In order to overcome both issues simultaneously, we
propose to increase the specificity of labels, by includ-
ing contextual information about the vertices in their
labels. This has two important consequences. First, as
the label specificity increases, the number of common
label paths between graphs automatically decreases,
which shortens the computation time. Second, this is
likely to increase the relevance of the features used to
compare graphs, as paths are replaced by paths labeled
with their environment.

A simple and fast label enrichment procedure is given
by the following iterative process. Each vertex is ini-
tially labeled with the integer 1. Then, at each it-
eration, the label of a vertex is the sum of its label
and its direct neighbor’s labels. Mathematically, if M,
denotes the vector of labels, this reads My = 1 and
Myy1 = (A+ I)M,, where A is the graph adjacency
matrix. Figure 1 illustrates the first two iterations of
this process, which at the first iteration amounts to
compute the number of neighbors of each vertex.

2 4

2 2 4 5

2 3 5 7
— 2 — 5
2 2 6 5

3 5
NS 1%N\1 3%N\3
o~ \O o \O o \O

ORIGINAL COMPOUND AFTER 1ITERATION AFTER 2 ITERATIONS

Figure 1. Morgan index process

While different label enrichment procedures can be de-
fined, we focus below on this particular procedure that

results in a family of kernels (K)o, indexed by
the number of iterations performed in the relabeling
process. Indeed, this particular scheme is well-known
in chemoinformatics under the name of Morgan in-
dex (Morgan, 1965), and is considered a good and fast
solution to detect graph isomorphism and determine
canonical representations of molecules.

4. Preventing totters

A second avenue to modify the original graph kernel
is to modify the probability (2). This probability is
the distribution of a 1st-order Markov random walk
along the edges of the graph, killed with some proba-
bility after each step. We propose to modify the ran-
dom walk model to prevent "totters”, that is, to avoid
any path of the form h = vy,...,v, with v; = v;49
for some i. The motivation here is that such excur-
sions are likely to add noise to the representation of
the graph. For example, the existence of a path with
labels C-C-C might either indicate the presence of a
succession of 3 C-labeled vertices in the graph, or just
a succession of 2 C-labeled vertices visited by a totter-
ing random walk. By preventing totters, the second
possibility disappears.

4.1. Modification of the random walk

A natural way to carry out this modification is to keep
the general kernel definition (1) but modify the prob-
ability model (2) as follows:

pv1 - ..vn) = ps(v1)p(a|v1) [] pe(vilvica, vica),
=3

(3)
where p;(.), pe(.]-), and p;(.].,.) satisfy for any (u,v) €
V2.
ps(v) = po(v)p” (v),
1—
pu(ule) = ZE O (ulo)p, u),
pr(ulw, v) = =2 (ufu, 0)p, ().

Here we assume that 0 < p,(v), pl(lo)() <1 for each

vertex v, po(-|v) is a probability on V' that is only pos-
itive on the neighbors of v, and p,(-|w,v) is a proba-
bility on V' that is only positive on the neighbors of
v different from w. This model is simply the distri-
bution of a 2nd-order Markov random walk, killed at
each step with some probability p,(v) (or p((lo)() after
the first vertex, see section 5.1), which can not follow
excursions of the form v — v — wu. In other words,
only paths belonging to

Ho(G):{h:'Ul...’Un ,n—2},

(4)

Z’l)i;éUiJrQ,i:l,...

can have a positive probability under this model.
Given this new random walk model, the function (1) is
still a valid kernel, but the implementation described
in section 2.3 can not be used directly anymore.

4.2. Computation of the new kernel

We now derive an explicit way to perform the compu-
tation of the kernel (1) under the model (3), by trans-
forming the initial graphs into new graphs where the
2nd-order random walk (3) factorizes as a first-order
Markov process (2).

More precisely, for a graph G = (V, E), let the trans-
formed graph G' = (V', E') be defined by

VI=VUE,

and

E' = {(v,(v,t)) [v €V, (v,t) € E}
U{((u,v),(v,1)) | (u,v),(v,t) € E,u #t}. (5)

The transformed graph G’ is labeled as follows. For
a node v' € V' the label is I'(v') = I(v') if v/ € V,
or I'(v') =1(w) if v' = (u,v) € E. For an edge ¢’ =
(vi,vh) between two vertices v{ € VU E and vy €
E, the label is simply given by l'(e') = I(v}). The
construction of G' and its labeling are illustrated in
figure 2.

N e,

V) @,_@\f
/®

1y /@<—

@4»
\L(@;

Figure 2. The graph transformation. 1I) The original
molecule. II) The corresponding graph G = (V, E). III)
The transformed graph. IV) The labels on the transformed
graph. Note that different widths stand for different edges
labels, and gray nodes are the nodes belonging to V.

The vertices of the transformed graph G’ can be either
edges or vertices of the original graph G. Among all
paths H(G') on G', let us consider the subset of paths
that start on a vertex, that is the set

H(G)={h =0, .. v €HG):v, eV}. (6

Note that from the definition of the product graph
edges, it is easy to check that any path b’ = vj...v], €
H(v') starting with a vertex v; € V must be made
of edges: v; € E,i = 2,...,n. This construction is
illustrated in figure 2.

Given (3), let the functional p' : (V')* — R be derived
from (3) by:

p(v] - 0p) = p(v]) [] ph (wilvizy), (7
i=2
with
v) ps(v) ifuT €V,
ps(v)_{o it o € B,
and
pe(vfu’) ifu €V andv' = (v',v) € E,
pi(v'|u) = {pe(vlt,u) ifu' = (tu) €E

and v' = (u,v) € E.

Finally, let us consider the map f : Ho(G) — (V')*
defined by:

for.vp) =vi...op,
with
vy =v; €V,
o o (8)
v) = (vi1,v;) €E, fori=2,...,n.

Then the following result, whose proof is postponed to
Appendix 7, holds:

Theorem 1 f is a bijection between Hy(G) and
H,(G"), and for any path h € Ho(G) we have

{Z(h) =U'(f(h))
p(h) = p'(f(h)).

We can immediately deduce the following

Corollary 1 For any two graphs G1 and G2, the ker-
nel (1) can be expressed in terms of the transformed
graphs G| and G by:

K (G1,G>)

= > pi(h)py(ho) K, (U'(hy), 1" (hs)) -
(W) E(V)* X (V)"
9)

This shows that computing the K(G1,G32) under the
2nd-order Markov model (3) for the random walk is

equivalent to computing a kernel between the trans-
formed graphs G| and G} under a lst-order Markov
random walk (7) which can be carried out as described
in section 2.3 with an increased complexity.

More precisely, if we let G' = (V', E') be the graph
resulting of the transformation of a graph G = (V, E),
then |V'| = |V| + |E|. Hence, the graph product
between two transformed graphs G| and GY may at
worst be of size (|Vi| + |E1|) x (|V2| + |Ez]|), which
raises the complexity of the kernel from O(|V;]|V2]) to
O((IVi] + B)(IVa| + | Ba]))-

5. Experiments

We tested both graph kernel extensions on two bench-
mark experiments of chemical compound classification
already used in Kashima et al. (2003). We parametrize
the 1st-order Markov random walk model by a single
parameter p, < 1 as follows. For any vertex v, we
set ps(v) = 1/|V| and py(v) = py < 1. For any pair
of vertices, we set p,(v|u) = 1/d(u) is (u,v) € E, 0
otherwise.

Similarly the 2nd-order Markov model (3) is defined as

follows. For any vertex v, ps(v) = 1/|V], p((lo) (v) = pqg,

and pgv) = 1if d(v) = 1, 0 otherwise. For any pair

(u,v), pa(v|u) = 1/d(u) is (u,v) € E, 0 otherwise.
Finally, for any vertices (u,v,w)), we set p,(u|w,v) =
1/(d(u) — 1) if (v,u) € E, 0 otherwise.

The main differences between the 1st- and 2nd-order
Markov models concern the functional p,(v), 1),(10)(1))7
and py(u|lw,v). Indeed we have to explicitly kill ran-
dom walks when reaching a node with only one neigh-
bor, except for the first step, because in this case, the
only possibility to continue the walk is to “totter” to
the previous node. The definition of p, (u|w, v) also re-
flects the modification required to prevent totters: the
number of possible edges to follow from a node v is
only d(v) — 1, because one edge has already been used
to reach v.

The experiments described below are classification ex-
periments, that we carried out with a support vector
machine based on the different kernels tested. Each
kernel was implemented in C++, and we used the
free and publicly available GIST! implementation of
SVMs.

5.1. MUTAG dataset

We tested the graph kernel extensions on the MUTAG
dataset (Debnath et al., 1991), which contains 230
chemical compounds (aromatic and heteroaromatic ni-

"http://microarray.cpmc.columbia.edu/gist

tro compounds) tested for mutagenicity on Salmonella
typhimurium. We focused on the possibility to infer
mutagenicity on a subset of 188 compounds consid-
ered to be amenable to classification by Debnath et al.
(1991), split into 125 positive examples (positive levels
of log mutagenicity) and 63 negative examples. Each
chemical compound is represented as a graph with
atoms as vertices and covalent bonds as edges. We
evaluate each kernel by the leave-one-out error.

1st- and 2nd-order model comparison: We first
compared the classification accuracy of the graph ker-
nels corresponding to the 1st- and 2nd-order Markov
random walks, for different values of p,. Results are
shown in Table 1, where we observe that the change
from a 1st- to a 2nd-order Markov model has no sig-
nificant effect on the success rates (89.9% to 90.4%
accuracy). The best perfomance is however reached at
a higher value of p, for the 2nd-order Markov model,
which suggests that shorter path information is used
in this case.

Augmented vertex labels: Table 2 shows classi-
fication results using the original random walk model
and different iterations of the Morgan index. Interest-
ingly, success rates increase for the first 2 or 3 itera-
tions of the Morgan algorithm and decrease afterward.
We can also note that after the 10th iteration, success
rates stay steady. A careful inspection of the kernel
values show that after the 10th iteration or so, only
similar structures have non-zero kernel values in this
dataset. This does not mean that the kernel is diago-
nal, because molecules might have the same structure
with different atoms at some positions. On the other
hand, Figure 3 shows the computation time to com-
pute the kernel Gram matrices with various Morgan
indices. As expected, a drastic decrease is observed at
each iteration of the Morgan index. For example, the
time is reduced by a factor of 240 after two iterations.

New random walk model with augmented ver-
tex labels: Finally, Table 3 shows classification re-
sults obtained from the combination of the 2nd-order
random walk model together with Morgan index de-
scription of molecules. We note that the introduction
of the Morgan index using the second order Markov
model enables to increase classification accuracy, but
results do not get higher than those presented in Table
2.

5.2. PTC data set

The Predictive Toxicology Challenge (Toivonen et al.,
2003) data is a dataset of molecules dealing with

Probability p, 01 | 04 | 0.7
1st-order model | 89.9 | 88.8 | 87.2
2nd-order model | 88.8 | 90.4 | 87.2

Table 1. Classification results (in percents) for the MU-
TAG dataset using different random walk models

| Probability p, [01]04] 07]
Original accuracy | 89.9 | 88.8 | 87.2
1st iteration 91 | 894 | 894
2nd iteration 91 | 89.9 | 90.4
3rd iteration 88.3 | 91 | 904
4th iteration 86.7 | 87.2 | 87.2
5th iteration 86.2 | 87.8 | 88.3
6th iteration 81.4 | 85.6 | 86.2
7th iteration 76.6 | 81.4 | 81.4
8th iteration 75.5 | 77.1 | 79.8
9th iteration 75 | 76.1 | 75.5
10th iteration 74.5 | 75 75.5
11 - 20th iteration | 74.5 | 74.5 | 74.5
Table 2. Classification results (in percents) for the MU-

TAG dataset introducing different Morgan indices in the
labeling of atoms.

T T T T T T T T
— MUTAG
1 PTC

time)/(Original

0 2 1‘1 ‘S ‘8 1‘0 1‘2 1‘4 1‘6 I‘E 20
Morgan index iteration
Figure 3. Computation times using different iterations of

the Morgan Index process for MUTAG and PTC datasets
(the y-axis is on a log-scale).

Probability p, | 0.1 | 04 | 0.7
1st iteration 88.8 | 90.4 | 89.4
2nd iteration 89.9 | 89.9 | 90.4

Table 3. Classification results (in percents) for the MU-
TAG dataset using second order random walk Markov
model together with Morgan index description of
molecules.

65

60 [\‘

55

ROC area

,)
50H \ I AP \ |

40 . L
[2 4 6 8 10 12 14 16 18 20
Morgan process iteration
Figure 4. ROC area evolution with introduction of the
Morgan index for different values of p, in the PTC dataset,
Female Rats

carcinogenicity. It is made of a training set (417
molecules) and a test set (184 molecules) gathering
results of carcinogenicity tests clinically performed on
different rodents (namely male mice, female mice, male
rats and female rats). A standard training/test proce-
dure thus enables to build four predictive models.

By lack of space we just show the effect of using the
Morgan index on time and classification accuracy. As
for the MUTAG dataset, the computation time of the
kernel significantly decreases with each iteration of the
Morgan index (figure 3). Performance, measured by
the normalized area under the ROC curve plotting the
number true positives as a function of false positives
(Gribskov & Robinson, 1996), is shown in figure 4 for
different Morgan index iterations and different values
of py. This dataset is known to be difficult, and values
around 50 indicate that the performance is not better
than a random classifier. We observe that the best
performances are obtained after 8 — 10 iterations of
the Morgan index computation. This contrasts with
the results obtained with the MUTAG dataset (where
the best results are obtained after 2-3 iterations). A
careful analysis of the kernel matrices show that on
the PTC dataset, the kernel entries stop varying af-
ter about 12 iterations. At 9 iterations, about 3%
of the kernel Gram matrix (apart from the diagonal)
are non-zero, corresponding to strong graph similarity.
This suggests that on this particular dataset, known
to be difficult to classify, the best results are obtained
when only close similarity between graph is used in the
inference process.

6. Discussion

We proposed two modifications of the graph kernel by
Kashima et al. (2003). The vertex label enrich-
ment could only slightly improve classification accu-
racy, while drastically reducing the computing time.
This performance in calculation speed opens the way
to use kernel methods on large databases of graphs like
chemical databases. For drug design applications for
instance, the databases to be analyzed usually consist
of several hundred thousand of molecules, and compu-
tation aspects are of crucial importance.

On the other hand, these experiments reveal that an
optimal iteration of the process is to be found in re-
lation with the data considered. When this optimal
iteration is not met, patterns are either not specific
enough (for few iterations), or too specific (for many it-
erations) to best detect the similarity between graphs.
The fact that this number is different for MUTAG and
PTC (the 2nd or 3rd iteration for MUTAG, and 8-
10th for PTC) is probably due to the different na-
ture of these datasets : MUTAG is a considered a
“simple” dataset, where features such as short paths
are known to be relevant, while PTC is a “difficult”
dataset (Toivonen et al., 2003), where toxicity can only
be inferred locally between very similar molecules.

Removing totters from random walks did not im-
prove classification performance uniformly. At small
end probability (p,) the classification performance was
reduced compared to the original random walk model.
At higher p, however, the new random walk model
increased performance compared to the original ran-
dom walk model. At high p,, paths are shorter and
totters may represent a relatively high proportion of
the random walks. The elimination of totters in these
short paths may explain the increased classification
performance. At lower p,, on the other hand, random
walks are longer on average, so that totters might not
represent a large proportion of the random walks. In
these longer paths, removing totters might underepre-
sent important local features in molecules and lead to
the reduced classification performance observed. The
new random walk model, while it did not generally
increase classification performance for the MUTAG
dataset, might prove very useful in classification prob-
lems where small subgraphs are important for graph
classification.

As a conclusion, it is worth observing that the results
presented in this paper compare favorably to several
state-of-the-art algorithms presented in (King et al.,
1996) based on a vectorization of molecules via molec-
ular descriptors, as summarized in table 4.

Future work will focus on studying different label en-

Lin. Reg.
89.3%

I.L.P.
87.8%

Decision Trees
88.3%

Neural Nets
89.4%

Table 4. Classification results (in percents) for the MU-
TAG dataset using different algorithms. Results taken
from (King et al., 1996)

richment schemes, either by different classical graph
indices or by introducing chemical knowledge in the
general kernel formulation in order to define a specific
molecular kernel. We can for instance take into ac-
count the different types of atoms to define a more
powerful label kernel K, in equation (1), and replace
the uniform random walk model so that it stresses the
influence of rare, or a priori relevant atoms.

7. Appendix: Proof of Theorem 1

For any path h = wvi...v, € Hy(G), let
f(h) = vi...v), defined by (8). By definition (5),
(’017“5) = (Ula(UhU?)) € El: and (’%7“24—1) =
((vie1,vi), (vi,vit1)) € E' because viy1 # vi—1 for
i > 1. Hence f(h) is a path in G'. Moreover v| € V
and v} € E by (8), hence f(h) € H1(G") by (6).

Conversely, for any h' = v} ...v], € H;(G'), we have
v} = v; € V and by easy induction using the definition
of edges (5), vi = (vi—1,v;) € E with v;_1 # vi11.

2

Hence b’ = f(h) with h = v ... v, € Ho(QG), therefore
f is surjective. By definition of f (8), it is also clear
that f(h) = f(h') = h = h'. f is therefore a bijection
from Hy(G) onto Hy(G").

By definition of the labeling I’ on G’, we obtain for
any h =wv1,...,v, € Ho(G):

ll(f(h)) =10 (’1)1, (’1)1,1)2), LR (Un*bvn))
= l(v)l(va) ... 1(vy) = U(h).
We also obtain, from the definition of p’:

pl(f(h)) = pl (Ul; ('1)1,1)2), R ('l)n_l,’l)n))
= p,(v1)p; ((v1,v2) v1)

17} (i1, 0| (vi2,vi-1))

i=3
= ps(v1)pe(v2v1) Hpt (vilvie2,vi—1)
i=3
=p(h) O
Acknowledgments

We thanks anonymous reviewers for several comments
that improved the clarity of the manuscript. This

work was supported by a SAKURA grant to promote
French-Japanese collaborations.

References

Debnath, A. K., de Compadre, R. L. L., Debnath, G.,
Schusterman, A., & Hansch, C. (1991). Structure-
activity relationship of mutagenic aromatic and
heteroaromatic nitro compounds. correlation with
molecular orbital energies and hydrophobicity. Jour-
nal of Medicinal Chemistry, 786-797.

Gértner, T., Flach, P., & Wrobel, S. (2003). On
graph kernels: Hardness results and efficient alter-
natives. Proc. of the Sizteenth Annual Conference
on Computational Learning Theory and the Seventh
Annual Workshop on Kernel Machines. Heidelberg:
Springer-Verlag.

Gribskov, M., & Robinson, N. L. (1996). Use of re-
ceiver operating characteristic (ROC) analysis to
evaluate sequence matching. Computers and Chem-
istry, 20, 25-33.

Kashima, H., Tsuda, K., & Inokuchi, A. (2003).
Marginalized kernels between labeled graphs. Pro-

ceedings of the Twentieth International Conference
on Machine Learning (pp. 321-328). AAAI Press.

King, R. D., Muggleton, S. H., Srinivasan, A., &
Sternberg, M. J. E. (1996). Structure-activity re-
lationships derived by machine learning: The use of
atoms and their bond connectivities to predict mu-
tagenicity by inductive logic programming. Proc.
Natl. Acad. Sci. USA, 93, 438-442.

Morgan, H. (1965). The generation of unique machine
description for chemical structures - a technique de-
velopped at chemical abstracts service. Journal of
Chemical Documentation, 107-113.

Scholkopf, B., & Smola, A. J. (2002). Learning with
kernels. Cambridge, MA, MIT Press.

Smola, A., & Kondor, I. (2003). Kernels and regular-
ization on graphs. Learning Theory and Kernel Ma-
chines: 16th Annual Conference on Learning Theory
and Tth Kernel Workshop, Colt/Kernel 2003 (pp.
144-158). Springer.

Toivonen, H., Srinivasan, A., King, R. D., Kramer, S.,
& Helma, C. (2003). Statistical evaluation of the
predictive toxicology challenge 2000-2001. Bioinfor-
matics, 19, 1183-1193.

Tsuda, K., Kin, T., & Asai, K. (2002). Marginalized
kernels for biological sequences. Bioinformatics, 18,
S268-5275.

