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PURPOSE. To classify healthy and glaucomatous eyes using rel-
evance vector machine (RVM) and support vector machine
(SVM) learning classifiers trained on retinal nerve fiber layer
(RNFL) thickness measurements obtained by scanning laser
polarimetry (SLP).

METHODS. Seventy-two eyes of 72 healthy control subjects (av-
erage age � 64.3 � 8.8 years, visual field mean deviation �
�0.71 � 1.2 dB) and 92 eyes of 92 patients with glaucoma
(average age � 66.9 � 8.9 years, visual field mean deviation �
�5.32 � 4.0 dB) were imaged with SLP with variable corneal
compensation (GDx VCC; Laser Diagnostic Technologies, San
Diego, CA). RVM and SVM learning classifiers were trained and
tested on SLP-determined RNFL thickness measurements from
14 standard parameters and 64 sectors (approximately 5.6°
each) obtained in the circumpapillary area under the instru-
ment-defined measurement ellipse (total 78 parameters). Ten-
fold cross-validation was used to train and test RVM and SVM
classifiers on unique subsets of the full 164-eye data set and
areas under the receiver operating characteristic (AUROC)
curve for the classification of eyes in the test set were gener-
ated. AUROC curve results from RVM and SVM were compared
to those for 14 SLP software-generated global and regional
RNFL thickness parameters. Also reported was the AUROC
curve for the GDx VCC software-generated nerve fiber indica-
tor (NFI).

RESULTS. The AUROC curves for RVM and SVM were 0.90 and
0.91, respectively, and increased to 0.93 and 0.94 when the
training sets were optimized with sequential forward and back-
ward selection (resulting in reduced dimensional data sets).
AUROC curves for optimized RVM and SVM were significantly
larger than those for all individual SLP parameters. The AUROC
curve for the NFI was 0.87.

CONCLUSIONS. Results from RVM and SVM trained on SLP RNFL
thickness measurements are similar and provide accurate clas-
sification of glaucomatous and healthy eyes. RVM may be
preferable to SVM, because it provides a Bayesian-derived prob-
ability of glaucoma as an output. These results suggest that
these machine learning classifiers show good potential for
glaucoma diagnosis. (Invest Ophthalmol Vis Sci. 2005;46:
1322–1329) DOI:10.1167/iovs.04-1122

Scanning laser polarimetry (SLP) is an optical imaging tech-
nique used to measure retinal nerve fiber layer (RNFL)

thickness that has been successfully applied to glaucoma diag-
nosis.1–9 Like other optical imaging technologies, such as con-
focal scanning laser ophthalmoscopy (CSLO) and optical co-
herence tomography, SLP imaging results in a large number of
measurement parameters that can be difficult for the clinician
to interpret. To aid in clinical interpretation, the newest gen-
eration SLP includes a summary parameter called the Nerve
Fiber Indicator (NFI), developed using a machine learning
classifier, the support vector machine (SVM).10,11 Several stud-
ies have demonstrated superior diagnostic performance using
the NFI, compared with individual standard parameters.4,5 In
addition, studies have demonstrated superior diagnostic per-
formance of SVM classification, compared with individual pa-
rameters and statistical classifiers, with other glaucoma testing
modalities.12,13

A related machine learning classifier, the relevance vector
machine (RVM), recently has been introduced,14,15 which,
unlike SVM, incorporates probabilistic output (probability of
class membership, e.g., probability of glaucoma) through
Bayesian inference. Its decision function depends on fewer
input variables than SVM, possibly allowing better classifica-
tion estimates for small data sets with high dimensionality (i.e.,
a large number of input variables).15 In the present study we
compared the performance of RVM and SVM for classifying
eyes as healthy or glaucomatous using SLP data.

METHODS

Subjects

This observational cross-sectional study included one randomly se-
lected eye from each of 164 study participants (92 patients with
glaucoma and 72 healthy controls) enrolled in the University of Cali-
fornia, San Diego, Diagnostic Innovations in Glaucoma Study (DIGS).

Each study participant underwent a comprehensive ophthalmic
evaluation, including review of medical history, best-corrected visual
acuity testing, slit-lamp biomicroscopy, intraocular pressure measure-
ment with Goldmann applanation tonometry, gonioscopy, dilated fun-
dus examination with a 78-D lens, simultaneous stereoscopic optic disc
photography (TRC-SS; Topcon Instruments Corp. of America, Paramus,
NJ), and standard automated perimetry (SAP) with the 24-2 Swedish
Interactive Threshold Algorithm (SITA; Humphrey Field Analyzer II;
Carl Zeiss Meditec, Dublin, CA). To be included in the study, partici-
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pants had to have a best-corrected acuity better than or equal to 20/40,
spherical refraction within �5.0 D, cylinder correction within �3.0 D,
and open angles on gonioscopy. Eyes with coexisting retinal disease,
uveitis, or nonglaucomatous optic neuropathy were excluded.

For labeling eyes during classifier training, glaucomatous eyes were
defined as those with repeatable (two consecutive) SAP results outside
normal limits by pattern standard deviation (PSD; P � 5%) or Glaucoma
Hemifield Test (GHT). The first abnormal SAP was on or before the
imaging date. Neither optic disc appearance nor intraocular pressure
was part of the inclusion criteria for the glaucoma group. Average SAP
mean deviation (MD) of the glaucomatous eyes was �5.32 � 4.0 dB
(range, �20.14 to �0.26 dB). According to the scale of Hodapp et al.16

for glaucoma severity, 54 (59%) patients had early, 24 (26%) had
moderate, and 14 (15%) had severe visual field defects. The mean age
of the patients with glaucoma was 66.9 � 8.9 years (range, 48.7–85.9).

Healthy eyes were defined as those with healthy-appearing optic
discs on clinical examination, SAP results (MD, PSD, GHT) within
normal limits, and no history of intraocular pressure � 22 mm Hg.
Average SAP MD of the healthy eyes was �0.71 � 1.22 dB (range,
�3.92–1.87 dB) and was significantly different from that of healthy
eyes (t-test, P � 0.001). The mean age of the healthy participants was
64.3 � 8.8 years (range, 48.2–86.8) and was similar to that of the
patients with glaucoma (t-test, P � 0.07).

This research adhered to the tenets of the Declaration of Helsinki.
Informed consent was obtained from each participant, and the Univer-
sity of California, San Diego, Human Research Protection Program
approved all methodology.

Scanning Laser Polarimetry

Study participants underwent ocular imaging with the commercially
available SLP with variable corneal compensation, the GDx VCC (soft-
ware version 5.01; Laser Diagnostic Technologies, San Diego, CA).
Scanning laser polarimetry measures the retardation of light reflected
from the birefringent RNFL fibers and provides an estimated RNFL
thickness based on the linear relationship between observed retarda-
tion, measured using a prototype instrument, and RNFL thickness,
determined histologically.17 Details of this technique have been de-
scribed previously.18,19 Because corneal polarization axis and magni-
tude effect SLP measurements and are not similar across eyes,20,21 the
GDx VCC employs a variable corneal polarization compensator that
allows eye-specific compensation. After determining the axis and mag-
nitude of corneal polarization in each eye by macular scanning,22 three
appropriately compensated retinal polarization images per eye were
automatically obtained and combined, to form each mean image used
for analysis. Only well-focused, evenly illuminated, and centered scans
with residual anterior segment retardation �15.0 nm and atypical scan
scores �25, determined by GDx VCC software, were included (cutoffs

suggested by written communication, Michael Sinai, PhD, Laser Diag-
nostic Technologies, June 2004). The atypical scan score indicates the
presence of atypical patterns of retardation that can generate spurious
RNFL thickness measurements.

We trained the machine learning classifiers on RNFL thickness
measurements from 14 standard RNFL measurements (described in
detail elsewhere5; Table 1) in addition to RNFL thickness measure-
ments from 64 sectors (approximately 5.6° each) obtained in the
circumpapillary area under the instrument-defined measurement el-
lipse (total, 78 parameters). Sector 1 was located temporally, with
sectors 16 and 48 located superiorly and inferiorly, respectively (i.e.,
results were normalized to a right eye). These measurements were
determined automatically by GDx VCC software ver. 5.01. We also
conducted a subanalysis in which only the 64 sectoral RNFL thickness
measurements were included in the machine learning classifier train-
ing set to determine which RNFL sectors were most important for
classifying eyes as healthy or glaucomatous in our sample.

Machine Classifiers

SVM10,11 is a machine classification method that directly minimizes the
classification error without requiring a statistical data model. This
method is popular because of its simple implementation and consis-
tently high classification accuracy when applied to many real-world
classification situations. The SVM algorithm can be applied to both
classification and regression (model fitting) problems. In classification,
an SVM classifier can separate data (e.g., SLP results from healthy and
glaucomatous eyes) that are not easily separable in the original data
space (i.e., two-dimensional x, y) by mapping data into a higher
dimensional (transformed) space. SVM uses a kernel function to find a
hyperplane that maximizes the distance (margin) between the two
classes (e.g., healthy versus glaucomatous eyes), while minimizing
training error.21 The resultant model is sparse, depending on only a
few training samples (the “support vectors”). The number of support
vectors increases linearly with the available training data,15 requiring
much higher computational complexity when classifying very large
data sets (e.g., tens or hundreds of thousands of input variables). SVMs
have been used by us and others for various clinical medicine classifi-
cation applications including (but not limited to) detecting12,13,23,24

and predicting25 glaucoma, detecting central auditory processing dis-
order,26 detecting seizure onset,27 and detecting28 and characterizing29

breast lesions.
The SVM was implemented by using Platt’s sequential minimal

optimization algorithm in commercial software (MatLab, ver. 5.0; The
MathWorks, Natick, MA). For classification of the SLP data, Gaussian
(nonlinear) kernels of various widths were tested, and a Gaussian
kernel with width � �(2 � number of input variables) was chosen
that gave the highest area under the receiver operating characteristic

TABLE 1. RNFL Thickness Measurements for Healthy and Glaucomatous Eyes for All SLP Parameters

SLP Parameter Healthy Glaucoma P

NFI 20.6 (7.8) 47.0 (22.3) � 0.0001
Normalized Inferior area (�m2) 0.132 (0.024) 0.089 (0.030) � 0.0001
Inferior RNFL thickness (�m) 60.6 (8.0) 48.0 (10.0) � 0.0001
RNFL thickness standard deviation 21.1 (4.0) 15.2 (4.9) � 0.0001
Average RNFL thickness (�m) 52.9 (4.5) 45.0 (7.5) � 0.0001
Inferior ratio 3.29 (1.16) 2.22 (0.92) � 0.0001
Superior ratio 3.17 (1.00) 2.20 (0.92) � 0.0001
Normalized superior area (�m2) 0.127 (0.020) 0.095 (0.036) � 0.0001
Superior RNFL thickness (�m) 64.6 (6.5) 53.4 (12.1) � 0.0001
Maximum modulation 2.50 (1.06) 1.65 (0.93) � 0.0001
Superior maximum (�m) 74.0 (7.8) 63.0 (13.7) � 0.0001
Inferior maximum (�m) 76.8 (11.2) 63.7 (14.2) � 0.0001
Ellipse modulation 3.85 (1.42) 2.70 (1.28) � 0.0001
Superior/nasal ratio 2.33 (0.50) 2.06 (0.68) 0.01
Symmetry 0.98 (0.12) 1.01 (0.24) 0.219

Data are the mean (�SD).
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(AUROC) curve using 10-fold cross-validation. The penalty for error/
margin tradeoff C was 1.0.

Because SVM does not model the data distribution, but instead
directly minimizes the classification error, the resultant output is a
binary decision. Although a binary decision is sufficient for many
applications, it is difficult to arrive at a meaningful disease-versus-no
disease cutoff for glaucoma. This concern can be alleviated with a new
machine learning classifier, the RVM.14,15 The RVM has the same
functional form as the SVM within a Bayesian framework. This classifier
is a sparse Bayesian model that provides probabilistic predictions (e.g.,
probability of glaucoma based on the training examples) through
Bayesian inference.15 Its decision function depends on fewer input
data (i.e., more sparse) than a comparable SVM, because SVM mini-
mizes the training error under the constraint of maximum smoothness,
requiring more decision points.14 The benefit of a sparser classifier is
that its results are more generalizable (i.e., it decreases overfitting).
RVM predications are more reliable than SVM predictions because they
are directly generated through Bayesian inference, whereas SVM can
provide pseudoprobabilistic outputs (i.e., between 0 and 1.0) only
through postprocessing. In classification, RVM outputs probabilities of
class membership rather than point estimates like SVM. This provides
a conditional distribution that allows the expression of uncertainty in
the prediction.30 A Medline search indicates that the RVM has not been
applied to clinical data.

The RVM was implemented using a commercially available algo-
rithm (SparseBayes ver. 1.0; Microsoft Research, Cambridge, UK, for
MatLab, The MathWorks). For classification of the SLP data, a Gaussian
kernel with width � �(2 � number of input variables) was chosen
because it gave the highest AUROC curve with 10-fold cross-validation.

Analyses

AUROC curves for classifying eyes as healthy or glaucomatous were
determined for each machine learning classification technique and
each individual parameter automatically provided by the GDx VCC
software (Table 1). Significant differences in AUROC curves among

RVM, SVM, and all individual parameters were determined by using the
method of DeLong et al.31 We also reported classification results of the
GDx VCC NFI, but did not compare these results to the other machine
learning classifier results, because we thought such a comparison was
somewhat biased (see the Discussion section).

Training and Testing Machine
Learning Classifiers

Ten-fold cross-validation was used to train and test RVM and SVM
classifiers to avoid training and testing on the same data. First, glauco-
matous and healthy eyes were randomly divided into 10 approximately
equal, exhaustive, and mutually exclusive subsets. Next, classifiers
were trained on 9 subsets and subsequently tested on the 10th subset.
This sequence was repeated 10 times, with each subset serving as the
test set one time, so that each tested eye was never part of its training
set and was tested only once. The test results from 164 eyes were then
used to plot the bias-corrected ROC curve. Sensitivities at 75% and 90%
specificities, arbitrarily chosen to represent moderate and high speci-
ficity, respectively, also were reported, although these values can be
estimated from visual inspection of ROC curves.

As the dimensionality of the data sets (number of parameters) is
relatively large but the size of the data sets (number of observations) is
relatively small, we used sequential forward selection and backward
elimination to reduce the data dimension to alleviate the “curse of
dimensionality” (reduced classifier performance caused by the forced
inclusion of irrelevant parameters in the solution set).30 For the sake of
simplicity, for RVM these techniques were performed using RVM and
for SVM these techniques were performed using SVM, although RVM
can be optimized using SVM and vice versa. For forward selection, we
started with an empty feature set and sequentially added parameters
that improved the performance of the feature set the most, until peak
performance (e.g., highest AUROC curve after which inclusion of
additional parameters decreased the AUROC curve) was reached. For
backward elimination, we started with the full-dimensional feature set

TABLE 2. AUROC Curves and Sensitivities at Fixed Specificities for Classifying Eyes as Healthy or
Glaucomatous for All Techniques and Parameters

Technique
AUROC

Curve � SE

Sensitivity at 75%
Specificity

(%)

Sensitivity at 90%
Specificity

(%)

Optimized RVM (forward) 0.92 � 0.02 87 77
Optimized RVM (backward) 0.93 � 0.02 92 84
Optimized SVM (forward) 0.94 � 0.02 92 77
Optimized SVM (backward) 0.94 � 0.02 90 76
Optimized 64 sector RVM (forward) 0.92 � 0.02 91 75
Optimized 64 sector RVM (backward) 0.94 � 0.02 92 84
Optimized 64 sector SVM (forward) 0.94 � 0.02 92 84
Optimized 64 sector SVM (backward) 0.94 � 0.02 90 81
RVM 0.90 � 0.02 83 79
SVM 0.91 � 0.02 85 76
RVM 64 sector 0.91 � 0.02 84 79
SVM 64 sector 0.91 � 0.02 86 74
NFI 0.87 � 0.03 85 66
Normalized inferior area 0.87 � 0.03 79 56
Inferior RNFL thickness 0.84 � 0.03 79 52
RNFL thickness standard deviation 0.83 � 0.03 81 44
Average RNFL thickness 0.81 � 0.03 70 61
Inferior ratio 0.80 � 0.03 69 50
Superior ratio 0.79 � 0.04 74 40
Normalized superior area 0.79 � 0.04 71 22
Superior RNFL thickness 0.78 � 0.04 71 56
Maximum modulation 0.76 � 0.04 68 33
Superior maximum 0.75 � 0.04 65 21
Inferior maximum 0.75 � 0.04 61 29
Ellipse modulation 0.74 � 0.04 64 33
Superior/nasal ratio 0.65 � 0.05 42 15
Symmetry 0.51 � 0.05 36 22
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(e.g., 78 RNFL thickness measurements) and sequentially deleted the
parameters that improved the performance of the feature set the most,
until performance began to decline.

Similar to using 10-fold cross-validation to minimize bias in the
testing and training of the full-dimension RVM and SVM, we used
cross-validation to minimize bias in the test sets used during the
process of optimizing the feature sets. The data were randomly divided
into five approximately equal-sized subsets. Four of the five subsets
were used as feature-selection sets to determine the optimized feature
set, selected based on the maximum AUROC curve when using 10-fold
cross-validation. The optimized feature set was then trained on the
initial four subsets, resulting in a single classifier. Next, this classifier
was tested on the remaining single subset, and a bias-corrected AUROC
curve was generated. This sequence was repeated five times, with each
partition serving as the test set one time, resulting in five unbiased
estimates of the AUROC curve. This technique for optimization is
discussed in greater detail elsewhere.24

Several optimized feature sets were investigated for RVM and SVM
using both the full data set (i.e., 78 RNFL thickness measurements) and
the sector-only data set (i.e., 64 sectoral RNFL thickness measure-
ments). However, we report only results from the optimized feature
set for each technique that resulted in the largest AUROC curve.

RESULTS

Table 1 compares the mean values for each individual SLP
parameter between healthy and glaucomatous eyes. Statisti-
cally significant differences were found for all parameters ex-
cept symmetry (t-test, P � 0.219).

ROC Curve Areas and Sensitivities

AUROC curves for nonoptimized RVM and SVM trained using
the full (78 RNFL thickness measurements) data set were 0.90
and 0.91, respectively. AUROC curves for nonoptimized RVM
and SVM, trained using the sector-only (64-dimensional) data
set, were both 0.91. AUROC curves for individual SLP param-
eters ranged from 0.51 (for symmetry) to 0.87 (for normalized
inferior area). The AUROC curves for all individual SLP param-
eters, except for normalized inferior area, were significantly
lower than AUROC curves for RVM and SVM analysis of RNFL
thickness (method of DeLong et al.,31 P � 0.01; Table 2). The
AUROC curve for the NFI was 0.87 and was significantly higher
than the AUROC curves for all other individual RNFL measure-
ments (method of DeLong et al., P � 0.01) except for normal-
ized inferior area (0.87) and inferior RNFL thickness (0.84).

When RVM and SVM trained on the full data set were
optimized using forward and backward selection, AUROC
curves ranged from 0.92 (RVM forward selection) to 0.94 (SVM
forward selection and SVM backward selection). AUROC
curves for the best optimized techniques were significantly
larger than those for the nonoptimized techniques (method of
DeLong et al., all P � 0.03) ROC curves for the “best” opti-
mized RVM and SVM, nonoptimized RVM and SVM, and nor-
malized inferior area are shown in Figure 1.

Sensitivities at 75% specificity were 83% for RVM and 85%
for SVM (Table 2). These values improved to 92% for both
optimized RVM and SVM. Sensitivity at 75% specificity for
global RNFL thickness measurements ranged from 36% (sym-

FIGURE 1. ROC curves for “best”
optimized RVM, “best” optimized
SVM, full-dimensional RVM, full-di-
mensional SVM, and normalized infe-
rior area. AUROC curves are shown
in parentheses.
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metry) to 81% (RNFL thickness SD). Sensitivity at 75% speci-
ficity of the NFI was 85%.

Sensitivities at 90% specificity were 79% for RVM and 76%
for SVM (Table 2). These values improved to 84% and 77% for
optimized RVM and SVM, respectively. Sensitivity at 90% spec-
ificity for global RNFL thickness measurements ranged from
15% (superior-to-nasal ratio) to 61% (average RNFL thickness).
Sensitivity at 90% specificity of the NFI was 66%.

Best RNFL Sectors Determined by Optimization

To determine what individual RNFL sectors are most informa-
tive for classifying healthy and glaucomatous eyes in our sam-
ple, we determined the “best” reduced-dimensional data sets
(defined as those with the largest AUROC curves) by optimiz-
ing the sector-only data set (i.e., 64 sector RNFL thickness
measurements) using RVM and SVM with forward and back-
ward selection. Results are shown in Table 3. In all cases the
highest ranked sectors were those in the inferior temporal

circumpapillary quadrant. A significant number of sectors in
the superior temporal and superior nasal quadrants also were
identified. However, only two sectors in the inferior nasal
quadrant were identified.

Relevance Vector Machine Probabilistic Results

RVM output is in the form of a probability of belonging to the
glaucoma group of the training set. Average mean RVM output
was 0.22 (22%) for healthy eyes and 0.81 (81%) for glaucoma-
tous eyes (t-test, P � 0.001). Figure 2 shows the number of
healthy and glaucomatous eyes that fell into each 10% proba-
bility bin based on RVM output. Of the healthy eyes, 84.6%
were assigned a probability of glaucoma under 51%, and of the
glaucomatous eyes, 85.8% were assigned a probability of glau-
coma over 50%, although there was significant overlap be-
tween the groups. Figures 3 and 4 show clinical examples of
this overlap.

Figure 3 shows GDx VCC retardation images from three
healthy eyes assigned the probabilities of 0.01 (A), 0.48 (B),
and 0.92 (C), respectively, by RVM. (Eyes were selected as
closest to 0.0, 0.5, and 1.0 probabilities, respectively). These
eyes all had normal SAP results by definition. Eye (A) had a SAP
MD of �0.13 dB and a PSD of 1.70 dB. GDx VCC NFI output
was 9, suggesting a very low likelihood of glaucomatous dam-
age. Eye (B) had a SAP MD of 0.10 dB and a PSD of 1.56 dB.
GDx VCC NFI output was 14, also suggesting a very low
likelihood of glaucomatous damage. Eye (C) had a SAP MD of
�1.58 dB and a PSD of 1.49 dB. GDx VCC NFI output was 36,
suggesting possible glaucomatous damage.

Figure 4 shows GDx VCC retardation images from three
glaucomatous eyes assigned the probabilities of 0.14 (A), 0.49
(B), and 0.99 (C). (Again, eyes were selected as closest to 0.0,
0.5, and 1.0 probabilities, respectively.) These eyes all had
abnormal SAP results by definition. Eye (A) had a SAP MD of
–4.41 dB and a PSD of 7.93 dB. GDx VCC NFI output was 26,
suggesting a low likelihood of glaucomatous damage. Eye (B)
had a SAP MD of �3.51 dB and a PSD of 3.09 dB. GDx VCC NFI
output was 22, also suggesting a low likelihood of glaucoma-
tous damage. Eye (C) had a SAP MD of �8.53 dB and a PSD of

TABLE 3. RNFL Thickness Sectors Included in Optimized Training
Sets for RVM and SVM Machine Learning Classifiers

RVM with
Forward
Selection

RVM with
Backward

Elimination

SVM with
Forward
Selection

SVM with
Backward

Elimination

Sector 51 (IT) Sector 52 (IT) Sector 52 (IT) Sector 53 (IT)
Sector 62 (IT) Sector 53 (IT) Sector 51 (IT) Sector 52 (IT)
Sector 53 (IT) Sector 62 (IT) Sector 60 (IT) Sector 60 (IT)
Sector 52 (IT) Sector 44 (IN) Sector 14 (ST) Sector 13 (ST)
Sector 7 (ST) Sector 59 (IT) Sector 27 (SN) Sector 62 (IT)
Sector 31 (SN) Sector 28 (SN) Sector 26 (SN) Sector 44 (IN)
Sector 13 (ST) Sector 6 (ST) Sector 28 (SN) Sector 22 (SN)
Sector 59 (IT) Sector 61 (IT) Sector 15 (ST) Sector 33 (IN)

Sector 60 (IT) Sector 5 (ST) Sector 51 (IT)
Sector 27 (SN) Sector 25 (SN) Sector 19 (SN)

Sector 57 (IT)
Sector 26 (SN)

Sector 1 is temporal, sector 16 is superior, and sector 46 is
inferior. RNFL quadrants corresponding to each sector also are shown.
IT, inferior temporal quadrant; IT, inferior temporal quadrant; SN,
superior nasal quadrant; ST, superior temporal quadrant.

FIGURE 2. Percentage of healthy or
glaucomatous eyes assigned by RVM
to each 10% probability bin. Of the
healthy eyes, 84.6% were assigned a
probability under 51%, and of glauco-
matous eyes, 85.8% were assigned a
probability over 50%.
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7.61 dB. GDx VCC NFI output was 98, indicating a very high
likelihood of glaucomatous damage.

DISCUSSION

Results in this study indicate that RVM and SVM classifiers,
trained on SLP RNFL thickness measurements, can improve on
standard software-provided SLP RNFL thickness measurements
for classifying eyes as healthy or glaucomatous. This improve-
ment is increased when optimization is used to select features
(i.e., a subset of RNFL parameters) that are likely to be the most
relevant for this classification. RVM performed as well as SVM
at this classification task (maximum AUROC curves, 0.93 and
0.94, respectively). The fact that RVM provides equal-interval,
probabilistic output based on Bayesian inference makes results
using this technique more informative than those with SVM,
which requires a nonlinear transformation to output values
between 0.0 and 1.0. These general results are likely to be
applicable to other glaucoma imaging technologies such as
CSLO and optical coherence tomography, although the likeli-
hood has not been thoroughly investigated (Goldbaum MH, et
al. IOVS 2002;43:ARVO E-Abstract 2137).

Probabilistic results from the RVM indicated that most of
the glaucomatous eyes fell within the 51% to 100% probability
range and most healthy eyes fell within the 0% to 50% range,

although some overlap was observed. Figures 3B and 3C may
suggest that SLP-trained RVM can detect eyes with normal SAP
results that have glaucomatous abnormalities detectable by
other diagnostic tests, although this suggestion is not conclu-
sive. The eye shown in Figure 3B, with a SAP MD of 0.10 dB
and PSD of 1.56 dB (i.e., normal result), was assigned a 48%
probability of belonging to the glaucoma group. At the time of
SLP imaging, this eye had an abnormal short-wavelength auto-
mated perimetry result with MD of �5.99 dB (P � 5%), PSD of
4.40 dB (within normal limits), and GHT result within normal
limits. However, Heidelberg Retina Tomograph (HRT II; Hei-
delberg Engineering, Dossenheim, Germany) Moorfields Re-
gression Analysis results were all within normal limits. The eye
shown in Figure 3C, with a SAP MD of �1.58 dB and PSD of
1.49 dB (normal result), was assigned a 92% probability of
belonging to the glaucoma group. At the time of SLP imaging,
this eye had a normal short-wavelength automated perimetry
result with MD of �2.60 dB (within normal limits), PSD of 4.40
dB (within normal limits), and GHT result within normal limits.
The Heidelberg Retina Tomograph Moorfields Regression Anal-
ysis of the superior nasal sector was assigned a borderline
result.

In the above cases, RVM probabilistic output can be used
clinically to help determine the posttest probability of disease.
If the output is greater than 50% (0.50), the probability of

FIGURE 3. Scanning laser polarimetry RNFL thickness maps from three eyes classified as normal based on
visual field results. Brighter colors represent a thicker RNFL. Eye (A) was assigned a 0.1% probability of
belonging to the glaucoma group by RVM analysis, with a SAP MD of �0.13 dB and a PSD of 1.70 dB. GDx
VCC NFI output was 9. Eye (B) was assigned a 48% probability of belonging to the glaucoma group by RVM
analysis, with a SAP MD of 0.10 dB and a PSD of 1.56 dB. GDx VCC NFI output was 14. Eye (C) was
assigned a 92% probability of belonging to the glaucoma group by RVM analysis, with a SAP MD of �1.58
dB and a PSD of 1.49 dB. GDx VCC NFI output was 36.

FIGURE 4. Scanning laser polarimetry RNFL thickness maps from three eyes classified as glaucomatous
based on visual field results (repeatable SAP Glaucoma Hemifield Test results outside normal limits and/or
PSD � 5%). Eye (A) was assigned a 14% probability of belonging to the glaucoma group by RVM analysis,
with a SAP MD of �4.41 dB and a PSD of 7.93 dB. GDx VCC NFI output was 26. Eye (B) was assigned a
49% probability of belonging to the glaucoma group by RVM analysis, with a SAP MD of �3.51 dB and a
PSD of 3.09 dB. GDx VCC NFI output was 22. Eye (C) was assigned a 99% probability of belonging to the
glaucoma group by RVM analysis with a SAP MD of �8.53 dB and a PSD of 7.61 dB. GDx VCC NFI output
was 98.
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having glaucoma is increased compared with the pretest prob-
ability. If the output is �50%, the probability of having glau-
coma is decreased.

Machine learning classifier analyses, using forward and
backward selection on sector-only RNFL thickness measure-
ments, were used to determine the RNFL sectors most essential
for classifying healthy and glaucomatous eyes in our sample.
We determined that sectors in the inferior temporal quadrant
were most important, followed by sectors in the superior
temporal and the superior nasal quadrants. In general, inferior
nasal sectors were not included. These results are in agreement
with results from other studies in which SLP, CSLO, or optical
coherence tomography were used, indicating that the inferior
temporal RNFL and neuroretinal rim are the most important
regions for discriminating between healthy and early-stage
glaucomatous eyes.24,32,33 The difference in the relative impor-
tance of superior nasal and inferior nasal quadrants for classi-
fying eyes as healthy or glaucomatous may be due, in part, to
the presence of split superior RNFL bundles in many eyes.34

Based on viewing many SLP images, we suspect that the effect
of split superior RNFL bundles is that the superior nerve fiber
bundle is displaced nasally in many eyes, thus increasing this
region’s importance in glaucoma discrimination.

The GDx VCC currently includes an SVM-based classifica-
tion parameter, the NFI. We did not compare our RVM or SVM
results directly with results from the NFI because we suspected
that the outcome of such a comparison would be biased in
favor of our RVM/SVM, because we trained and tested our
classifiers on very similar data sets. Both the training and
testing data sets were constrained by the selection criteria for
study inclusion, and each data set reflected the age, race, and
glaucoma severity characteristics of our clinic population,
which were not necessarily similar to that used to develop the
NFI. For instance, the mean age of our patients with glaucoma
was 66.9 � 8.9 years (range, 48–89). The mean age of the
patients with glaucoma included in the development the NFI
was similar (65.4 � 13.33 years), but the NFI data set included
10% of patients under the age of 46 years (Sinai M, Laser
Diagnostics Technologies, personal communication, June
2004). The mea SAP MD of patients in the present study was
–5.3 � 4.0 dB (range, –20.14 to �0.26). Although the mea SAP
MD of patients included in the development of the NFI was
similar (�5.42 � 6.11 dB), the range was greater than that in
our study (�31.57 to �2.81 dB; Sinai M, Laser Diagnostics
Technologies, personal communication, June 2004). These dif-
ferences in study population characteristics of the machine
classifier training sets would be likely to confound any direct
comparison between our techniques and the NFI.

Results for the NFI and other standard RNFL thickness
measurements are similar to those in other work reported from
our laboratory (using GDx VCC and a prototype instrument,
with similar inclusion criteria)4,5,8 and others. For instance,
Tannenbaum et al.35 reported AUROC curves for average, su-
perior, and inferior RNFL thicknesses of 0.81, 0.87, and 0.85,
respectively. The AUROC curve for superior thickness in their
study was higher than that reported in our study (0.78). This
may be a function of the inclusion in their study of more
advanced cases, suggested by the range of SAP MD to approx-
imately �30 dB, or by the presence of a larger number of
subjects with inferior visual field defects.

The current results, demonstrating that machine learning
classification techniques are superior to single parameters for
discriminating between healthy and glaucomatous eyes using
optical imaging technologies, support previously published
results on this topic.12,24 However, in prior publications on
this topic, CSLO data were used for machine learning classifier
training (with the exception of studies reporting results from
the standard software-provided machine learning classifiers

available with the current and previous versions of the com-
mercially available SLP).

Previous studies using back-propagated, multi-layer per-
ceptrons trained using global CSLO optic disc topography
parameters found good discrimination between normal and
glaucomatous eyes with a diagnostic precision of 80%36 and
92% (with an AUROC curve of 0.94).37 More recently, “bag-
ging” (boot-strap aggregating) classification trees, trained using
a large number of global and regional HRT parameters, showed
decreases in the normal versus glaucoma misclassification er-
ror, compared with linear discriminant functions.38,39 For in-
stance, reported misclassification was 15% using the bagged
classification tree, compared with approximately 20% for pre-
viously published linear discriminant analyses.38,39 In a study
similar to the current one, SVM trained on CSLO global and
regional topographic optic disc parameters were shown to
improve on multi-layer perceptron techniques and previously
published linear discriminant functions for differentiating be-
tween mild and moderate glaucoma.12 AUROC curves for non-
optimized neural network techniques ranged from 0.94 to
0.95, compared with 0.85 to 0.91 for statistic-based methods.
After forward selection and backward elimination were ap-
plied, the discriminating ability of the SVM increased signifi-
cantly to 0.97. These findings are similar to those from the
present study.

AUROC curve results from our machine learning classifier
techniques may be somewhat overestimated, because we used
cross-validation instead of truly independent training and test
sets. Although RVM and SVM were trained and tested on
different data, each data set was generated from the same
rather homogeneous pool. This fact may exaggerate somewhat
the differences in classification ability between RVM and SVM
and standard SLP RNFL thickness parameters, although we
were careful to employ cross-validation to separate training
and test sets at all steps in training, testing, and optimizing our
machine learning classifiers.

In addition, when using optimized techniques on sector-
only data to identify RNFL sectors that were most important for
discriminating between healthy and glaucomatous eyes, the
resultant measurement regions (i.e., RNFL sectors) may be
specific to the constraints of the early-to-moderate glaucoma
damage inclusion criterion of the present study. It is possible
that in more advanced glaucoma, or with a larger training set,
different sectors would be identified as most important for the
classification task. Our training set may have included more
examples of inferior temporal RNFL defects, than other de-
fects, because of the glaucoma severity investigated or because
of the size of the training set. This possibility suggests that the
development (training and testing) of different classifiers for
different degrees of glaucoma severity may be necessary. In
addition, a larger training set including more examples of
glaucomatous eyes is desirable.

Overall, our results showed that optimized RVM and SVM,
trained on SLP RNFL thickness measurements, classify glauco-
matous and healthy eyes more accurately than current soft-
ware-provided RNFL thickness measurements. These results
suggest that these machine learning classifiers show good po-
tential for glaucoma diagnosis. Moreover, results from rele-
vance vector machine analyses showed that most glaucoma-
tous eyes were assigned a high probability of being
glaucomatous, based on labeled training examples, and that
most healthy eyes were assigned a low probability of being
glaucomatous. RVM and SVM performed similarly at classifying
eyes as healthy or glaucomatous. Because RVM output pro-
vides a Bayesian-derived probability of glaucoma and SVM
output does not, RVM classifiers are likely to provide more
information than SVM classifiers for the diagnosis of glaucoma.
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