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A combinatorial quantitative structure-activity relationships (Combi-QSAR) approach has been developed
and applied to a data set of 98 ambergris fragrance compounds with complex stereochemistry. The Combi-
QSAR approach explores all possible combinations of different independent descriptor collections and various
individual correlation methods to obtain statistically significant models with high internal (for the training
set) and external (for the test set) accuracy. Seven different descriptor collections were generated with
commercially available MOE, CoMFA, CoMMA, Dragon, VolSurf, and MolconnZ programs; we also
included chirality topological descriptors recently developed in our laboratory (Golbraikh, A.; Bonchev, D.;
Tropsha, A.J. Chem. Inf. Comput. Sci.2001, 41, 147-158). CoMMA descriptors were used in combination
with MOE descriptors. MolconnZ descriptors were used in combination with chirality descriptors. Each
descriptor collection was combined individually with four correlation methods, includingk-nearest neighbors
(kNN) classification, Support Vector Machines (SVM), decision trees, and binary QSAR, giving rise to 28
different types of QSAR models. Multiple diverse and representative training and test sets were generated
by the divisions of the original data set in two. Each model with high values of leave-one-out cross-validated
correct classification rate for the training set was subjected to extensive internal and external validation to
avoid overfitting and achieve reliable predictive power. Two validation techniques were employed, i.e., the
randomization of the target property (in this case, odor intensity) also known as the Y-randomization test
and the assessment of external prediction accuracy using test sets. We demonstrate that not every combination
of the data modeling technique and the descriptor collection yields a validated and predictive QSAR model.
kNN classification in combination with CoMFA descriptors was found to be the best QSAR approach overall
since predictive models with correct classification rates for both training and test sets of 0.7 and higher
were obtained for all divisions of the ambergris data set into the training and test sets. Many predictive
QSAR models were also found using a combination ofkNN classification method with other collections of
descriptors. The combinatorial QSAR affords automation, computational efficiency, and higher probability
of identifying significant QSAR models for experimental data sets than the traditional approaches that rely
on a single QSAR method.

INTRODUCTION

The ambergris scent has been highly prized in the perfume
industry due to its delicate note and good fixative properties.
Originally, it has been extracted from ambergris, the natural
product, which is released in the intestinal tract of the sperm
whale (Physeter macrocephalus L.). According to the most
popular theory,1 ambergris is the pathological concretion of
abscesses which arises from injures by incompletely digested

food. It can be found in fragments of various weights2 on
the surface of the seawater after storms. Assuming that the
real fragrance compounds are products of autooxidation of
the principal ambergris’ ingredient ambrein (Figure 1) which
is odorless, Lederer3 was the first to explain observations
that the longer the fragments are floating in the water, the
finer is the ambergris odor.

The commercial importance of the ambergris scent has
stimulated the search for synthetic fragrance chemicals.4 The
synthesis of new odorants has been supported by several SAR
studies. First SAR studies were carried out by Ohloff and
co-workers and resulted in the “triaxial rule” of odor
sensation.5 According to this rule, ambergris fragrance
compounds should have atrans-decalin skeleton with axial
substituents in positions 1, 2, and 4 (Table 1, compounds
24 and25 are a typical example). One of these substituents
should be a functional group with an oxygen atom. However
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the “triaxial rule” of odor sensation was postulated for the
group oftrans-decalin derivatives solely and did not explain
the absence of the ambergris scent for other molecules which
correspond to the structural requirements of the “triaxial rule”
(Table 1, compounds30, 60, 67, etc.) or the presence of
ambergris odor for molecules with acis-decalin skeleton
(Table 1, compounds54, 77, 78, etc.) or a skeleton of a
different structural type (Table 1, compounds1, 81, etc.).6-8

In the follow-up studies structural requirements were
established for several chemical groups of ambergris odor-
ants. Vlad et al.9 found that in decalin systems the “ambergris
triangle” formed by an oxygen atom and two hydrogen atoms
should contribute to the lowest unoccupied molecular orbitals
(LUMO) of the ambergris chemicals. They suggested that
the LUMO takes part in the “orbital controlled electronic
charge transfer” between the active molecules and the
odorant receptor site.9

The theory about the presence of certain structural frag-
ments which are responsible for the odor of ambergris was
further advanced by Dimoglo10 and Gorbachov and Rossiter,8

who applied an electronic-topological approach.11,12Dimoglo
defined two characteristic structural fragments. The first
fragment included certain carbon atoms and an oxygen atom
bound to a secondary or tertiary carbon. The second fragment
consisted of two methyl groups with the same stereochemical
orientation which are attached to a quaternary carbon atom.
These two fragments could explain the disappearance of the
ambergris odor when the five-member ring of compound1
(Figure 2) is replaced by the six-member ring in compound
2 (Figure 2).

However, the same rule was insufficient to explain the
presence of odor for compound3 (Figure 2). Consequently,
the already known correlation between the steric accessibility
(SA) of the functional group (hydroxyl, ether, ester) and the
ambergris odor6,13 was appended by an additional term, SA
of the oxygen atom.10 This term helped to explain this
particular case. For compounds with more complex structures
the SA of the oxygen atom was appended by SA of a certain
methyl group.10

As mentioned above, the presence or absence of the
ambergris odor was correlated successfully only to the SA
of the functional ether group in bicyclic ether derivatives of
Ambrox.6,13 Thus, the attempt to find additional structural
fragments in combination with the SA terms was undertaken
for compounds of particular structural types.8,10 Due to the
complexity and diversity of the ambergris odorants this
methodology was insufficient to cover all compounds
included in the data sets.

Recently Bajgrowicz et al.14 synthesized six new camphor-
derived stereoisomers which were found with the help of
the olfactophore hypothesis15 generated using CATALYST.16

This hypothesis included one oriented hydrogen bond ac-

ceptor function (HBA)17 and four hydrophobic functions. The
hypothesis was able to explain the presence of the ambergris
odor of these compounds very successfully. To improve the
discrimination capacity of the hypothesis an additional search
of excluded volumes was performed.

The olfactory response for different chemical classes was
found to be sensitive to the compound stereochemistry. The
response can change between stereomers from the presence
to the absence of the ambergris odor, different level of odor
intensity, or quality. Stereochemistry is a crucial factor which
affects not only fragrances18,19 but also many classes of
biologically active compounds such as amino acids, carbo-
hydrates, lipids,20-23 many pharmaceuticals,24-26 etc. There-
fore, there is a challenge in the pharmaceutical, biochemical,
and theoretical chemistry to develop predictive QSAR models
for stereoisomers.27-29

Herein, we report on the development of robust QSAR
models of 98 ambergris-type compounds of different struc-
tural types with known stereochemistry (Table 1). In the
majority of previously reported studies the QSAR models
are typically generated with a single modeling technique,
frequently lacking external validation.30 To achieve QSAR
models of the highest quality, meaning both internal, and
most importantly, external accuracy, we have developed and
applied to the ambergris compounds a combinatorial QSAR
approach, which explores all possible combinations of
various collections of descriptors and optimization methods
along with external model validation.

Different collections of descriptors were generated using
MOE,31 CoMFA,32 CoMMA,33 Dragon,34 MolconnZ,35 and
Volsurf36 programs as well as an in-house program that
calculates chirality topological descriptors.27 CoMMA de-
scriptors were used in combination with MOE descriptors.
MolconnZ descriptors were used in combination with chiral-
ity descriptors. Optimization methods includedk-nearest
neighbors (kNN) classification, decision tree,31 binary clas-
sification,31,37and Support Vector Machines (SVM).38 Every
descriptor collection was explored individually in combina-
tion with every modeling technique resulting in 28 different
types of QSAR models. Multiple predictive models with a
correct classification rate for both the training set (CCRtrain)
and the test set (CCRtest) of at least 0.7 were found using
the kNN classification method with different collections of
descriptors. Several predictive models were found using other
methods as well; however, not every combination of a
descriptor set and the modeling technique afforded validated
and predictive models.

DATA SET

98 compounds were selected from several publications
(Table 1). The data set was compiled according to the
following criteria: (i) diversity of the chemical structures
and (ii) comprehensive data about the stereochemical con-
figuration of each compound. The compounds were selected
with respect to both their structural features and the qualita-
tive description of the ambergris scent. Ambergris odor has
been described as earthy, woody, camphor, fruity, rosy,
marine, sandalwood, musky, cedarwood, ambergris with
almond top notes, etc. Since the availability of quantitative
data on the ambergris scent is very poor, only the presence
or absence of the ambergris odor could be used to assign

Figure 1. Ambrein (odorless) and two of its principal oxidation
products with ambergris-like odor.
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Table 1. Data Set of 98 Ambergris Fragrance Compoundsa
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the value of the odor intensity as the dependent variable for
QSAR studies. Furthermore, only the ambergris feature was
taken into account when assigning the odor intensity.
Additional qualitative descriptions were neglected. All
compounds which had at least some ambergris odor were
given the value of odor intensity 1. Odorless compounds were
given the value of 0.

Molecular Representation.Three-dimensional (3D) struc-
tures of molecules were built, and their geometries were
optimized using Sybyl6.9.39 Molecular mechanics calcula-
tions were performed using the Tripos force field with the
Gasteiger-Hückel atomic charges. The optimized structures
were then used for the descriptor generation.

DESCRIPTORS

CoMFA Descriptors. CoMFA descriptors were calculated
after all molecules were aligned using carbon atomsa andb
and oxygen atomc (Table 1). Since structures1 and 15
(Table 1) show the most distinct ambergris odor, they were
used as templates for the spatial alignment of all other
molecules. First, molecule15was superimposed on molecule
1. For the remaining molecules the distance constraints were
imposed as follows. In molecules2-12, 26-32, 81-88, and
91-98 optimal distances between atomsa, b, andc were
set to be equal to those in molecule1. In molecules13-25,
33-54, 55-80, 89, and90optimal distances between atoms
a, b, andc were set to be equal to those in molecule15. The
force constantk was equal to 200. Molecules2-14and16-
98 were subjected to 10 fs molecular dynamics simulations
with T ) 300 K with subsequent minimization. Then
molecules2-12, 26-32, 81-88, and91-98 were super-
imposed on molecule1, and molecules13-25, 33-54, 55-
80, 89, and90 were superimposed on molecule15.

A rectangular grid with step 2 Å was built around the
aligned molecules; it was protruding for 4 Å outside of the

region occupied by the molecules in each direction. Steric
and electrostatic fields were calculated at each grid point
using a carbon sp3 probe atom with charge+1. The resulting
field values were extracted from Sybyl6.9. Pairwise correla-
tion analysis (see below) was performed on the field values,
and 150 of them with pairwise correlation coefficients below
0.7 were selected and used as descriptors in combination
with each of the modeling techniques.

Chirality Descriptors (CMTD). Chirality molecular
topological descriptors (CMTD) defined in ref 27 included
modified overall Zagreb indices,27,40,41molecular connectivity
indices,42-44 extended connectivity indices,45 and overall
connectivity indices.46,47 All of the indices make use of the
so-called chirality correction, which can be a real or
imaginary number added to or subtracted from vertex degrees
of a hydrogen-depleted molecular graph corresponding to
atoms in R- and S-configurations, respectively. For example,
the conventional index1ø is defined as1ø ) ∑All edges ij

(aiaj)-0.5, whereai andaj are the vertex degrees of adjacent
atoms i and j. The chirality index1ø is defined as1ø )
∑All edges ij (ai ( ci)-0.5(aj ( cj)-0.5, whereci is the chirality
correction for atomi. The plus sign is used, if the atom is in
the R-configuration, and the minus sign is used, if the atom
is in the S-configuration. For achiral atoms, the chirality
correction is zero. Additional details can be found else-
where.27,28

Chirality descriptors were used along with conventional
chirality-insensitive overall Zagreb indices,27,40,41molecular
connectivity indices,42-44 extended connectivity indices,45 and
overall connectivity indices.27,46 The chirality correctionc
was equal to 2. After applying complete correlation analysis
(see below), the total number of descriptors was equal to
53. The descriptors were normalized by range-scaling, so
that they had values within the interval [0,1].

MolconnZ Descriptors. MolconnZ35 descriptors were
used along with chirality descriptors (MolconnZ/CMTD
descriptors). Recently this combination of descriptors was
successfully used in QSAR studies of several data sets
containing chiral compounds.28 MolconnZ descriptors in-
cluded valence, path, cluster, path/cluster, and chain molec-
ular connectivity indices,42-44 kappa molecular shape indi-
ces,48,49topological50 and electrotopological51-54 state indices,
differential connectivity indices,43,55 graph’s radius and
diameter,44,56 Wiener57 and Platt58 indices, Shannon,59 and

Table 1. (Continued)

a Compounds marked with an asterisk have ambergris odor. Atoms used for CoMFA alignment are marked by a letter.

Figure 2. Structure and odor characteristics of several ambergris
compounds.
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Bonchev-Trinajstic´60 information indices, counts of different
vertices,23 and counts of paths and edges between different
types of vertices.23 In this case, after applying complete
correlation analysis (see below), the total number of the
MolconnZ/CMTDdescriptors was equal to 64. Descriptors
were normalized by range-scaling, so that they had values
within the interval [0,1].

VolSurf Descriptors. VolSurf descriptors are obtained
from 3D interaction energy grid maps.36 Calculation of
VolSurf descriptors includes the following steps. (i) Building
a grid around a molecule. (ii) Calculation of an interaction
field (with a water probe, or hydrophobic probe, etc.) in each
grid point. (iii) Eight or more energy values are assigned,
and for each energy value, the number of grid points inside
the surface corresponding to this energy (volume descriptors)
or belonging to this surface (surface descriptors) is calculated.

The main advantage of VolSurf descriptors is that they
are alignment-free.36 VolSurf descriptors include size and
shape descriptors, hydrophilic and hydrophobic regions
descriptors, interaction energy moments, and other descrip-
tors.36 The total number ofVolSurfdescriptors was 96.

MOE Descriptors. MOE descriptors31 include both 2D
and 3D molecular descriptors. 2D descriptors include physi-
cal properties, subdivided surface areas, atom counts and
bond counts, Kier and Hall connectivity42-44 and kappa shape
indices,48,49adjacency and distance matrix descriptors,56,57,61-63

pharmacophore feature descriptors, and partial charge de-
scriptors.31,64 3D molecular descriptors include potential
energy descriptors, surface area, volume and shape descrip-
tors, and conformation-dependent charge descriptors.31,65 In
total, 191MOE descriptors were calculated.

Comparative Molecular Moment Analysis (CoMMA)
Descriptors. Thirteen alignment-independent CoMMA de-
scriptors33 were used in this study including three principal
moments of inertiaIx, Iy, and Iz, dipole and quadrupole
momentsp andQ, three dipolar components,px, py, andpz,
and three components of displacement between the center
of mass and center of dipoledx, dy, anddz as well as two
quadrupole momentsQxx andQyy. All descriptors, except for
the last two are calculated with respect to the principal axes
of inertia. The last two descriptors are calculated with respect
to the frame with the origin in the center of the dipole and
with the axes having the same directions as the inertia axes.33

Descriptors were calculated online.66 All CoMMA descriptors
were used in combination with the 191 MOE descriptors (see
above). This collection of descriptors will be referred to as
CoMMA/MOE descriptors.

Dragon Descriptors. Dragon descriptors34 include dif-
ferent groups:67 constitutional descriptors, topological indices,
molecular walk counts,45,68 BCUT descriptors,69 Galvez
topological charge indices,70 2D autocorrelations, charge
indices, aromaticity indices,71 Randic molecular profiles,72

geometrical descriptors, RDF descriptors,73,74 3D-MoRSE
descriptors,75 Weighted Holistic Invariant Molecular (WHIM)
descriptors,76,77 empirical descriptors, GETAWAY descrip-
tors,78 functional groups, atom-centered fragments, empirical
descriptors, and properties. The total number of descriptors
was 641. Identical descriptors were discarded. For the
remaining descriptors pairwise correlation analysis (see
below) was performed. Thus, the number ofDRAGON
descriptors used in our calculations was reduced to 148.

DESCRIPTOR REDUCTION

The following descriptor exclusion methods were used to
reduce the collinearity and correlation between descriptors.

Pairwise Correlation Analysis. The procedure consists
of elimination of one of the descriptors from each pair with
the modulus of the correlation coefficient higher than a
predefined valueRmax. The procedure must be carried out
with care. Indeed, letRij ) R(di,dj) be the correlation
coefficient between descriptorsdi anddj. Then fromRij >
Rmax andRjk > Rmax does not follow thatRik > Rmax. So in
this case, ifdj is eliminated,dk must be retained.

In this work, we have used the following algorithm of the
pairwise correlation analysis. (i) Sort descriptors by variance
and exclude all descriptors with the variance lower than the
predefined value. LetD be the descriptor with the highest
variance. (ii) Calculate correlation coefficients betweenD
and all other descriptors. (iii) Exclude descriptors having the
modulus of the correlation coefficient withD higher than
Rmax. (iv) Let D be the next descriptor with the highest
variance. Go to step (ii). If there are no descriptors left, stop.

Complete Correlation Analysis.The complete correlation
analysis is used to select a subset of linearly independent
descriptors. Descriptors are considered as vectors inN-
dimensional space, whereN is the number of compounds.
Here we used the procedure similar to that described in ref
79. (i) Select a pair of descriptors with the lowest absolute
value of the correlation coefficient. (ii) Select the next
descriptor which has the lowest maximum correlation coef-
ficient with all linear combinations of descriptors selected
Rmin. It can be done by projecting the next descriptor onto a
subspace defined by the descriptors selected.Rmin is equal
to the ratio between the length of this projection and the
length of the descriptor vector. (iii) Repeat (ii) until the
maximum correlation coefficient with all linear combinations
of descriptors selected would reach a predefined valueRmax.
In this work,Rmax ) 0.99.

DIVISION OF A DATA SET INTO TRAINING AND
TEST SETS

A set of procedures for the division of a data set into
training and test sets has been developed recently.80,81These
procedures are based on sphere-exclusion algorithms (Figure
3).

The procedure implemented in this study starts with the
calculation of the distance matrixD between representative
points in the descriptor space. LetDmin and Dmax be the
minimum and maximum elements ofD, respectively.N probe
sphere radii are defined by the following formulas.Rmin )
R1 ) Dmin, Rmax ) RN ) Dmax/4, Ri ) R1 + (i-1)*(RN-R1)/
(N-1), where i ) 2,...,N-1. Each probe sphere radius
corresponds to one division into the training and the test set.
A sphere-exclusion algorithm used in this study consisted
of the following steps. (i) Select randomly a compound. (ii)
Include it in the training set. (iii) Construct a probe sphere
around this compound. (iv) Select compounds from this
sphere and include them alternatively into the test and the
training sets. (v) Exclude all compounds from within this
sphere from further consideration. (vi) If no more compounds
are left, stop. Otherwise letmbe the number of probe spheres
constructed andn be the number of remaining compounds.
Let dij (i)1,...,m; j)1,...,n) be the distances between the

586 J. Chem. Inf. Comput. Sci., Vol. 44, No. 2, 2004 KOVATCHEVA ET AL.



remaining compounds and the probe sphere centers. Select
a compound corresponding to the lowestdij value and go to
step (ii).

For each collection of descriptors, the data set was divided
into 50 training and test sets of different relative sizes. Then
three training and test sets were selected randomly for each
collection of descriptors (Table 2); the number of compounds
ranged between 58 and 91 for the training sets and between
40 and 7 for the corresponding test sets. For CoMMA/MOE
descriptors, two divisions were selected because of the small
number of CoMMA descriptors.

METHODS FOR QSAR ANALYSIS

The flowchart of the Combinatorial QSAR is given in
Figure 4.

We describe briefly several data modeling algorithms that
were employed in this work.

kNN-Classification Algorithm. This approach has been
implemented in our laboratory based on our earlier develop-
ments of thekNN QSAR methodology.82,83 Let N be the
number of compounds in a data set, and each compound
belongs to one of several classesa, b, c, .... Classification
kNN QSAR is a stochastic variable selection procedure based
on the simulated annealing approach. The procedure is aimed
at the development of a model with the highest fitness
[correct classification rate (CCR) for the training set]. The
parameters of the procedure are as follows: (1) the number
of descriptorsnVar to be selected from the entire set of
descriptors; (2) the maximum numberk of nearest neighbors;
(3) the number of descriptorsM that are changed at each
step of the stochastic descriptor sampling procedure; (4) the
starting Tmax and endingTmin values of the simulation
annealing “temperature”,T, and the factord < 1 to decrease
T (Tnext)d‚Tprevious) at each step; (5) the number of timesN
the calculations must be performed before loweringT, if the
CCR is not improved.

In all calculations reported in this work,k ) 5, Tmax )
100,Tmin ) 10-9, d ) 0.95, andM ) 3. For all descriptor
collections,D was varied from 10 to 50 with step 5. For
eachD, 10 models were built. Thus, the total number of
models built for one division into the training and test set
was 90.

The procedure starts with the calculation of the similarity
between each pair of classes. Letna andnb be the number
of compounds in classesa andb, respectively, andm be the
number of descriptors selected by thekNN classification
procedure. The Tanimoto coefficient84 was used as a similar-
ity measure between two classes

where Dh i
a and Dh i

b are average values of descriptori for
classesa andb, respectively

whereDij
a is the descriptor value for compoundj of classa.

Evidently, T(a,a) ) 1. Then weighted similaritiesSi,C

between each compoundi and each classC (a, or b, or c...)
are calculated. Letk be the number of nearest neighbors of
compoundi.

Then whereap in T(ap,C) is the class of compoundp, andR
is a parameter, which in this study was set to 2, anddip is
the distance between compoundi and its pth nearest
neighbor.

In the leave-one-out cross-validation procedure, every
compoundi of the training set is classified according to the
classes of its nearest neighbors as follows. First, the similarity
S′i,C between compoundi and each classC is calculated as
follows.

Then compoundi is assigned the class which corresponds
to the highest value ofS′i,C. The CCR is equal toNcorr/N,
whereN andNcorr are the total number of compounds and
the number of compounds classified correctly, respectively.

ClassificationkNN algorithm works as follows.
1. SetT ) Tmax.
2. Select randomly a subset ofD descriptors.
3. For each compound, predict its activity using expression

1.
4. Select the number of nearest neighbors, which gives

the highest CCR.

Figure 3. Sphere-exclusion algorithm.
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5. Change numberM < D of descriptors to the same
number of descriptors selected randomly out of all descrip-
tors.

6. Repeat steps 3 and 4 with the modified descriptor subset
obtained in step 5.

7. If the new CCR (CCRnew) is higher than the previous
one (CCRold), accept the new set of descriptors and go to
step 5. Otherwise, accept it with the probabilityp ) exp[-
(CCRold - CCRnew)/T] and go to step 5, or reject it with the
probability (1-p), and go to step 8.

8. If CCR does not change after step 5 is performedN
times for the currentT, and if T > Tmin, decreaseT and go
to step 5, and ifT e Tmin stop. If step 5 has been performed
less thanN times for the current CCR, go to step 5.

Thus, the output from the procedure is a QSAR model,
which is characterized by the set ofD descriptors selected,
the numberk of nearest neighbors, and the value of CCR
for the training set (CCRtrain).

Z-cutoff value characterizes the maximum distance be-
tween a compound for which the prediction is made and its
closest nearest neighbor of the training set in the descriptor
space. The square of this distance can be represented as a
sum of the average distance square between nearest neighbors
within the training set and a number ofZ of this distance
variance: D2

max ) 〈D2
near‚neighb〉 + Z‚Varnear‚neighb.

Classification accuracy of the model is estimated using
the test set.

1. For each compound of the test set,k-nearest neighbors
from the training set are found.

2. All compounds of the test set, the distances of which
to their closest nearest neighbor are within the defined
Z-cutoff, are selected.

3. Similarity of each compound chosen in step 2 to each
class is calculated using expression (3). The compound is
assigned a class, to which it has higher similarity.

4. Classification accuracy of the model is characterized
by the CCR for the test set (CCRtest).

In this study,Z was equal to 2 by default. The maximum
Z-cutoff value, for which a reliable prediction of new
compounds can be obtained, is a characteristic of the
applicability domain30 of a QSAR model. As we shall see,
using Z ) 2, high CCRtest values have been obtained for
several descriptor collections. We also searched for the lowest
possible Z value by decreasing Z below 2 with step 0.1 until
at least one test set compound was found outside the
corresponding applicability domain.

Binary Tree Classification. We have used a binary tree
classification algorithm as implemented in the Molecular
Operating Environment (MOE) package.31 The method
consists of two parts: tree growing and tree pruning. Tree
growing is carried out by splitting the nodes according to
the rules in the formx e c (if descriptorx is a continuous
variable) orx ) c (if it is a categorical data), wherec is the
best value for splitting the node. Splitting is based on the
Gini index of diversity85

wherePi
2(t) are the fractions of compounds of each classi

(i)1,...,K) in node t. G(t) is used as the nodet impurity
measure. The goodness of a split is measured by the change
C of the impurity of the node by splitting it

wherePL andPR are the proportions of cases going to the
left tL and right tR child nodes.31 In each step of the tree
growing, the node is split which gives the greatest decrease
of impurity. A node cannot be split, if all compounds in it
belong to the same class or if the number of compounds in
it is lower than a predefined limit.31

Each leaf in the tree is assigned to a class maximally
represented in this leaf. The misclassification rate in nodet
is calculated asr(t) ) 1 - nj/nt, wherenj is the number of

Table 2. Size of the Training and Test Sets Generated with the Sphere Exclusion Algorithm

division 1 division 2 division 3

collection of
descriptors

no. of
compds
in the
train./
test set

no. of
active/
inactive
compds

(train. set)

no. of
active/
inactive
compds
(test set)

no. of
compds
in the
train./
test set

no. of
active/
inactive
compds

(train. set)

no. of
active/
inactive
compds
(test set)

no. of
compds
in the
train./
test set

no. of
active/
inactive
compds

(train. set)

no. of
active/
inactive
compds
(test set)

Dragon 70/28 36/34 16/12 76/22 40/36 12/10 73/25 39/34 13/12
CMTD 67/31 37/30 15/16 72/26 39/33 13/13 58/40 30/28 22/18
MolconnZ/CMTD 73/25 41/32 11/14 68/30 32/36 20/10 78/20 41/37 11/9
MOE 61/37 38/23 14/23 91/7 49/42 3/4 70/28 36/34 16/12
CoMFA 82/16 43/39 9/7 77/21 41/36 11/10 71/27 38/33 14/13
VolSurf 80/18 44/36 8/10 73/25 40/33 12/13 68/30 37/31 15/15
CoMMA/MOE 66/32 36/30 16/16 73/25 39/34 13/12 - - -

Figure 4. The flowchart of the combinatorial QSAR methodology
including validation.

G(t) ) 1 - ∑
i)1

K

Pi
2(t) (4)

C ) G(t) - PLG(tL) - PRG(tR) (5)
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compounds of classj, and nt is the total number of
compounds in the node. The total misclassification rateR(T)
) Nmisclass/Ntot, whereNmisclassandNtot are the total number
of misclassified compounds and the total number of com-
pounds in the data set, respectively. If classes have different
sizes, the misclassification rate is multiplied by weights
defined aswj ) Ntot/Nj, whereNj is the number of compounds
in classj.31

An initially grown tree is very large and has a very high
correct classification rate for the training set. However,
usually it performs poorly for the test set.31 Tree pruning is
a procedure used to decrease the size of the tree and increase
its classification accuracy for the test set. This procedure
was performed using the test set. By pruning branches of
the tree, the accuracy of classification for the training set
and the size of the tree are decreased. A modified tree
misclassification rateRa(T) ) R(T) + aL(T) is defined, where
L(T) is the number of leaves in the tree, anda > 0 is a
parameter. According to this equation, the size of the tree
and the misclassification rate are balanced.31 By increasing
a, smaller trees can be found for whichR′a(T) ) Ra(T).
Pruning is performed by finding a sequence of successively
smaller treesTi, starting from the initially grown tree. The
smallest treeTN is just the root node. The misclassification
rate for eachTi is calculated using this test set. The output
of the procedure is the tree withR(T) within a specified
number of standard errors of the minimum of all subtree
R(T) values. The standard error is defined asσ )

xp(1-p)Ntest, wherep is the proportion of correctly classi-
fied cases. This subtree is referred to as the best subtree.31

The class of a new compound is predicted by assigning it
to the class of a leaf this compound belongs to. Classes
assigned to compounds of the external test set (obtained with
the sphere-exclusion algorithm) were used for the estimation
of the model classification accuracy. The following param-
eters have been used: minimum node split size 10, ordered
threshold 6, and best tree threshold 0.5.

Binary QSAR. Binary QSAR is a new technique devel-
oped by P. Labute37 and implemented in the MOE package.31

This approach can be applied, if the activitiesyi of com-
pounds take only two values, zero and one, which correspond
to inactive and active compounds, respectively. Binary QSAR
is based on the Bayesian inference technique, which is used
to classify a compound as an active or inactive one. Letm
be the total number of compounds, andm0 andm1 are the
number of inactive and active compounds (m)m0+m1). Then
if descriptors X1, X2,..., Xn are not correlated, then the
conditional probability that a compound with descriptor
valuesX1 ) x1, X2 ) x2, ... Xn ) xn is active, i.e.,p(x) )
Pr(Y)1|X1)x1,X2)x2...Xn)xn) can be estimated as37

wheref(x,y) ) Pr(Xj)xj|Y)y). Without loss of generality, it
is assumed that descriptorsX1, X2,...,Xn have the mean value
of zero and variance one.

Each functionf(x) can be estimated by considering a
histogram of observed descriptor values on a set ofB bins
(b0b1],..., (bB-1bB), where b0 ) -∞ and bB ) +∞. The
number of compounds within bink

can be smoothed by approximating eachδ-function with a
Gaussian with varianceσ2:37

σ is referred to as the smoothing parameter. Finally,f(x)
can be estimated as37

where

In the same way, allfj(xj,0) andfj(xj,1) can be estimated
and

Thus, the whole binary QSAR procedure consists of the
following steps.37 (i) The principal component analysis of
the descriptor matrix to produce a variance-covariance matrix
of xi ) Q(di-u) equal to the identity matrix, wherexi are
principal components anddi ) (di1,..., din) are descriptor
values for compoundi. (ii) Estimate the binary QSAR model
p(x) parameters. The probability that a compound with
descriptorsdi

new is active can be estimated asp(Q(di
new-u)).

Support Vector Machines (SVM).The SVM method was
developed by V. Vapnik.38 The application of SVM to the
binary classification problem was implemented in our group
as follows. Letm be a number of representative points of
compounds scattered in ann-dimensional descriptor space.
Compounds can be active (activity is equal to 1) or inactive
(activity is equal to-1). The problem is to divide active
and inactive compounds by a hyperplane in the descriptor
space. If the solution of this problem is possible, the data
set is referred to as separable. Otherwise it is nonseparable.
If a data set is separable, the solution can be found as follows.
Equation of any hyperplane in the descriptor space can be
represented as (wx) - b ) 0, wherew is normal to the
hyperplane,x is a vector with the beginning in the origin
and end on the hyperplane, and (wx) is the dot product ofw
and x. Let it be the dividing hyperplane. Without loss of
generality, we can assume that for any pointxi with activity
yi ) 1 (wxi) + b g +1, and for all pointsxi with yi ) -1
(wxi) + b e -1. These two inequalities can be combined in
one:

The distance between the hyperplane and the closest to it
data set points is equal to 1/||w||, where||w|| is the norm of
w. Thus, by minimizing||w|| or ||w||2 with constraints (9),
the optimal dividing hyperplane can be found. This optimi-

Bk ) ∑
i)1

m ∫bk-1

bk δ(x - xi)dx

Bk ) Ek - Ek-1,Ek )
1

2
∑
i)1

m

erf(bk - x

σx2
)

f̂(x) ) ∑
k)1

B Bk + 1/c

c + B/c
[Ek - Ek-1] (7)

c ) ∑
k)1

B

Bk

p(x) ) [1 +
m0 + 1

m1 + 1
∏
j)1

n f̂j(xj,0)

f̂ j(xj,1)]-1

(8)

yi[(wxi) + b] - 1 g 0 (9)

p(x) ) [1 +
m0 + 1

m1 + 1
∏
j)1

n fj(xj,0)

fj(xj,1)]-1

(6)
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zation problem can be solved by minimizing the Lagrangian

whereRi g 0 ∀ i are the Lagrange multipliers. Methods of
solving this problem and findingw andb are described in
ref 86. For allyi[(wxi)+b]-1 > 0, Ri ) 0, and for allyi-
[(wxi)+b] - 1 ) 0, Ri > 0. Points for whichRi > 0 are
called support vectors. These points belong to hyperplanes
yi[(wxi)+b] - 1 ) 0. In fact, only these points are necessary
to build the optimal dividing hyperplane. Assigning com-
pounds to a class of actives or inactives can be carried out
by finding yi from inequality (9).

In practice, if the number of points is lower than the
number of descriptors minus one and noK+2 points belong
to a K-dimensional hyperplane, the data set is always
separable. So if the number of descriptors is higher than the
number of compounds minus one, there is a high risk of
overfitting. The hyperplane will perfectly separate points of
the training set while there will be poor separation of the
test set. In this case the same approach is applied as in the
case when the solution does not exist, namely, such a
hyperplane is sought, which divides active and inactive
compounds with the classification error minimized. Con-
straints (9) are replaced by the inequalities

whereêi (i)1,...,m) are slack variables. The optimal hyper-
plane can be found by minimizing the Lagrangian

where 0e Ri e C ∀ i andµi are the Lagrange multipliers
for the constraintêi g 0. A penalty functionf(∑i)1

m êi) is a
positive monotonically increasing function of each parameter
êi. We have used the penalty function in the following form

whereε is a parameter. Support vectors are defined by the
conditionyi[(wxi)+b] - 1 + êi ) 0.

The hyperplane parameters depend onC and ε. These
parameters are also varied to reduce the overfitting. Thus
the SVM procedure was run multiple times to find the
optimum values ofC andε.

CONFUSION MATRICES AND CLASSIFICATION
ACCURACY OF QSAR MODELS

Confusion matrices are used to estimate the classification
accuracy of a QSAR model. In the case when compounds
belong to two classes (active and inactive compounds), a 2
× 2 confusion matrix can be defined as in Table 3a, where

Nact and Ninact are the number of active and inactive
compounds in the data set, TP, TN, FP, and FN are the
number of true positives, true negatives, false positives, and
false negatives. The following classification accuracy char-
acteristics associated with confusion matrices are widely used
in QSAR studies: sensitivity (S)TP/Nact), specificity (SP)TN/
Ninact), and enrichmentE ) TP*N/[(TP+FP)*Nact]. For all
QSAR models developed in this project, CCR was defined
asNcorr/N ) (TP+TN)/N, whereN andNcorr were the total
number of compounds and the number of correctly classified
compounds.

In this paper, we have employed normalized confusion
matrices (Table 3b). A normalized confusion matrix can be
obtained from the nonnormalized one by dividing the first
column byNact and the second column byNinact. Normalized
enrichment is defined in the same way asE but is calculated
using a normalized confusion matrix:En ) 2TP*Ninact/
[TP*Ninact+FP*Nact]. En takes values within the interval [0,
2].

Y-RANDOMIZATION

Y-randomization (randomization of response, i.e., in our
case, activities) is a widely used approach to establish the
model robustness.87 It consists of rebuilding the models using
randomized activities of the training set and subsequent
assessment of the model statistics. It is expected that models
obtained for the training set with randomized activities should
have significantly lower values of CCR for the test set than
the models built using the training set with real activities. If
this condition is not satisfied, real models built for this
training set are not reliable and should be discarded.

The Y-randomization test was performed for training sets
which afforded the models with the highest CCR values. The
calculations were performed five times for each collection
of descriptors and each optimization method, with the input
parameters identical to those used for building models with
real activities. Models built with randomized activities were
used to predict activities of the corresponding test set.
CCRtrain and CCRtest values for models built with real and
randomized activities were compared with each other. Using
kNN classification QSAR, multiple models were built. To
estimate the robustness of the classification QSAR models
we used the following criterion. LetNreal and Nrand be the
total number of models built with real and randomized
activities, respectively, andnreal andnrandbe the corresponding
number of models with CCRg 0.7 (which we considered

L )
1

2
||w||2 - ∑

i)1

m

Ri[yi((wxi) + b) - 1] (10)

yi[(wxi) + b] g 1 - êi, êi g 0 (11)

L )
1

2
||w||2 - ∑

i)1

m

Ri[yi((wxi) + b) - 1 + êi] +

Cf(∑
i)1

m

êi) - ∑
i)1

m

µiêi (12)

f ) {0, if ∑
i)1

m

êi e ε

∑
i)1

m

êi - ε, if ∑
i)1

m

êi > ε

(13)

Table 3. a. 2× 2 Confusion Matrix and b. Normalized 2× 2
Confusion Matrix

Section a

observed

predicted active inactive total

active TP FP TP+ FP
inactive FN TN FN+ TN
total Nact) TP + FN Ninact) FP+ TN N ) Nact+ Ninact

Section b

observed

predicted active inactive total

active TP/Nact FP/Ninact TP/Nact + FP/Ninact

inactive FN/Nact TN/Ninact FN/Nact + TN/Ninact

total Nact/Nact) 1 Ninact/Ninact) 1 2
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acceptable). The fractions of models with CCRg 0.7 are
Freal ) nreal/Nreal and Frand ) nrand/Nrand, respectively. The
robustness of predictive models (i.e., with CCRg0.7) built
with real activities of the training set was defined asR ) 1
- Frand/Freal. R takes values from minus infinity to 1. IfR g
0.9, predictive models are considered reliable. TheR values
were calculated for the fitness function, i.e., CCRtrain, obtained
in the LOO cross-validation procedure incorporated in the
kNN classification QSAR, and for prediction of activities
of the test set (CCRtest).

RESULTS AND DISCUSSION

The best models for all possible combinations of descriptor
collections and QSAR analysis methods are shown in Table
4. We discuss below the results for every QSAR method in
detail.

kNN Modeling. For each descriptor collection and each
division into the training and the test set, 90 variable selection
QSAR models were built. The number of descriptors selected
by kNN classification procedure varied from 10 to 50 with
step 5. All models with CCRtrain g 0.70 were validated using
Y-randomization and external prediction for the correspond-
ing test sets.

The Y-randomization tests were carried out for all models.
For each collection of descriptors, activities of training sets
corresponding to models with the highest CCRtest values
(division 1, Table 2) were randomized five times, and all
calculations were repeated for each randomization. Thus, for
each training set the number of all models built with
randomized activities was 450. Highest CCRtrain values for
models built with real and randomized activities appeared
to have similar values (Figure 5a).

This phenomenon can be explained as follows. Regardless
of the number of active (1) and inactive (0) compounds in
the data set, if we randomly assign 1 and 0 to each compound
with a probability of 0.5, the expected CCR value will be
equal to 0.5. If the model is trained to “correctly” predict
even randomized activities, the CCRtrain for the training set
can significantly exceed 0.5. This is exactly what we observe.
Thus a CCRtrain is not a good characteristic of a binary
classification QSAR model. We will demonstrate this
conclusion on the models built with other methods considered
in this paper. We have also calculated the number and the
fraction of models with CCRtrain g 0.7 for the training sets.

(Results for division 1 are presented in Table 5a.) These
results give a deeper insight into this problem. The robustness
of a model with a high CCR value can be estimated by the
robustness parameterR introduced above. The robustness
of all models with high CCRtrain values was very low (Table
5a). In some cases, the highest CCRtest values obtained with
models built with real and randomized activities of the
training sets also have similar values (Figure 5b) demonstrat-
ing the low robustness of such models (Table 5b).

However, the robustness of those models with high CCRtest

values was also high (Table 5b). All models with CCRtest g
0.7 appeared to have CCRtrain g 0.7, but the opposite was

Table 4. Combinatorial QSARa

method

kNN decision tree binary QSAR SVM

descriptorsb CCRtrain
c CCRtest CCRtrain CCRtest CCRtrain CCRtest CCRtrain CCRtest

Dragon (148) 0.70 (45) 0.86 0.70 0.78 0.72 0.76 0.83 0.68
CMTD (53) 0.72 (25) 0.65 0.67 0.74 0.76 0.50 0.81 0.58
MolconnZ/CMTD (64) 0.67 (50) 0.60 0.62 0.53 0.85 0.47 0.87 0.53
MOE (191) 0.79 (35) 0.65 0.74 0.71 0.74 0.86 0.77 0.65
CoMFA (150) 0.76 (15) 0.89 0.75 0.62 0.71 0.65 0.83 0.75
Volsurf (96) 0.77 (25) 0.85 0.77 0.60 0.74 0.70 0.94 0.53
COMMA/MOE (204) 0.77 (15) 0.75 0.74 0.72 0.73 0.70 0.73 0.69

a Correct classification rate (CCR) for models with the highest prediction accuracy for each combination of the method and collection of descriptors.
CCR values for the best models (when both training and test sets have these values greater than 0.7) are shown in bold. Although some models have
higher CCRtest values for the test set (see Table 6: MolconnZ/CMTD, MOE), they did not pass the Y-randomization test and were not accepted.
b The total number of descriptors is given in parentheses.c The number of descriptors selected by the variable selectionkNN classification procedure
is given in parentheses.

Figure 5. a.kNN classification modeling of the training sets with
different descriptors. Highest CCRtrain values for models built with
real (gray) and randomized (white) activities of the training sets
(division 1) for all collections of descriptors are shown. b.kNN
classification modeling of the test sets with different descriptors.
Highest CCRtest values for models built with real (gray) and
randomized (white) activities of the training sets (division 1) for
all collections of descriptors are shown.
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not true. Thus, the models with high values of both CCRtrain

and CCRtest and a high robustness of the test set predictions
were considered acceptable.

We shall emphasize that there exists no correlation
between CCRtrain and CCRtest values (Figure 6). Thus, the
validation of a classification QSAR model must include
comparison of predicted and observed activities for the
external test set (i.e., compounds which were not used in
model building). This conclusion was made previously by
several authors who reported QSAR models with the
continuous dependent variable.88,89Figure 6 is the classifica-
tion QSAR analogue of the so-called Kubinyi paradox.88,89

Despite a high value of CCRtrain, many models in Figure 6
have a low prediction accuracy (CCRtest<0.7).

Similar results have been obtained for divisions 2 and 3
(Table 2). For division 2, 21 models built with CoMFA
descriptors, 5 models built with CoMMA/MOE descriptors,
75 models built with MOE descriptors, and 20 models built
with Dragon descriptors had both CCRtrain and CCRtestequal
or exceeding 0.7. For division 3, 66 models built with

CoMFA descriptors, 48 models built with Dragon descriptors,
and 3 models built with MOE descriptors had both CCRtrain

and CCRtestequal or exceeding 0.7. For all these sets, except
for division 2 of the data set using Dragon descriptors, the
models had robustnessR > 0.9. Statistical characteristics of
predictive models with the highest CCRtestobtained with the
kNN classification method are given in Table 6. For all
descriptor collections, except for VolSurf descriptors, all
compounds of the test set were within the cutoff distance
with Z ) 2 (seekNN classification section above). For
VolSurf descriptors, five compounds of the test set of division
1 and four compounds of the test sets of divisions 2 and 3
were outside of the cutoff distance withZ ) 2 threshold
from compounds of the training set and were not classified.
Lowest Z values characterizing the applicability domain are
given in Table 6.

DECISION TREE

Decision trees were built using the MOE package.31

Complete descriptor collections were used in all calculations
because the package does not provide the option of automatic
variable selection. The following predictive models were
obtained using Dragon descriptors for division 1 (Table 2):
CCRtrain ) 0.74, CCRtest ) 0.75 (S)0.56, SP)1.0,E)1.75,
andEn)2.0); Dragon descriptors for division 2 CCRtrain )
0.70, CCRtest ) 0.78 (S)0.67, SP)0.90, E)1.63 and
En)1.74), MOE descriptors (division 2) CCRtrain ) 0.74,
CCRtest ) 0.71 (S)0.67, SP)0.75,E)1.55 andEn)1.45),
and CoMMA/MOE descriptors (division 2, Table 2) CCRtrain

) 0.74, CCRtest ) 0.72 (SE)0.62, SP)0.83,E)1.54, and
En)1.57). The Y-randomization test performed five times
for each of these divisions into training and test sets gave
the following results. Only for two models built with Dragon
descriptors (division 2) and MOE descriptors (division 2)
both CCRtrain and CCRtest values were higher than 0.7. Only
one model built with Dragon descriptors (division 1) had
both CCRtrain and CCRtest higher than 0.7. For that reason,
these models cannot be regarded as accurate.

BINARY QSAR

Binary QSAR calculations were carried out using MOE.31

Calculations were performed using complete descriptor
collections because the package does not provide the option
of automated selection of variables. The maximum number
of principal components was 10, the smoothing parameter
was equal to 0.25, and the binary threshold was set to 0.5.
The following predictive models were obtained using MOE
descriptors (division 2, Table 2) CCRtrain ) 0.74, CCRtest )
0.86 (S)0.67, SP)1, E)2.33, andEn)2), Dragon descrip-
tors (division 3, Table 2) CCRtrain ) 0.72, CCRtest ) 0.76
(S)0.69, SP)0.82, E)1.57, andEn)1.61), and VolSurf
descriptors (division 3, Table 2) CCRtrain ) 0.74, CCRtest )
0.70 (S)0.60, SP)0.80, E)1.50, andEn)1.50). The Y-
randomization test performed five times for these divisions
into training and test sets gave CCRtest < 0.6, except for
one value of CCRtest ) 0.86 for MOE descriptors (division
2). CCRtrain for this model was equal to 0.7. The test set in
this division contains only seven compounds. If the activities
of 0 and 1 are assigned randomly with a probability of 0.5,
the probability that for six out of seven compounds the
activities will be predicted correctly and CCRtest ) 0.86 is

Figure 6. CCRtestversus CCRtrain of 90kNN classification models
built with CoMFA descriptors (division 1).

Table 5. a. RobustnessR of Models with CCRtrain g 0.7a and b.
RobustnessR of Models with CCRtrain g 0.7 and CCRtest g 0.7b

nreal

Freal)
nreal/Nreal nrand

Frand)
nrand/Nrand

R )
1 - Frand/Freal

a.
CMTD 18 0.20 337 0.75 -2.75
CoMFA 90 1.00 437 0.97 0.03
CoMMA/MOE 84 0.93 249 0.55 0.41
Dragon 78 0.87 298 0.66 0.24
MOE 90 1.00 339 0.75 0.25
MolconnZ/CMTD 47 0.52 295 0.66 -0.27
VolSurf 90 1.00 338 0.75 0.25

b.
CMTD 0 0 0 0
CoMFA 50 0.56 13 0.029 0.95
CoMMA/MOE 9 0.10 23 0.051 0.49
Dragon 33 0.37 0 0 1.00
MOE
MolconnZ/CMTD 0 0 12 0.027
VolSurf 30 0.33 15 0.033 0.9

a Nreal and Nrand are the number of models built with real and
randomized activities of the training set.nreal andnrand are the number
of corresponding models with CCRtrain g 0.7. b Nreal andNrand are the
number of models built with real and randomized activities of the
training set, respectively.nreal andnrand are the number of models with
CCRtrain g 0.7 and CCRtest g 0.7, respectively.
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7/128) 0.055. Nevertheless, we cannot consider this model
acceptable. At the same time, CCRtrain values were equal or
higher than 0.7 two times for MOE descriptors, three times
for VolSurf descriptors, and five times for Dragon descrip-
tors. Thus, again we can make a conclusion that CCRtrain

alone is not a good characteristic of the classification
accuracy.

SUPPORT VECTOR MACHINES

In this study we have used SVM with a linear kernel as
described above. As in the previous cases, for models built
with real and randomized activities most CCR values for
the training sets were similar and high. At the same time,
all CCR values for the test sets were lower than 0.7, except
for division 2 for CoMFA descriptors (Table 2) for which
CCRtest ) 0.75 (S)0.67, SP)0.86,E)1.52, andEn)1.65).
For this model, CCRtrain ) 0.83. The Y-randomization test
performed five times gave the highest CCRtest ) 0.56.
However, for one of the randomizations CCRtrain ) 0.84.
Again, in this case, CCRtrain was not a good characteristic
of the classification accuracy.

CONCLUSIONS

The objective of this work was to conduct the most
comprehensive QSAR analysis of a data set of 98 ambergris
fragrance compounds with complex stereochemistry. This
data set consists of compounds of several structural types.
Within each group, all compounds have almost identical
structures, with only differences in chiralities of some atoms.
As we have shown, a standard approach to QSAR studies,
when only one method and one collection of descriptors is
used, has a high chance to fail. Herein we have investigated
a combinatorial QSAR approach, which considers all possible
independent models that can be built with various optimiza-
tion methods and different descriptor collections.

This methodology became feasible due to the rapid
development of computer technologies, which resulted in a
dramatic increase of the speed of calculations. The following
four QSAR methods have been included: classificationkNN
QSAR, decision tree,31 binary QSAR,31,37and Support Vector
Machines (SVM).38 Currently,kNN classification QSAR is
the only method which is fully automated in our laboratory.
The following seven collections of descriptors have been
calculated: CoMFA,32 CoMMA,33 MOE,31 chirality descrip-
tors,27 MolcoonZ,35 Dragon,34 and VolSurf.36 CoMMA
descriptors were used in combination with MOE descriptors.
MolconnZ descriptors were used in combination with chiral-
ity descriptors. A sphere exclusion algorithm was used to
divide a data set into diverse and representative training and
test sets. QSAR models were built using all possible
combinations of data modeling techniques, collections of
descriptors, and corresponding training and test sets. It was
found that not all combinations of modeling methods and
descriptor collections produce valid QSAR models. This fact
itself corroborates the necessity for an automated combina-
torial QSAR procedure in order to generate and mine the
space of QSAR models to identify all validated models.
Using the combi-QSAR approach, we were able to obtain
several predictive QSAR models for this data set.

kNN classification method in combination with CoMFA
descriptors gave predictive models for all divisions of a data
set into training and test sets (Table 6). Thus, for our data
set, the combination ofkNN classification with CoMFA
descriptors is the best combination of a QSAR method and
the descriptor collection. Multiple predictive QSAR models
have been obtained using thekNN classification with Dragon,
MOE, VolSurf, and CoMMA/MOE descriptors but only for
one or two of the divisions of a data set into training and
test sets. We showed that statistical significance of QSAR
classification models can be evaluated by a robustness

Table 6. kNN Classification Models with Highest CCRtest Values for All Divisions into Training and Test Sets and All Collections of
Descriptors: TP-True Positive, TN-True Negative, FP-False Positive, FN-False Negative, S-Sensitivity, SP-Specificity, E-Enrichment,En-the
normalized Enrichment, CCR-Correct Classification Ratea

confusion matrix (test set) statistics for the test set applicability domaincollection of
descriptors divisions TP TN FP FN S SP E En CCR CCRtrain Lowest Z values

Dragon 1 13 11 1 3 0.81 0.92 1.63 1.81 0.86 0.70 1.9
2 8 10 0 4 0.67 1.00 1.83 2.00 0.82 0.76 0.9
3 11 10 2 2 0.85 0.83 1.63 1.67 0.84 0.77 0.4

CMTD 1 9 12 4 6 0.60 0.75 1.43 1.41 0.68 0.66 1.4
2 6 11 2 7 0.46 0.85 1.50 1.50 0.65 0.72 1.3
3 13 10 8 9 0.59 0.56 1.13 1.14 0.58 0.78 1.4

MolconnZ/CMTD 1 9 8 6 2 0.81 0.57 1.36 1.31 0.68 0.74 1.6
2 9 9 1 11 0.45 0.90 1.35 1.64 0.60 0.67 1.1
3 7 6 3 4 0.64 0.67 1.27 1.31 0.65 0.73 1.2

MOE 1 12 12 10 3 0.80 0.55 1.35 1.28 0.65 0.77 0.2
2 3 4 0 0 1.00 1.00 2.33 2.00 1.00 0.70 0.1
3 11 12 11 3 0.63 0.67 1.25 1.30 0.64 0.79 0.3

CoMFA 1 9 5 2 0 1.00 0.71 1.45 1.56 0.88 0.81 0.6
2 10 6 4 0 1.00 0.60 1.43 1.43 0.80 0.84 2
3 12 12 1 2 0.86 0.92 1.78 1.84 0.89 0.76 0.7

VolSurfb 1 4 7 1 1 0.80 0.86 2.08 1.73 0.85 0.77 2
2 6 7 5 3 0.67 0.58 1.27 1.23 0.62 0.86 2
3 8 11 3 4 0.67 0.79 1.58 1.52 0.73 0.76 2

CoMMA/MOE 1 12 12 4 4 0.75 0.75 1.50 1.50 0.75 0.77 0.4
2 8 10 2 5 0.62 0.83 1.54 1.57 0.72 0.74 0.2

a Statistics for acceptable predictive models are printed in bold.b Five compounds of test set of division 1 and four compounds of test sets of
divisions 2 and 3 were beyond the applicability domain with the cutoff distance withZ ) 2 from compounds of the training set and were not
classified.
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parameter, which was defined in the Y-randomization
section. We suggest that this simple parameter should be
used in classification QSAR studies.

Several predictive models were obtained for one of the
divisions into training and test sets using other methods.
Thus, a combination of SVM with CoMFA descriptors gave
one predictive model; binary QSAR gave predictive models
in combination with Dragon descriptors and in combination
with VolSurf descriptors. The Decision Tree gave one
predictive model in combination with CoMMA/MOE de-
scriptors. The Decision tree and Binary QSAR were used as
implemented in the MOE package. Relative failure of these
methods can be partially explained by the fact that their direct
use does not allow variable selection. In the future, we will
develop automatic variable selection procedures for these
methods, similar to those used inkNN. Low prediction
accuracy of almost all SVM models is probably the
consequence of using its linear version. Low prediction
accuracy of all models built with CMTD descriptors can be
explained by the fact that they require exhaustive calculations
with different chirality correction values and different
subclasses of descriptors, as it was described in our previous
papers.27,28
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