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72076 Tübingen, Germany

Editor: Leslie Pack Kaelbling

Abstract
Variable and feature selection have become the focus of much research in areas of appli-
cation for which datasets with tens or hundreds of thousands of variables are available.
These areas include text processing of internet documents, gene expression array analysis,
and combinatorial chemistry. The objective of variable selection is three-fold: improving
the prediction performance of the predictors, providing faster and more cost-effective pre-
dictors, and providing a better understanding of the underlying process that generated the
data. The contributions of this special issue cover a wide range of aspects of such problems:
providing a better definition of the objective function, feature construction, feature rank-
ing, multivariate feature selection, efficient search methods, and feature validity assessment
methods.
Keyw ords: Variable selection, feature selection, space dimensionality reduction, pat-
tern discovery, filters, wrappers, clustering, information theory, support vector machines,
model selection, statistical testing, bioinformatics, computational biology, gene expression,
microarray, genomics, proteomics, QSAR, text classification, information retrieval.

1 Introduction

As of 1997, when a special issue on relevance including several papers on variable and
feature selection was published (Blum and Langley, 1997, Kohavi and John, 1997), few
domains explored used more than 40 features. The situation has changed considerably in
the past few years and, in this special issue, most papers explore domains with hundreds to
tens of thousands of variables or features:1 New techniques are proposed to address these
challenging tasks involving many irrelevant and redundant variables and often comparably
few training examples.

1. We call ÒvariableÓthe ÒrawÓinput variables and ÒfeaturesÓvariables constructed for the input variables.
We use without distinction the terms ÒvariableÓand ÒfeatureÓwhen there is no impact on the selection
algorithms, e.g., when features resulting from a pre-processingof input variables are explicitly computed.
The distinction is necessaryin the caseof kernel methods for which features are not explicitly computed
(seesection 5.3).
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Two examples are typical of the new application domains and serve us as illustration
throughout this introduction. One is gene selection from microarray data and the other
is text categorization. In the gene selection problem, the variables are gene expression co-
efficients corresponding to the abundance of mRNA in a sample (e.g. tissue biopsy), for
a number of patients. A typical classification task is to separate healthy patients from
cancer patients, based on their gene expression “profile”. Usually fewer than 100 examples
(patients) are available altogether for training and testing. But, the number of variables
in the raw data ranges from 6000 to 60,000. Some initial filtering usually brings the num-
ber of variables to a few thousand. Because the abundance of mRNA varies by several
orders of magnitude depending on the gene, the variables are usually standardized. In the
text classification problem, the documents are represented by a “bag-of-words”, that is a
vector of dimension the size of the vocabulary containing word frequency counts (proper
normalization of the variables also apply). Vocabularies of hundreds of thousands of words
are common, but an initial pruning of the most and least frequent words may reduce the
effective number of words to 15,000. Large document collections of 5000 to 800,000 docu-
ments are available for research. Typical tasks include the automatic sorting of URLs into a
web directory and the detection of unsolicited email (spam). For a list of publicly available
datasets used in this issue, see Table 1 at the end of the paper.

There are many potential benefits of variable and feature selection: facilitating data
visualization and data understanding, reducing the measurement and storage requirements,
reducing training and utilization times, defying the curse of dimensionality to improve
prediction performance. Some methods put more emphasis on one aspect than another,
and this is another point of distinction between this special issue and previous work. The
papers in this issue focus mainly on constructing and selecting subsetsof features that are
useful to build a good predictor. This contrasts with the problem of finding or ranking all
potentially relevant variables. Selecting the most relevant variables is usually suboptimal
for building a predictor, particularly if the variables are redundant. Conversely, a subset of
useful variables may exclude many redundant, but relevant, variables. For a discussion of
relevance vs. usefulness and definitions of the various notions of relevance, see the review
articles of Kohavi and John (1997) and Blum and Langley (1997).

This introduction surveys the papers presented in this special issue. The depth of
treatment of various subjects reflects the proportion of papers covering them: the prob-
lem of supervised learning is treated more extensively than that of unsupervised learning;
classification problems serve more often as illustration than regression problems, and only
vectorial input data is considered. Complexity is progressively introduced throughout the
sections: The first section starts by describing Þlters that select variables by ranking them
with correlation coefficients (Section 2). Limitations of such approaches are illustrated by
a set of constructed examples (Section 3). Subset selection methods are then introduced
(Section 4). These include wrapper methods that assess subsets of variables according to
their usefulness to a given predictor. We show how some embedded methods implement the
same idea, but proceed more efficiently by directly optimizing a two-part objective function
with a goodness-of-fit term and a penalty for a large number of variables. We then turn
to the problem of feature construction, whose goals include increasing the predictor per-
formance and building more compact feature subsets (Section 5). All of the previous steps
benefit from reliably assessing the statistical significance of the relevance of features. We
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briefly review model selection methods and statistical tests used to that effect (Section 6).
Finally, we conclude the paper with a discussion section in which we go over more advanced
issues (Section 7). Because the organization of our paper does not follow the work flow of
building a machine learning application, we summarize the steps that may be taken to solve
a feature selection problem in a check list2:

1. Do you have domain kno wledge? If yes, construct a better set of “ad hoc”
features.

2. Are your features commensurate? If no, consider normalizing them.

3. Do you suspect in terdep endence of features? If yes, expand your feature set by
constructing conjunctive features or products of features, as much as your computer
resources allow you (see example of use in Section 4.4).

4. Do you need to prune the input variables (e.g. for cost, speed or data under-
standing reasons)? If no, construct disjunctive features or weighted sums of features
(e.g. by clustering or matrix factorization, see Section 5).

5. Do you need to assess features individually (e.g. to understand their influence
on the system or because their number is so large that you need to do a first filtering)?
If yes, use a variable ranking method (Section 2 and Section 7.2); else, do it anyway
to get baseline results.

6. Do you need a predictor? If no, stop.

7. Do you suspect your data is Òdirt yÓ (has a few meaningless input patterns and/or
noisy outputs or wrong class labels)? If yes, detect the outlier examples using the top
ranking variables obtained in step 5 as representation; check and/or discard them.

8. Do you kno w what to try Þrst? If no, use a linear predictor.3 Use a forward selec-
tion method (Section 4.2) with the “probe” method as a stopping criterion (Section 6)
or use the ! 0-norm embedded method (Section 4.3). For comparison, following the
ranking of step 5, construct a sequence of predictors of same nature using increasing
subsets of features. Can you match or improve performance with a smaller subset? If
yes, try a non-linear predictor with that subset.

9. Do you have new ideas, time, computational resources, and enough ex-
amples? If yes, compare several feature selection methods, including your new idea,
correlation coefficients, backward selection and embedded methods (Section 4). Use
linear and non-linear predictors. Select the best approach with model selection (Sec-
tion 6).

10. Do you want a stable solution (to improve performance and/or understanding)?
If yes, sub-sample your data and redo your analysis for several “bootstraps” (Section
7.1).

2. We caution the reader that this check list is heuristic. The only recommendation that is almost surely
valid is to try the simplest things Þrst.

3. By Òlinear predictorÓ we mean linear in the parameters. Feature construction may render the predictor
non-linear in the input variables.
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2 Variable Ranking

Many variable selection algorithms include variable ranking as a principal or auxiliary se-
lection mechanism because of its simplicity, scalability, and good empirical success. Several
papers in this issue use variable ranking as a baseline method (see, e.g., Bekkerman et al.,
2003, Caruana and de Sa, 2003, Forman, 2003, Weston et al., 2003). Variable ranking is
not necessarily used to build predictors. One of its common uses in the microarray analysis
domain is to discover a set of drug leads (see, e.g., et al., 1999): A ranking criterion is used
to find genes that discriminate between healthy and disease patients; such genes may code
for “drugable” proteins, or proteins that may themselves be used as drugs. Validating drug
leads is a labor intensive problem in biology that is outside of the scope of machine learning,
so we focus here on building predictors. We consider in this section ranking criteria defined
for individual variables, independently of the context of others. Correlation methods belong
to that category. We also limit ourselves to supervised learning criteria. We refer the reader
to Section 7.2 for a discussion of other techniques.

2.1 Principle of the Metho d and Notations

Consider a set of m examples { xk, yk} (k = 1, ...m) consisting of n input variables xk,i

(i = 1, ...n) and one output variable yk. Variable ranking makes use of a scoring function
S(i ) computed from the values xk,i and yk, k = 1, ...m. By convention, we assume that
a high score is indicative of a valuable variable and that we sort variables in decreasing
order of S(i ). To use variable ranking to build predictors, nested subsets incorporating
progressively more and more variables of decreasing relevance are defined. We postpone
until Section 6 the discussion of selecting an optimum subset size.

Following the classification of Kohavi and John (1997), variable ranking is a Þlter
method: it is a preprocessing step, independent of the choice of the predictor. Still, under
certain independence or orthogonality assumptions, it may be optimal with respect to a
given predictor. For instance, using Fisher’s criterion4 to rank variables in a classification
problem where the covariance matrix is diagonal is optimum for Fisher’s linear discriminant
classifier (Duda et al., 2001). Even when variable ranking is not optimal, it may be prefer-
able to other variable subset selection methods because of its computational and statistical
scalability: Computationally, it is efficient since it requires only the computation of n scores
and sorting the scores; Statistically, it is robust against overfitting because it introduces bias
but it may have considerably less variance (Hastie et al., 2001).5

We introduce some additional notation: If the input vector x can be interpreted as the
realization of a random vector drawn from an underlying unknown distribution, we denote
by X i the random variable corresponding to the i th component of x . Similarly, Y will be
the random variable of which the outcome y is a realization. We further denote by x i

the m dimensional vector containing all the realizations of the i th variable for the training
examples, and by y the m dimensional vector containing all the target values.

4. The ratio of the between classvariance to the within-class variance.
5. The similarit y of variable ranking to the ORDERED-FS algorithm (Ng, 1998) indicates that its sam-

ple complexity may be logarithmic in the number of irrelevant features, compared to a power law for
ÒwrapperÓsubset selection methods. This would mean that variable ranking can tolerate a number of
irrelevant variables exponential in the number of training examples.
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2.2 Correlation Criteria

Let us consider first the prediction of a continuous outcome y. The Pearson correlation
coefficient is defined as:

R (i ) =
cov(X i, Y )

!
var (X i)var (Y )

, (1)

where cov designates the covariance and var the variance. The estimate of R(i ) is given by:

R(i ) =
" m

k=1(xk,i ! x̄i)(yk ! ȳ)
! " m

k=1(xk,i ! x̄i)2
" m

k=1(yk ! ȳ)2
, (2)

where the bar notation stands for an average over the index k. This coefficient is also the
cosine between vectors x i and y , after they have been centered (their mean subtracted).
Although the R(i ) is derived from R (i ) it may be used without assuming that the input
values are realizations of a random variable.

In linear regression, the coefficient of determination, which is the square of R(i ), repre-
sents the fraction of the total variance around the mean value ȳ that is explained by the
linear relation between x i and y . Therefore, using R(i )2 as a variable ranking criterion
enforces a ranking according to goodness of linear fit of individual variables.6

The use of R(i )2 can be extended to the case of two-class classification, for which each
class label is mapped to a given value of y, e.g., ± 1. R(i )2 can then be shown to be closely
related to Fisher’s criterion (Furey et al., 2000), to the T-test criterion, and other similar
criteria (see, e.g., et al., 1999, Tusher et al., 2001, Hastie et al., 2001). As further developed
in Section 6, the link to the T-test shows that the score R(i ) may be used as a test statistic
to assess the significance of a variable.

Correlation criteria such as R(i ) can only detect linear dependencies between variable
and target. A simple way of lifting this restriction is to make a non-linear fit of the target
with single variables and rank according to the goodness of fit. Because of the risk of
overfitting, one can alternatively consider using non-linear preprocessing (e.g., squaring,
taking the square root, the log, the inverse, etc.) and then using a simple correlation
coefficient. Correlation criteria are often used for microarray data analysis, as illustrated in
this issue by Weston et al. (2003).

2.3 Single Variable ClassiÞers

As already mentioned, using R(i )2 as a ranking criterion for regressionenforces a ranking
according to goodness of linear fit of individual variables. One can extend to the classi-
Þcation case the idea of selecting variables according to their individual predictive power,
using as criterion the performance of a classifier built with a single variable. For example,
the value of the variable itself (or its negative, to account for class polarity) can be used as
discriminant function. A classifier is obtained by setting a threshold " on the value of the
variable (e.g., at the mid-point between the center of gravity of the two classes).

6. A variant of this idea is to use the mean-squared-error, but, if the variables are not on comparable
scales, a comparison between mean-squared-errors is meaningless. Another variant is to use R(i) to
rank variables, not R(i)2. Positively correlated variables are then top ranked and negatively correlated
variables bottom ranked. With this method, one can choosea subset of variables with a given proportion
of positively and negatively correlated variables.
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The predictive power of the variable can be measured in terms of error rate. But,
various other criteria can be defined that involve false positive classification rate fpr and
false negative classification rate fnr . The tradeoff between fpr and fnr is monitored in our
simple example by varying the threshold " . ROC curves that plot “hit” rate (1-fpr) as a
function of “false alarm” rate fnr are instrumental in defining criteria such as: The “Break
Even Point” (the hit rate for a threshold value corresponding to fpr=fnr ) and the “Area
Under Curve” (the area under the ROC curve).

In the case where there is a large number of variables that separate the data perfectly,
ranking criteria based on classification success rate cannot distinguish between the top
ranking variables. One will then prefer to use a correlation coefficient or another statistic
like the margin (the distance between the examples of opposite classes that are closest to
one another for a given variable).

The criteria described in this section extend to the case of binary variables. Forman
(2003) presents in this issue an extensive study of such criteria for binary variables with
applications in text classification.

2.4 Information Theoretic Ranking Criteria

Several approaches to the variable selection problem using information theoretic criteria
have been proposed (as reviewed in this issue by Bekkerman et al., 2003, Dhillon et al.,
2003, Forman, 2003, Torkkola, 2003). Many rely on empirical estimates of the mutual
information between each variable and the target:

I (i ) =
#

xi

#

y
p(xi, y) log

p(xi, y)
p(xi)p(y)

dxdy , (3)

where p(xi) and p(y) are the probability densities of x i and y, and p(xi, y) is the joint
density. The criterion I (i ) is a measure of dependency between the density of variable x i

and the density of the target y.
The difficulty is that the densities p(x i), p(y) and p(xi, y) are all unknown and are hard

to estimate from data. The case of discrete or nominal variables is probably easiest because
the integral becomes a sum:

I (i ) =
$

xi

$

y

P(X = xi, Y = y) log
P(X = xi, Y = y)

P(X = xi)P(Y = y)
. (4)

The probabilities are then estimated from frequency counts. For example, in a three-class
problem, if a variable takes 4 values, P(Y = y) represents the class prior probabilities (3
frequency counts), P(X = x i) represents the distribution of the input variable (4 frequency
counts), and P(X = x i, Y = y) is the probability of the joint observations (12 frequency
counts). The estimation obviously becomes harder with larger numbers of classes and
variable values.

The case of continuous variables (and possibly continuous targets) is the hardest. One
can consider discretizing the variables or approximating their densities with a non-parametric
method such as Parzen windows (see, e.g., Torkkola, 2003). Using the normal distribution
to estimate densities would bring us back to estimating the covariance between X i and Y ,
thus giving us a criterion similar to a correlation coefficient.
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3 Small but Revealing Examples

We present a series of small examples that outline the usefulness and the limitations of
variable ranking techniques and present several situations in which the variable dependencies
cannot be ignored.

3.1 Can Presumably Redundan t Variables Help Each Other?

One common criticism of variable ranking is that it leads to the selection of a redundant
subset. The same performance could possibly be achieved with a smaller subset of comple-
mentary variables. Still, one may wonder whether adding presumably redundant variables
can result in a performance gain.

Consider the classification problem of Figure 1. For each class, we drew at random
m = 100 examples, each of the two variables being drawn independently according to a
normal distribution of standard deviation 1. The class centers are placed at coordinates
(-1; -1) and (1; 1). Figure 1.a shows the scatter plot in the two-dimensional space of the
input variables. We also show on the same figure histograms of the projections of the
examples on the axes. To facilitate its reading, the scatter plot is shown twice with an axis
exchange. Figure 1.b shows the same scatter plots after a forty five degree rotation. In
this representation, the x-axis projection provides a better separation of the two classes:
the standard deviation of both classes is the same, but the distance between centers in
projection is now 2

"
2 instead of 2. Equivalently, if we rescale the x-axis by dividing by"

2 to obtain a feature that is the average of the two input variables, the distance between
centers is still 2, but the within class standard deviation is reduced by a factor

"
2. This is

not so surprising, since by averaging n i.i.d. random variables we will obtain a reduction of
standard deviation by a factor of

"
n. Noise reduction and consequen tly better class

separation may be obtained by adding variables that are presumably redundan t.
Variables that are independently and identically distributed are not truly redundant.

3.2 How Do es Correlation Impact Variable Redundancy?

Another notion of redundancy is correlation. In the previous example, in spite of the fact
that the examples are i.i.d. with respect to the class conditional distributions, the variables
are correlated because of the separation of the class center positions. One may wonder how
variable redundancy is affected by adding within-class variable correlation. In Figure 2, the
class centers are positioned similarly as in the previous example at coordinates (-1; -1) and
(1; 1) but we have added some variable co-variance. We consider two cases:

In Figure 2.a, in the direction of the class center line, the standard deviation of the
class conditional distributions is

"
2, while in the perpendicular direction it is a small value

(# = 1/ 10). With this construction, as # goes to zero, the input variables have the same
separation power as in the case of the example of Figure 1, with a standard deviation of
the class distributions of one and a distance of the class centers of 2. But the feature
constructed as the sum of the input variables has no better separation power: a standard
deviation of

"
2 and a class center separation of 2

"
2 (a simple scaling that does not change

the separation power). Therefore, in the limit of perfect variable correlation (zero variance
in the direction perpendicular to the class center line), single variables provide the same
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Figure 1: Information gain from presumably redundan t variables. (a) A two class
problem with independently and identically distributed (i.i.d.) variables. Each class has a
Gaussian distribution with no covariance. (b) The same example after a 45 degree rotation
showing that a combination of the two variables yields a separation improvement by a factor"

2. I.i.d. variables are not truly redundant.
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Figure 2: In tra-class covariance. In projection on the axes, the distributions of the two
variables are the same as in the previous example. (a) The class conditional distributions
have a high covariance in the direction of the line of the two class centers. There is no
significant gain in separation by using two variables instead of just one. (b) The class
conditional distributions have a high covariance in the direction perpendicular to the line
of the two class centers. An important separation gain is obtained by using two variables
instead of one.
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separation as the sum of the two variables. Perfectly correlated variables are truly
redundan t in the sense that no additional information is gained by adding them.

In contrast, in the example of Figure 2.b, the first principal direction of the covariance
matrices of the class conditional densities is perpendicular to the class center line. In this
case, more is gained by adding the two variables than in the example of Figure 1. One
notices that in spite of their great complementarity (in the sense that a perfect separation
can be achieved in the two-dimensional space spanned by the two variables), the two vari-
ables are (anti-)correlated. More anti-correlation is obtained by making the class centers
closer and increasing the ratio of the variances of the class conditional distributions. Very
high variable correlation (or anti-correlation) does not mean absence of variable
complemen tarit y.

The examples of Figure 1 and 2 all have variables with the same distribution of exam-
ples (in projection on the axis). Therefore, methods that score variables individually and
independently of each other are at loss to determine which combination of variables would
give best performance.

3.3 Can a Variable that is Useless by Itself be Useful with Others?

One concern about multivariate methods is that they are prone to overfitting. The problem
is aggravated when the number of variables to select from is large compared to the number of
examples. It is tempting to use a variable ranking method to filter out the least promising
variables before using a multivariate method. Still one may wonder whether one could
potentially lose some valuable variables through that filtering process.

We constructed an example in Figure 3.a. In this example, the two class conditional
distributions have identical covariance matrices, and the principal directions are oriented
diagonally. The class centers are separated on one axis, but not on the other. By itself
one variable is “useless”. Still, the two dimensional separation is better than the separation
using the “useful” variable alone. Therefore, a variable that is completely useless
by itself can pro vide a signiÞcan t performance impro vement when tak en with
others.

The next question is whether two variables that are useless by themselves can provide a
good separation when taken together. We constructed an example of such a case, inspired
by the famous XOR problem.7 In Figure 3.b, we drew examples for two classes using four
Gaussians placed on the corners of a square at coordinates (0; 0), (0; 1), (1; 0), and (1;
1). The class labels of these four “clumps” are attributed according to the truth table of
the logical XOR function: f(0; 0)=0, f(0; 1)=1, f(1; 0)=1; f(1; 1)=0. We notice that the
projections on the axes provide no class separation. Yet, in the two dimensional space the
classes can easily be separated (albeit not with a linear decision function).8 Tw o variables
that are useless by themselv es can be useful together.

7. The XOR problem is sometimes referred to as the two-bit parit y problem and is generalizable to more
than two dimensions (n-bit parit y problem). A related problem is the chessboard problem in which the
two classespave the spacewith squaresof uniformly distributed examples with alternating class labels.
The latter problem is also generalizable to the multi-dimensional case. Similar examples are used in
several papers in this issue (Perkins et al., 2003, Stoppiglia et al., 2003).

8. Incidentally , the two variables are also uncorrelated with one another.
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Figure 3: A variable useless by itself can be useful together with others. (a) One
variable has completely overlapping class conditional densities. Still, using it jointly with
the other variable improves class separability compared to using the other variable alone.
(b) XOR-like or chessboard-like problems. The classes consist of disjoint clumps such that in
projection on the axes the class conditional densities overlap perfectly. Therefore, individual
variables have no separation power. Still, taken together, the variables provide good class
separability .

4 Variable Subset Selection

In the previous section, we presented examples that illustrate the usefulness of selecting
subsets of variables that together have good predictive power, as opposed to ranking vari-
ables according to their individual predictive power. We now turn to this problem and
outline the main directions that have been taken to tackle it. They essentially divide into
wrappers, filters, and embedded methods. W rapp ers utilize the learning machine of inter-
est as a black box to score subsets of variable according to their predictive power. Filters
select subsets of variables as a pre-processing step, independently of the chosen predictor.
Em bedded methods perform variable selection in the process of training and are usually
specific to given learning machines.

4.1 Wrapp ers and Em bedded Metho ds

The wrapper methodology, recently popularized by Kohavi and John (1997), offers a simple
and powerful way to address the problem of variable selection, regardless of the chosen
learning machine. In fact, the learning machine is considered a perfect black box and the
method lends itself to the use of off-the-shelf machine learning software packages. In its most
general formulation, the wrapper methodology consists in using the prediction performance
of a given learning machine to assess the relative usefulness of subsets of variables. In
practice, one needs to define: (i) how to search the space of all possible variable subsets; (ii)
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how to assess the prediction performance of a learning machine to guide the search and halt
it; and (iii) which predictor to use. An exhaustive search can conceivably be performed, if
the number of variables is not too large. But, the problem is known to be NP-hard (Amaldi
and Kann, 1998) and the search becomes quickly computationally intractable. A wide
range of search strategies can be used, including best-first, branch-and-bound, simulated
annealing, genetic algorithms (see Kohavi and John, 1997, for a review). Performance
assessments are usually done using a validation set or by cross-validation (see Section 6).
As illustrated in this special issue, popular predictors include decision trees, näıve Bayes,
least-square linear predictors, and support vector machines.

Wrappers are often criticized because they seem to be a “brute force” method requiring
massive amounts of computation, but it is not necessarily so. Efficient search strategies
may be devised. Using such strategies does not necessarily mean sacrificing prediction
performance. In fact, it appears to be the converse in some cases: coarse search strategies
may alleviate the problem of overfitting, as illustrated for instance in this issue by the work
of Reunanen (2003). Greedy search strategies seem to be particularly computationally
advantageous and robust against overfitting. They come in two flavors: forward selection
and backward elimination . In forward selection, variables are progressively incorporated
into larger and larger subsets, whereas in backward elimination one starts with the set of
all variables and progressively eliminates the least promising ones.9 Both methods yield
nested subsetsof variables.

By using the learning machine as a black box, wrappers are remarkably universal and
simple. But embedded methods that incorporate variable selection as part of the training
process may be more efficient in several respects: they make better use of the available
data by not needing to split the training data into a training and validation set; they reach
a solution faster by avoiding retraining a predictor from scratch for every variable subset
investigated. Embedded methods are not new: decision trees such as CART, for instance,
have a built-in mechanism to perform variable selection (Breiman et al., 1984). The next
two sections are devoted to two families of embedded methods illustrated by algorithms
published in this issue.

4.2 Nested Subset Metho ds

Some embedded methods guide their search by estimating changes in the objective function
value incurred by making moves in variable subset space. Combined with greedy search
strategies (backward elimination or forward selection) they yield nested subsets of vari-
ables.10

Let us call s the number of variables selected at a given algorithm step and J (s) the
value of the objective function of the trained learning machine using such a variable subset.
Predicting the change in the objective function is obtained by:

9. The name greedy comes from the fact that one never revisits former decisions to include (or exclude)
variables in light of new decisions.

10. The algorithms presented in this section and in the following generally beneÞt from variable normaliza-
tion, except if they have an internal normalization mechanism lik e the Gram-Schmidt orthogonalization
procedure .
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1. Finite di!erence calculation: The difference between J (s) and J (s+1) or J (s! 1)
is computed for the variables that are candidates for addition or removal.

2. Quadratic appro ximation of the cost function: This method was originally
proposed to prune weights in neural networks (LeCun et al., 1990). It can be used for
backward elimination of variables, via the pruning of the input variable weights wi.
A second order Taylor expansion of J is made. At the optimum of J , the first-order
term can be neglected, yielding for variable i to the variation DJ i = (1/ 2) ∂2J

∂w2
i
(Dwi)2.

The change in weight Dwi = wi corresponds to removing variable i .

3. Sensitivit y of the ob jectiv e function calculation: The absolute value or the
square of the derivative of J with respect to x i (or with respect to wi) is used.

Some training algorithms lend themselves to using finite differences (method 1) because
exact differences can be computed efficiently, without retraining new models for each can-
didate variable. Such is the case for the linear least-square model: The Gram-Schmidt or-
thogonolization procedure permits the performance of forward variable selection by adding
at each step the variable that most decreases the mean-squared-error. Two papers in this
issue are devoted to this technique (Stoppiglia et al., 2003, Rivals and Personnaz, 2003). For
other algorithms like kernel methods, approximations of the difference can be computed effi-
ciently. Kernel methods are learning machines of the form f (x) =

" m
k=1 $kK (x, xk), where

K is the kernel function, which measures the similarity between x and x k (Schoelkopf and
Smola, 2002). The variation in J (s) is computed by keeping the $k values constant. This
procedure originally proposed for SVMs (Guyon et al., 2002) is used in this issue as a
baseline method (Rakotomamonjy, 2003, Weston et al., 2003).

The “optimum brain damage” (OBD) procedure (method 2) is mentioned in this issue
in the paper of Rivals and Personnaz (2003). The case of linear predictors f (x) = w áx + b
is particularly simple. The authors of the OBD algorithm advocate using DJ i instead of the
magnitude of the weights |wi| as pruning criterion. However, for linear predictors trained
with an objective function J that is quadratic in wi these two criteria are equivalent. This is
the case, for instance, for the linear least square model using J =

" m
k=1(w áxk+b! yk)2 and

for the linear SVM or optimum margin classifier, which minimizes J = (1/ 2)||w||2, under
constraints (Vapnik, 1982). Interestingly, for linear SVMs the finite difference method
(method 1) and the sensitivity method (method 3) also boil down to selecting the variable
with smallest |wi| for elimination at each step (Rakotomamonjy, 2003).

The sensitivity of the objective function to changes in wi (method 3) is used to devise
a forward selection procedure in one paper presented in this issue (Perkins et al., 2003).
Applications of this procedure to a linear model with a cross-entropy objective function
are presented. In the formulation proposed, the criterion is the absolute value of ∂J

∂wi
=

" m
k=1

∂J
∂ρk

∂ρk
∂wi

, where %k = ykf (xk). In the case of the linear model f (x) = w áx + b,
the criterion has a simple geometrical interpretation: it is the the dot product between
the gradient of the objective function with respect to the margin values and the vector
[ ∂ρk
∂wi

= xk,iyk]k=1...m. For the cross-entropy loss function, we have: ∂J
∂ρk

= 1
1+e! k .

An interesting variant of the sensitivity analysis method is obtained by replacing the
objective function by the leave-one-outcross-validation error. For some learning machines
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and some objective functions, approximate or exact analytical formulas of the leave-one-
out error are known. In this issue, the case of the linear least-square model (Rivals and
Personnaz, 2003) and SVMs (Rakotomamonjy, 2003) are treated. Approximations for non-
linear least-squares have also been computed elsewhere (Monari and Dreyfus, 2000). The
proposal of Rakotomamonjy (2003) is to train non-linear SVMs (Boser et al., 1992, Vapnik,
1998) with a regular training procedure and select features with backward elimination like
in RFE (Guyon et al., 2002). The variable ranking criterion however is not computed using
the sensitivity of the objective function J , but that of a leave-one-out bound.

4.3 Direct Ob jectiv e Optimization

A lot of progress has been made in this issue to formalize the objective function of variable
selection and find algorithms to optimize it. Generally, the objective function consists of
two terms that compete with each other: (1) the goodness-of-Þt (to be maximized), and
(2) the num ber of variables (to be minimized). This approach bears similarity with
two-part objective functions consisting of a goodness-of-fit term and a regularization term,
particularly when the effect of the regularization term is to “shrink” parameter space. This
correspondence is formally established in the paper of Weston et al. (2003) for the particular
case of classification with linear predictors f (x) = w áx + b, in the SVM framework (Boser
et al., 1992, Vapnik, 1998). Shrinking regularizers of the type ||w ||pp = (

" n
i=1 wp

i )
1/p (! p-

norm) are used. In the limit as p # 0, the ! p-norm is just the number of weights, i.e., the
number of variables. Weston et al. proceed with showing that the ! 0-norm formulation of
SVMs can be solved approximately with a simple modification of the vanilla SVM algorithm:

1. Train a regular linear SVM (using ! 1-norm or ! 2-norm regularization).

2. Re-scale the input variables by multiplying them by the absolute values of the com-
ponents of the weight vector w obtained.

3. Iterate the first 2 steps until convergence.

The method is reminiscent of backward elimination procedures based on the smallest |wi|.
Variable normalization is important for such a method to work properly.

Weston et al. note that, although their algorithm only approximately minimizes the
! 0-norm, in practice it may generalize better than an algorithm that really did minimize
the ! 0-norm, because the latter would not provide sufficient regularization (a lot of variance
remains because the optimization problem has multiple solutions). The need for additional
regularization is also stressed in the paper of Perkins et al. (2003). The authors use a
three-part objective function that includes goodness-of-fit, a regularization term (! 1-norm
or ! 2-norm), and a penalty for large numbers of variables (! 0-norm). The authors propose
a computationally efficient forward selection method to optimize such objective.

Another paper in the issue, by Bi et al. (2003), uses ! 1-norm SVMs, without iterative
multiplicative updates. The authors find that, for their application, the ! 1-norm minimiza-
tion suffices to drive enough weights to zero. This approach was also taken in the context
of least-square regression by other authors (Tibshirani, 1994). The number of variables can
be further reduced by backward elimination.

1169



Guyon and Elisseeff

To our knowledge, no algorithm has been proposed to directly minimize the number of
variables for non-linear predictors. Instead, several authors have substituted for the problem
of variable selection that of variable scaling (Jebara and Jaakkola, 2000, Weston et al., 2000,
Grandvalet and Canu, 2002). The variable scaling factors are “hyper-parameters” adjusted
by model selection. The scaling factors obtained are used to assess variable relevance. A
variant of the method consists of adjusting the scaling factors by gradient descent on a
bound of the leave-one-out error (Weston et al., 2000). This method is used as baseline
method in the paper of Weston et al. (2003) in this issue.

4.4 Filters for Subset Selection

Several justifications for the use of filters for subset selection have been put forward in this
special issue and elsewhere. It is argued that, compared to wrappers, filters are faster.
Still, recently proposed efficient embedded methods are competitive in that respect. An-
other argument is that some filters (e.g. those based on mutual information criteria) provide
a generic selection of variables, not tuned for/by a given learning machine. Another com-
pelling justification is that filtering can be used as a preprocessing step to reduce space
dimensionality and overcome overfitting.

In that respect, it seems reasonable to use a wrapper (or embedded method) with a
linear predictor as a filter and then train a more complex non-linear predictor on the
resulting variables. An example of this approach is found in the paper of Bi et al. (2003):
a linear ! 1-norm SVM is used for variable selection, but a non-linear ! 1-norm SVM is used
for prediction. The complexity of linear filters can be ramped up by adding to the selection
process products of input variables (monomials of a polynomial) and retaining the variables
that are part of any selected monomial. Another predictor, e.g., a neural network, is
eventually substituted to the polynomial to perform predictions using the selected variables
(Rivals and Personnaz, 2003, Stoppiglia et al., 2003). In some cases however, one may on
the contrary want to reduce the complexity of linear filters to overcome overfitting problems.
When the number of examples is small compared to the number of variables (in the case of
microarray data for instance) one may need to resort to selecting variables with correlation
coefficients (see Section 2.2).

Information theoretic filtering methods such as Markov blanket11 algorithms (Koller and
Sahami, 1996) constitute another broad family. The justification for classification problems
is that the measure of mutual information does not rely on any prediction process, but
provides a bound on the error rate using any prediction scheme for the given distribution.
We do not have any illustration of such methods in this issue for the problem of variable
subset selection. We refer the interested reader to Koller and Sahami (1996) and references
therein. However, the use of mutual information criteria for individual variable ranking was
covered in Section 2 and application to feature construction and selection are illustrated in
Section 5.

11. The Mark ov blanket of a given variable xi is a set of variables not including xi that render xi Òun-
necessaryÓ.Once a Mark ov blanket is found, xi can safely be eliminated. Furthermore, in a backward
elimination procedure, it will remain unnecessaryat later stages.
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5 Feature Construction and Space Dimensionality Reduction

In some applications, reducing the dimensionality of the data by selecting a subset of the
original variables may be advantageous for reasons including the expense of making, storing
and processing measurements. If these considerations are not of concern, other means of
space dimensionality reduction should also be considered.

The art of machine learning starts with the design of appropriate data representations.
Better performance is often achieved using features derived from the original input. Building
a feature representation is an opportunity to incorporate domain knowledge into the data
and can be very application specific. Nonetheless, there are a number of generic feature
construction methods, including: clustering; basic linear transforms of the input variables
(PCA/SVD, LDA); more sophisticated linear transforms like spectral transforms (Fourier,
Hadamard), wavelet transforms or convolutions of kernels; and applying simple functions
to subsets of variables, like products to create monomials.

Two distinct goals may be pursued for feature construction: achieving best reconstruc-
tion of the data or being most efficient for making predictions. The first problem is an
unsupervised learning problem. It is closely related to that of data compression and a lot of
algorithms are used across both fields. The second problem is supervised. Are there reasons
to select features in an unsupervised manner when the problem is supervised? Yes, possibly
several: Some problems, e.g., in text processing applications, come with more unlabelled
data than labelled data. Also, unsupervised feature selection is less prone to overfitting.

In this issue, four papers address the problem of feature construction. All of them take an
information theoretic approach to the problem. Two of them illustrate the use of clustering
to construct features (Bekkerman et al., 2003, Dhillon et al., 2003), one provides a new
matrix factorization algorithm (Globerson and Tishby, 2003), and one provides a supervised
means of learning features from a variety of models (Torkkola, 2003). In addition, two papers
whose main focus is directed to variable selection also address the selection of monomials of
a polynomial model and the hidden units of a neural network (Rivals and Personnaz, 2003,
Stoppiglia et al., 2003), and one paper addresses the implicit feature selection in non-linear
kernel methods for polynomial kernels (Weston et al., 2003).

5.1 Clustering

Clustering has long been used for feature construction. The idea is to replace a group
of “similar” variables by a cluster centroid, which becomes a feature. The most popular
algorithms include K-means and hierarchical clustering. For a review, see, e.g., the textbook
of Duda et al. (2001).

Clustering is usually associated with the idea of unsupervised learning. It can be useful
to introduce some supervision in the clustering procedure to obtain more discriminant
features. This is the idea of distributional clustering (Pereira et al., 1993), which is developed
in two papers of this issue. Distributional clustering is rooted in the information bottleneck
(IB) theory of Tishby et al. (1999). If we call X̃ the random variable representing the
constructed features, the IB method seeks to minimize the mutual information I (X , X̃ ),
while preserving the mutual information I (X̃ , Y ). A global objective function is built by
introducing a Lagrange multiplier &: J = I (X , X̃ ) ! &I (X̃ , Y ). So, the method searches
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for the solution that achieves the largest possible compression, while retaining the essential
information about the target.

Text processing applications are usual targets for such techniques. Patterns are full doc-
uments and variables come from a bag-of-words representation: Each variable is associated
to a word and is proportional to the fraction of documents in which that word appears.
In application to feature construction, clustering methods group words, not documents.
In text categorization tasks, the supervision comes from the knowledge of document cate-
gories. It is introduced by replacing variable vectors containing document frequency counts
by shorter variable vectors containing document category frequency counts, i.e., the words
are represented as distributions over document categories.

The simplest implementation of this idea is presented in the paper of Dhillon et al. (2003)
in this issue. It uses K-means clustering on variables represented by a vector of document
category frequency counts. The (non-symmetric) similarity measure used is the Kullback-
Leibler divergence K (x j , x̃ i) = exp(! &

"
k xk,j ln(xk,j / x̃k,i)). In the sum, the index k runs

over document categories. A more elaborate approach is taken by Bekkerman et al. (2003)
who use a “soft” version of K-means (allowing words to belong to several clusters) and who
progressively divide clusters by varying the Lagrange multiplier & monitoring the tradeoff
between I (X , X̃ ) and I (X̃ , Y ). In this way, documents are represented as a distribution over
word centroids. Both methods perform well. Bekkerman et al. mention that few words end
up belonging to several clusters, hinting that “hard” cluster assignment may be sufficient.

5.2 Matrix Factorization

Another widely used method of feature construction is singular value decomposition (SVD).
The goal of SVD is to form a set of features that are linear combinations of the original
variables, which provide the best possible reconstruction of the original data in the least
square sense (Duda et al., 2001). It is an unsupervised method of feature construction.
In this issue, the paper of Globerson and Tishby (2003) presents an information theoretic
unsupervised feature construction method: sufficient dimensionality reduction (SDR). The
most informative features are extracted by solving an optimization problem that monitors
the tradeoff between data reconstruction and data compression, similar to the information
bottleneck of Tishby et al. (1999); the features are found as Lagrange multipliers of the
objective optimized. Non-negative matrices P of dimension (m, n) representing the joint
distribution of two random variables (for instance the co-occurrence of words in documents)
are considered. The features are extracted by information theoretic I-projections, yielding
a reconstructed matrix of special exponential form P̃ = (1/ Z ) exp(ΦΨ). For a set of d
features, Φ is a (m, d+2) matrix whose (d+1)th column is ones and Ψ is a (d+2, n) matrix
whose (d+ 2)th column is ones, and Z is a normalization coefficient. Similarly to SVD, the
solution shows the symmetry of the problem with respect to patterns and variables.

5.3 Supervised Feature Selection

We review three approaches for selecting features in cases where features should be distin-
guished from variables because both appear simultaneously in the same system:

Nested subset metho ds. A number of learning machines extract features as part of
the learning process. These include neural networks whose internal nodes are feature extrac-
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tors. Thus, node pruning techniques such as OBD LeCun et al. (1990) are feature selection
algorithms. Gram-Schmidt orthogonalization is presented in this issue as an alternative to
OBD (Stoppiglia et al., 2003).

Filters. Torkkola (2003) proposes a filter method for constructing features using a mu-
tual information criterion. The author maximizes I (', y ) for m dimensional feature vectors
' and target vectors y .12 Modelling the feature density function with Parzen windows al-
lows him to compute derivatives ( I /( ' i that are transform independent. Combining them
with the transform-dependent derivatives ( ' i/( w , he devises a gradient descent algorithm
to optimize the parameters w of the transform (that need not be linear):

w t+1 = w t + )
( I
( w

= w t + )
( I
( ' i

( ' i

( w
. (5)

Direct ob jectiv e optimization. Kernel methods possess an implicit feature space
revealed by the kernel expansion: k(x, x ") = ' (x).' (x"), where ' (x) is a feature vector of
possibly infinite dimension. Selecting these implicit features may improve generalization,
but does not change the running time or help interpreting the prediction function. In this
issue, Weston et al. (2003) propose a method for selecting implicit kernel features in the
case of the polynomial kernel, using their framework of minimization of the ! 0-norm.

6 Validation Methods

We group in this section all the issues related to out-of-sample performance prediction
(generalization prediction) and model selection. These are involved in various aspects of
variable and feature selection: to determine the number of variables that are “significant”,
to guide and halt the search for good variable subsets, to choose hyperparameters, and to
evaluate the final performance of the system.

One should first distinguish the problem of model selection from that of evaluating the
final performance of the predictor. For that last purpose, it is important to set aside an
independent test set. The remaining data is used both for training and performing model
selection. Additional experimental sophistication can be added by repeating the entire
experiment for several drawings of the test set.13

To perform model selection (including variable/feature selection and hyperparameter
optimization), the data not used for testing may be further split between fixed training and
validation sets, or various methods of cross-validation can be used. The problem is then
brought back to that of estimating the significance of differences in validation errors. For
a fixed validation set, statistical tests can be used, but their validity is doubtful for cross-
validation because independence assumptions are violated. For a discussion of these issues,
see for instance the work of Dietterich (1998) and Nadeau and Bengio (2001). If there are
sufficiently many examples, it may not be necessary to split the training data: Comparisons
of training errors with statistical tests can be used (see Rivals and Personnaz, 2003, in this
issue). Cross-validation can be extended to time-series data and, while i.i.d. assumptions

12. In fact, the author usesa quadratic measureof divergenceinstead of the usual mutual information.
13. In the limit, the test set can have only one example and leave-out-out can be carried out as an Òouter

loopÓ,outside the feature/v ariable selection process,to estimate the Þnal performance of the predictor.
This computationally expensive procedure is used in caseswhere data is extremely scarce.
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do not hold anymore, it is still possible to estimate generalization error confidence intervals
(see Bengio and Chapados, 2003, in this issue).

Choosing what fraction of the data should be used for training and for validation is an
open problem. Many authors resort to using the leave-one-out cross-validation procedure,
even though it is known to be a high variance estimator of generalization error (Vapnik,
1982) and to give overly optimistic results, particularly when data are not properly indepen-
dently and identically sampled from the ”true” distribution. The leave-one-out procedure
consists of removing one example from the training set, constructing the predictor on the
basis only of the remaining training data, then testing on the removed example. In this
fashion one tests all examples of the training data and averages the results. As previ-
ously mentioned, there exist exact or approximate formulas of the leave-one-out error for
a number of learning machines (Monari and Dreyfus, 2000, Rivals and Personnaz, 2003,
Rakotomamonjy, 2003).

Leave-one-out formulas can be viewed as corrected values of the training error. Many
other types of penalization of the training error have been proposed in the literature (see,
e.g., Vapnik, 1998, Hastie et al., 2001). Recently, a new family of such methods called
“metric-based methods” have been proposed (Schuurmans, 1997). The paper of Bengio and
Chapados (2003) in this issue illustrates their application to variable selection. The authors
make use of unlabelled data, which are readily available in the application considered, time
series prediction with a horizon. Consider two models f A and f B trained with nested subsets
of variables A $ B . We call d(f A, f B) the discrepancy of the two models. The criterion
involves the ratio dU (f A, f B)/d T (f A, f B), where dU (f A, f B) is computed with unlabelled
data and dT (f A, f B) is computed with training data. A ratio significantly larger than one
sheds doubt on the usefulness of the variables in subset B that are not in A.

For variable ranking or nested subset ranking methods (Sections 2 and 4.2), another
statistical approach can be taken. The idea is to introduce a probe in the data that is a
random variable. Roughly speaking, variables that have a relevance smaller or equal to that
of the probe should be discarded. Bi et al. (2003) consider a very simple implementation
of that idea: they introduce in their data three additional “fake variables” drawn randomly
from a Gaussian distribution and submit them to their variable selection process with the
other “true variables”. Subsequently, they discard all the variables that are less relevant
than one of the three fake variables (according to their weight magnitude criterion). Stop-
piglia et al. (2003) propose a more sophisticated method for the Gram-Schmidt forward
selection method. For a Gaussian distributed probe, they provide an analytical formula to
compute the rank of the probe associated with a given risk of accepting an irrelevant vari-
able. A non-parametric variant of the probe method consists in creating “fake variables” by
randomly shuffling real variable vectors. In a forward selection process, the introduction of
fake variables does not disturb the selection because fake variables can be discarded when
they are encountered. At a given step in the forward selection process, let us call f t the
fraction of true variables selected so far (among all true variables) and f f the fraction of
fake variables encountered (among all fake variables). As a halting criterion one can place
a threshold on the ratio f f /f t, which is an upper bound on the fraction of falsely relevant
variables in the subset selected so far. The latter method has been used for variable ranking
(Tusher et al., 2001). Its parametric version for Gaussian distributions using the T statistic
as ranking criterion is nothing but the T-test.
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7 Advanced Topics and Open Problems

7.1 Variance of Variable Subset Selection

Many methods of variable subset selection are sensitive to small perturbations of the ex-
perimental conditions. If the data has redundant variables, different subsets of variables
with identical predictive power may be obtained according to initial conditions of the algo-
rithm, removal or addition of a few variables or training examples, or addition of noise. For
some applications, one might want to purposely generate alternative subsets that can be
presented to a subsequent stage of processing. Still one might find this variance undesirable
because (i) variance is often the symptom of a “bad” model that does not generalize well;
(ii) results are not reproducible; and (iii) one subset fails to capture the “whole picture”.

One method to “stabilize” variable selection explored in this issue is to use several
“bootstraps” (Bi et al., 2003). The variable selection process is repeated with sub-samples
of the training data. The union of the subsets of variables selected in the various bootstraps
is taken as the final “stable” subset. This joint subset may be at least as predictive as the
best bootstrap subset. Analyzing the behavior of the variables across the various bootstraps
also provides further insight, as described in the paper. In particular, an index of relevance of
individual variables can be created considering how frequently they appear in the bootstraps.

Related ideas have been described elsewhere in the context of Bayesian variable selection
(Jebara and Jaakkola, 2000, Ng and Jordan, 2001, Vehtari and Lampinen, 2002). A distri-
bution over a population of models using various variable subsets is estimated. Variables
are then ranked according to the marginal distribution, reflecting how often they appear in
important subsets (i.e., associated with the most probable models).

7.2 Variable Ranking in the Con text of Others

In Section 2, we limited ourselves to presenting variable ranking methods using a criterion
computed from single variables, ignoring the context of others. In Section 4.2, we introduced
nested subset methods that provide a useful ranking of subsets, not of individual variables:
some variables may have a low rank because they are redundant and yet be highly relevant.
Bootstrap and Bayesian methods presented in Section 7.1, may be instrumental in producing
a good variable ranking incorporating the context of others.

The relief algorithm uses another approach based on the nearest-neighbor algorithm
(Kira and Rendell, 1992). For each example, the closest example of the same class (nearest
hit) and the closest example of a different class (nearest miss) are selected. The score S(i ) of
the i th variable is computed as the average over all examples of magnitude of the difference
between the distance to the nearest hit and the distance to the nearest miss, in projection
on the i th variable.

7.3 Unsup ervised Variable Selection

Sometimes, no target y is provided, but one still would want to select a set of most sig-
nificant variables with respect to a defined criterion. Obviously, there are as many criteria
as problems can be stated. Still, a number of variable ranking criteria are useful across
applications, including saliency, entropy, smoothness, density and reliability . A variable is
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Figure 4: Forw ard or backw ard selection? Of the three variables of this example, the
third one separates the two classes best by itself (bottom right histogram). It is therefore
the best candidate in a forward selection process. Still, the two other variables are better
taken together than any subset of two including it. A backward selection method may
perform better in this case.

salient if it has a high variance or a large range, compared to others. A variable has a high
entropy if the distribution of examples is uniform. In a time series, a variable is smooth
if on average its local curvature is moderate. A variable is in a high-density region if it
is highly correlated with many other variables. A variable is reliable if the measurement
error bars computed by repeating measurements are small compared to the variability of
the variable values (as quantified, e.g., by an ANOVA statistic).

Several authors have also attempted to perform variable or feature selection for clustering
applications (see, e.g., Xing and Karp, 2001, Ben-Hur and Guyon, 2003, and references
therein).

7.4 Forw ard vs. Backw ard Selection

It is often argued that forward selection is computationally more efficient than backward
elimination to generate nested subsets of variables. However, the defenders of backward
elimination argue that weaker subsets are found by forward selection because the importance
of variables is not assessed in the context of other variables not included yet. We illustrate
this latter argument by the example of Figure 4. In that example, one variable separates the
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two classes better by itself than either of the two other ones taken alone and will therefore
be selected first by forward selection. At the next step, when it is complemented by either
of the two other variables, the resulting class separation in two dimensions will not be as
good as the one obtained jointly by the two variables that were discarded at the first step.
A backward selection method may outsmart forward selection by eliminating at the first
step the variable that by itself provides the best separation to retain the two variables that
together perform best. Still, if for some reason we need to get down to a single variable,
backward elimination will have gotten rid of the variable that works best on its own.

7.5 The Multi-class Problem

Some variable selection methods treat the multi-class case directly rather than decomposing
it into several two-class problems: All the methods based on mutual information criteria
extend naturally to the multi-class case (see in this issue Bekkerman et al., 2003, Dhillon
et al., 2003, Torkkola, 2003). Multi-class variable ranking criteria include Fisher’s criterion
(the ratio of the between class variance to the within-class variance). It is closely related
to the F statistic used in the ANOVA test, which is one way of implementing the probe
method (Section 6) for the multi-class case. Wrappers or embedded methods depend upon
the capability of the classifier used to handle the multi-class case. Examples of such clas-
sifiers include linear discriminant analysis (LDA), a multi-class version of Fisher’s linear
discriminant (Duda et al., 2001), and multi-class SVMs (see, e.g., Weston et al., 2003).

One may wonder whether it is advantageous to use multi-class methods for variable
selection. On one hand, contrary to what is generally admitted for classification, the multi-
class setting is in some sense easier for variable selection than the two-class case. This is
because the larger the number of classes, the less likely a “random” set of features provide
a good separation. To illustrate this point, consider a simple example where all features
are drawn independently from the same distribution P and the first of them is the target
y. Assume that all these features correspond to rolling a die with Q faces n times (n is
the number of samples). The probability that one fixed feature (except the first one) is
exactly y is then (1/Q )n. Therefore, finding the feature that corresponds to the target y
when it is embedded in a sea of noisy features is easier when Q is large. On the other
hand, Forman (2003) points out in this issue that in the case of uneven distributions across
classes, multi-class methods may over-represent abundant or easily separable classes. A
possible alternative is to mix ranked lists of several two-class problems. Weston et al.
(2003) propose one such mixing strategy.

7.6 Selection of Examples

The dual problems of feature selection/construction are those of pattern selection/construction.
The symmetry of the two problems is made explicit in the paper of Globerson and Tishby
(2003) in this issue. Likewise, both Stoppiglia et al. (2003) and Weston et al. (2003) point
out that their algorithm also applies to the selection of examples in kernel methods. Others
have already pointed out the similarity and complementarity of the two problems (Blum
and Langley, 1997). In particular, mislabeled examples may induce the choice of wrong
variables. Conversely, if the labeling is highly reliable, selecting wrong variables associated
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with a confounding factor may be avoided by focusing on informative patterns that are
close to the decision boundary (Guyon et al., 2002).

7.7 In verse Problems

Most of the special issue concentrates on the problem of finding a (small) subset of variables
useful to build a good predictor. In some applications, particularly in bioinformatics, this is
not necessarily the only goal of variable selection. In diagnosis problems, for instance, it is
important to identify the factors that triggered a particular disease or unravel the chain of
events from the causes to the symptoms. But reverse engineering the system that produced
the data is a more challenging task than building a predictor. The readers interested in
these issues can consult the literature on gene networks in the conference proceedings of
the pacific symposium on biocomputing (PSB) or intelligent systems for molecular biology
conference (ISMB) and the causality inference literature (see, e.g., Pearl, 2000). At the
heart of this problem is the distinction between correlation and causality. Observational
data such as the data available to machine learning researchers allow us only to observe
correlations. For example, observations can be made about correlations between expression
profiles of given genes or between profiles and symptoms, but a leap of faith is made when
deciding which gene activated which other one and in turn triggered the symptom.

In this issue, the paper of Caruana and de Sa (2003) presents interesting ideas about
using variables discarded by variable selection as additional outputs of a neural network.
They show improved performance on synthetic and real data. Their analysis supports the
idea that some variables are more efficiently used as outputs than as inputs. This could be
a step toward distinguishing causes from consequences.

8 Conclusion

The recent developments in variable and feature selection have addressed the problem from
the pragmatic point of view of improving the performance of predictors. They have met
the challenge of operating on input spaces of several thousand variables. Sophisticated
wrapper or embedded methods improve predictor performance compared to simpler variable
ranking methods like correlation methods, but the improvements are not always significant:
domains with large numbers of input variables suffer from the curse of dimensionality and
multivariate methods may overfit the data. For some domains, applying first a method
of automatic feature construction yields improved performance and a more compact set of
features. The methods proposed in this special issue have been tested on a wide variety of
data sets (see Table 1), which limits the possibility of making comparisons across papers.
Further work includes the organization of a benchmark. The approaches are very diverse
and motivated by various theoretical arguments, but a unifying theoretical framework is
lacking. Because of these shortcomings, it is important when starting with a new problem
to have a few baseline performance values. To that end, we recommend using a linear
predictor of your choice (e.g. a linear SVM) and select variables in two alternate ways:
(1) with a variable ranking method using a correlation coefficient or mutual information;
(2) with a nested subset selection method performing forward or backward selection or
with multiplicative updates. Further down the road, connections need to be made between
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Data set Description patterns variables classes References
Lineara,b Artificial linear 10-1200 100-240 reg-2 SWBe

Multi-clusterc Artificial non-linear 1000-1300 100-500 2 PS
QSARd Chemistry 30-300 500-700 reg Bt
UCIe ML repository 8-60 500-16000 2-30 ReBnToPC

LVQ-PAKf Phoneme data 1900 20 20 T
Raetch bench.g UCI/Delve/Statlog 200-7000 8-20 2 Ra

Microarraya Cancer classif. 6-100 2000-4000 2 WRa
Microarraya Gene classification 200 80 5 W
Aston Univh Pipeline transport 1000 12 3 T
NIPS 2000i Unlabeled data 200-400 5-800 reg Ri

20 Newsgroupj,o News postings 20000 300-15000 2-20 GBkD
Text filteringk TREC/OSHUMED 200-2500 3000-30000 6-17 F
IR datasets l MED/CRAN/CISI 1000 5000 30-225 G

Reuters-21578m,o newswire docs. 21578 300-15000 114 BkF
Open Dir. Proj.n Web directory 5000 14500 50 D

Table 1: Publicly available data sets used in the special issue. Approximate
numbers or ranges of patterns, variables, and classes effectively used are provided. The
“classes” column indicates “reg” for regression problems, or the number of queries for
Information Retrieval (IR) problems. For artificial data sets, the fraction of variables
that are relevant ranges from 2 to 10. The initial of the first author are provided as ref-
erence: Bk=Bekkerman, Bn=Bengio, Bt=Bennett, C=Caruana, D=Dhillon, F=Forman,
G=Globerson, P=Perkins, Re=Reunanen, Ra=Rakotomamonjy, Ri=Rivals, S=Stoppiglia,
T=Torkkola, W=Weston. Please also check the JMLR web site for later additions and
preprocessed data.

a. http://www.kyb.tuebingen.mpg.de/bs/people/weston/l0 (! 0 not 10)
b. http://www.clopinet.com/isabelle/Projects/NIPS2001/Artificial.zip
c. http://nis-www.lanl.gov/%simes/data/jmlr02/
d. http://www.rpi.edu/%bij2/featsele.html
e. http://www.ics.uci.edu/%mlearn/MLRepository.html
f . http://www.cis.hut.fi/research/software.shtml
g. http://ida.first.gmd.de/%raetsch/data/benchmarks.htm
h. http://www.nerg.aston.ac.uk/GTM/3PhaseData.html
i. http://q.cis.uoguelph.ca/ skremer/NIPS2000/
j . http://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.html
k. http://trec.nist.gov/data.html (Filtering Track Collection)
l . http://www.cs.utk.edu/%lsi/
m. http://www.daviddlewis.com/resources/testcollections/reuters21578/
n. http://dmoz.org/ and http://www.cs.utexas.edu/users/manyam/dmoz.txt
o. http://www.cs.technion.ac.il/%ronb/thesis.html
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the problems of variable and feature selection and those of experimental design and active
learning, in an effort to move away from observational data toward experimental data, and
to address problems of causality inference.
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