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We consider the problem of learning a binary classifier from a training set of positive and unlabeled
examples, both in the inductive and in the transductive setting. This problem, often referred to as PU
learning, differs from the standard supervised classification problem by the lack of negative examples
in the training set. It corresponds to an ubiquitous situation in many applications such as information
retrieval or gene ranking, when we have identified a set of data of interest sharing a particular property,
and we wish to automatically retrieve additional data sharing the same property among a large and easily
available pool of unlabeled data. We propose a new method for PU learning with a conceptually simple
implementation based on bootstrap aggregating (bagging) techniques: the algorithm iteratively trains
many binary classifiers to discriminate the known positive examples from random subsamples of the
unlabeled set, and averages their predictions. We show theoretically and experimentally that the method
can match and even outperform the performance of state-of-the-art methods for PU learning, particularly
when the number of positive examples is limited and the fraction of negatives among the unlabeled
examples is small. The proposed method can also run considerably faster than state-of-the-art methods,
particularly when the set of unlabeled examples is large.

! 2013 Elsevier B.V. All rights reserved.

1. Introduction

In many applications, such as information retrieval or gene
ranking, one is given a finite set of data of interest sharing a partic-
ular property, and wishes to find other data sharing the same prop-
erty. In information retrieval, for example, the finite set can be a
user query, or a set of documents known to belong to a specific cat-
egory, and the goal is to scan a large database of documents to
identify new documents related to the query or belonging to the
same category. In gene ranking, the query is a finite list of genes
known to have a given function or to be associated to a given dis-
ease, and the goal is to identify new genes sharing the same prop-
erty (Aerts et al., 2006). In fact this setting is ubiquitous in many
applications where identifying a data of interest is difficult or
expensive, e.g., because human intervention is necessary or expen-
sive experiments are needed, while unlabeled data can be easily
collected. In such cases there is a clear opportunity to alleviate
the burden and cost of interesting data identification with the help
of machine learning techniques.

More formally, let us assign a binary label to each possible data:
positive (þ1) for data of interest, negative ("1) for other data.

Unlabeled data are data for which we do not know whether they
are interesting or not. Denoting X the set of data, we assume that
the ‘‘query’’ is a finite set of data P ¼ fx1; . . . ; xmg $ X with positive
labels, and we further assume that we have access to a (possibly
large) set U ¼ fxmþ1; . . . ; xng $ X of unlabeled data. Our goal is to
learn, from P and U, a way to identify new data with positive
labels, a problem often referred to as PU learning. More precisely
we make a distinction between two flavors of PU learning:

% Inductive PU learning, where the goal is to learn from P and U a
function f : X ! R able to associate a score or probability to be
positive f ðxÞ to any new data x 2 X , which may not be in the
training set of unlabeled data U . This may typically be the case
in an image or document classification system, where a subset
of the web is used as unlabeled set U to train the system, which
must then be able to scan any new image or document out of
the training set.
% Transductive PU learning, where the goal is to estimate a scoring

function s : U ! R from P and U, i.e., where we are just inter-
ested is finding positive data in the set U . This is typically the
case in the disease gene ranking application, where the full
set of human genes is known during training and split between
known disease genes P and the rest of the genome U . In that
case we are only interested in finding new disease genes in U .
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A growing body of work has focused on PU learning recently.
The fact that only positive and unlabeled examples are available
prevents a priori the use of supervised classification methods,
which require negative examples in the training set. A first ap-
proach to overcome the lack of negative examples is to disregard
unlabeled examples during training and simply learn from the po-
sitive examples, e.g., by ranking the unlabeled examples by
decreasing similarity to the mean positive example (Joachims,
1997) or using more advanced learning methods such as 1-class
SVM (Schölkopf et al., 2001; Manevitz and Yousef, 2001; Vert
and Vert, 2006; De Bie et al., 2007; Geurts, 2011)

Alternatively, the problem of inductive PU learning has been
studied on its own from a theoretical viewpoint (Denis et al.,
2005; Scott and Blanchard, 2009), and has given rise to a number
of specific algorithms. Several authors have proposed two-step
algorithms, heuristic in nature, which first attempt to identify neg-
ative examples in the unlabeled set, and then estimate a classifier
from the positive, unlabeled and likely negative examples (Mane-
vitz and Yousef, 2001; Liu et al., 2002, 2003; Li and Liu, 2003; Yu
et al., 2004). Alternatively, it was observed that directly learning
to discriminate P from U, possibly after rebalancing the misclassi-
fication costs of the two classes to account for the asymmetry of
the problem, leads to state-of-the-art results for inductive PU
learning. This approach has been studied, with different weighting
schemes, using a logistic regression or a SVM as binary classifier
(Liu et al., 2003; Lee and Liu, 2003; Elkan and Noto, 2008). Induc-
tive PU learning is also related to and has been used for novelty
detection, when P is interpreted as ‘‘normal’’ data and U contains
an arbitrary fraction p of negative or ‘‘novel’’ examples (Scott
and Blanchard, 2009), or to data retrieval from a single query,
when P is reduced to a singleton (Shah et al., 2008).

Transductive PU learning is arguably easier than inductive PU
learning, since we know in advance the data to be screened for po-
sitive labels. Many semi-supervised methods have been proposed
to tackle transductive learning when both positive and negative
examples are known during training, including transductive SVM
(Joachims, 1999), or many graph-based methods, reviewed by
Chapelle et al. (2006). Comparatively little effort has been devoted
to the specific transductive PU learning problem, with the notable
exception of Liu et al. (2002), who call the problem partially super-
vised classification and proposes an iterative method to solve it, and
Pelckmans and Suykens (2009) who formulate the problem as a
combinatorial optimization problem over a graph. Finally,
Sriphaew et al. (2009) recently proposed a bagging approach which
shares similarities with ours, but is more complex and was only
tested on a specific application.

Several methods for PU learning, reviewed above, reduce the
problem to a binary classification problem where we learn to dis-
criminate P from U. This can be theoretically justified, at least
asymptotically, since the ratio between the conditional distribu-
tions of positive and unlabeled examples is monotonically increas-
ing with the ratio of positive and negative examples (Elkan and
Noto, 2008; Scott and Blanchard, 2009), and has given rise to
state-of-the-art methods such as biased SVM (Liu et al., 2003) or
weighted logistic regression (Lee and Liu, 2003). Although this
reduction suggests that virtually any method for (weighted) super-
vised binary classification can be used to solve PU learning prob-
lems, we put forward in this paper that some methods may be
more adapted than others in a non-asymptotic setting, due to the
particular structure of the unlabeled class. In particular, we inves-
tigate the relevance of methods based on aggregating classifiers
trained on artificially perturbed training sets, in the spirit of
bagging (Breiman, 1996, 2001). Such methods are known to be rel-
evant to improve the performance of unstable classifiers, a situa-
tion which, we propose, may occur particularly in PU learning.
Indeed, in addition to the usual instability of learning algorithms

confronted to a finite-size training sets, the content of a random
subsample of unlabeled data in positive and negative examples is
likely to strongly affect the classifier, since the contamination of
U with positive examples makes the problem more difficult. Vari-
ations in the contamination rate of U may thus have an important
impact on the trained classifier, in that a higher contamination rate
makes the problem harder in practice (Scott and Blanchard, 2009),
a situation which bagging-like classifiers may benefit from.

Based on this idea, we propose a general and simple scheme for
inductive PU learning, akin to an asymmetric form of bagging for
supervised binary classification. The method, which we call bag-
ging SVM, consists in aggregating classifiers trained to discriminate
P from a small random subsample of U , where the size of the ran-
dom sample plays a specific role. This method can naturally be
adapted to the transductive PU learning framework. We demon-
strate on simulated and real data that bagging SVM performs at
least as well as existing methods for PU learning, while being often
faster in particular when jPj( jUj.

This paper is organized as follows. We present and study theo-
retically the bagging SVM for inductive PU learning in Section 2.1.
Its extension to transductive PU learning is considered in Section
2.2. Experimental results are presented in Section 3, followed by
a discussion in Section 4.

2. Methods

2.1. Bagging for inductive PU learning

Our starting point to learn a classifier in the PU learning setting
is the observation that learning to discriminate positive from unla-
beled samples is a good proxy to our objective, which is to discrim-
inate positive from negative samples. Even though the unlabeled
set is contaminated by hidden positive examples, it is generally
admitted that its distribution contains some information which
should be exploited. That is for instance, the foundation of semi-
supervised methods.

Indeed, let us assume for example that positive and negative
examples are randomly generated by class-conditional distribu-
tions Pþ and P" with densities hþ and h". If we model unlabeled
examples as randomly sampled from Pþ with probability c and
from P" with probability 1" c, then the distribution of unlabeled
has a density

hu ¼ chþ þ ð1" cÞh": ð1Þ

Now notice that

huðxÞ
hþðxÞ

¼ cþ ð1" cÞh"ðxÞ
hþðxÞ

ð2Þ

showing that the ratio between the conditional distributions of
positive and unlabeled examples is monotonically increasing with
the ratio of positive and negative examples (Elkan and Noto,
2008; Scott and Blanchard, 2009). Hence any estimator of the con-
ditional probability of positive vs. unlabeled data should in theory
also be applicable to discriminate positive from negative examples.
This is the case for example of logistic regression or some forms of
SVM (Steinwart, 2003; Bartlett and Tewari, 2007). In practice it
seems useful to train classifiers to discriminate P from U by penal-
izing more false negative than false positive errors, in order to ac-
count for the fact that positive examples are known to be
positive, while unlabeled examples are known to contain hidden
positives. Using soft margin SVM while giving high weights to false
negative errors and low weights to false positive errors leads to the
biased SVM approach described by Liu et al. (2003), while the same
strategy using a logistic regression leads to the weighted logistic
regression approach of Lee and Liu (2003). Both methods, tested
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on text categorization benchmarks, were shown to be very efficient
in practice, and in particular outperformed all approaches based on
heuristic identifications of true negatives in U .

Among the many methods for supervised binary classification
which could be used to discriminate P from U , bootstrap aggregat-
ing or ‘‘bagging’’ is an interesting candidate (Breiman, 1996). The
idea of bagging is to estimate a series of classifiers on datasets ob-
tained by perturbing the original training set through bootstrap
resampling, and to combine these classifiers by some aggregation
technique. The method is conceptually simple, can be applied in
many settings, and works very well in practice (Breiman, 2001;
Hastie et al., 2001). Bagging generally improves the performance
of individual classifiers when they are not too correlated to each
other, which happens in particular when the classifier is highly
sensitive to small perturbations of the training set. For example,
Breiman (2001) showed that the difference between the expected
mean square error (MSE) of a classifier trained on a single boot-
strap sample and the MSE of the aggregated predictor increases
with the variance of the classifier.

We propose that, by nature, PU learning problems have a partic-
ular structure that leads to instability of classifiers, which can be
advantageously exploited by a bagging-like procedure which we
now describe. Intuitively, an important source of instability in PU
learning situations is the empirical contamination ĉ of U with posi-
tive examples, i.e., the percentage of positive examples in U which
on average equals c in (1). If by chance U is mostly made of negative
examples, i.e., has low contamination by positive examples, then
we will probably estimate a better classifier than if it contains
mostly positive examples, i.e., has high contamination. Moreover,
we can expect the classifiers in these different scenarios to be little
correlated, since intuitively they estimate different log-ratios of
conditional distribution. Hence, in addition to the ‘‘normal’’ insta-
bility of a classifier trained on a finite-size sample, which is
exploited by bagging in general, we can expect an increased insta-
bility in PU learning due to the sensitivity of the classifier to the
empirical contamination ĉ of U in positive examples. In order to ex-
ploit this sensitivity in a bagging-like procedure, we propose to ran-
domly subsample U and train classifiers to discriminate P from
each subsample, before aggregating the classifiers. By subsampling
U , we hope to vary in particular the empirical contamination be-
tween samples. This will induce a variety of situations, some lucky
(small contamination), some less lucky (large contamination),
which eventually will induce a large variability in the classifiers
that the aggregation procedure can then exploit.

In opposition to classical bagging, the size K of the samples gen-
erated from U may play an important role to balance the accuracy
against the stability of individual classifiers. On the one hand, lar-
ger subsamples should lead on average to better classifiers, since
any classification method generally improves on average when
more training points are available. On the other hand, the empirical
contamination varies more for smaller subsamples.

To formalize a bit more this line of thought, let us denote by ĉ
the true contamination rate in U, that is, the true proportion of po-
sitive examples hidden in U . Whenever a bootstrap sample Ut of
size K is drawn from U, its empirical number of positive examples
is a binomial random variable ) BðK; ĉÞ, leading to a contamination
rate ĉt with mean and variance:

EðĉtÞ ¼ ĉ and VðĉtÞ ¼
1
K

ĉð1" ĉÞ:

The intuition that less contaminated samples allow to estimate bet-
ter classifiers can be formalized in many different ways. Here we
follow the analysis of Scott and Blanchard (2009) who study the
inductive PU learning framework and consider the setting where
we want to learn a function f : X ! R which has a small probability
of predicting negative examples as positives R"ðf Þ ¼ P"ðf ðXÞ > 0Þ

for a probability of predicting positive examples as negatives
Rþðf Þ ¼ Pþðf ðXÞ < 0Þ bounded by a fixed level a > 0. For any level
a > 0, denoting by R*";a ¼ inf f :Rþðf Þ6aR"ðf Þ the smallest possible risk,
Scott and Blanchard (2009, Theorem 2) show that the excess risk
of a function f̂ t trained to discriminate a set P of size P of positive
examples from a subsample U t of size K and contamination ĉt is
upper bounded with large probability d as follows:

L";aðf̂ tÞ ¼ R"ðf̂ tÞ " R*";a 6
eP þ eK

1" ĉt
;

where ei is an upper bound on the excess risk due to a finite sample
of size i, typically proportional to i"1=2 for a classifier trained to dis-
criminate P from U t by empirical risk minimization on a finite set
(Scott and Nowak, 2005). This leads to an upper bound of the excess
risk of the form:

L";aðf̂ tÞ 6 c
P"1=2 þ K"1=2

1" ĉt
; ð3Þ

where c is a constant. Details relating constant c and the probability
d can be found in Scott and Blanchard (2009, Theorem 2). Eq. (3)
shows that the quality of the estimator increases when the size of
the unlabeled sample K increases and its contamination ĉt

decreases, as expected. When we aggregate different classifiers f̂ t

trained on subsamples with varying contamination ĉt , we can ex-
pect that the excess risk of the aggregated classifier reaches the per-
formance of individual classifiers with smaller-than-average
contamination, typically with contamination ĉ" c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĉð1" ĉÞ=K

p

where c2 > 0 is a constant (independent of c). Plugging this estimate
into (3), we obtain that the excess risk of the aggregated classifier is
upper bounded with large probability by

c
P"1=2 þ K"1=2

1" ĉþ c2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĉð1" ĉÞ

p
K"1=2 : ð4Þ

Now we see that, when P > ĉc2
2=ð1" ĉÞ, the upper bound (4) is a

decreasing function of K and there is no apparent gain in subsam-
pling and aggregating with K < N. On the other hand, when
P < ĉc2

2=ð1" ĉÞ, the upper bound (4) is an increasing function of K,
suggesting that choosing K < N may lead to more accurate classifi-
ers. In words, when P is not too large, it may be better to subsample
the set of unlabeled examples with K < N samples and aggregated
the resulting classifiers, because the gain in performance due to
the stochastic decrease in contamination in a fraction of subsamples
can be exploited by aggregation and outperforms the loss due the
fact that each classifier is trained on a smaller data set.

In summary, the method we propose for PU learning is pre-
sented in Algorithm 1. It creates a series of classifiers trained to
discriminate P from random subsamples of U. The output of each
of these classifiers is a function ft that assigns a prediction score
to any example. The score function f of the final aggregated clas-
sifier is simply defined as the average score of the individual
classifiers.

Algorithm 1. Inductive bagging PU learning

INPUT: P;U;K ¼ size of bootstrap samples, T ¼ number of
bootstraps

OUTPUT: a function f : X ! R

for t ¼ 1 to T do
Draw a subsample Ut of size K from U .
Train a classifier ft to discriminate P against Ut .

end for
Return

f ¼ 1
T

XT

t¼1

ft
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We call it bagging SVM when the classifier used to discriminate
P from a random subsample of U is a biased SVM. It is akin to bag-
ging to learn to discriminate P from U , with two important speci-
ficities. First, only U is subsampled. This is to account for the fact
that elements in P are known to be positive, and moreover that
the number of positive examples is often limited. Second, the size
of subsamples is a parameter K whose effect needs to be studied. If
an optimal value exists, then this parameter may need to be
adjusted.

The number T of bootstrap samples is also a user-defined
parameter. Intuitively, the larger T the better, although we ob-
served empirically little improvement for T larger than 100 (see
Section 3, Fig. 3). Finally, although we propose to aggregate the T
classifiers by a simple average, other aggregation rules could easily
be used. On preliminary experiments on simulated and real data,
we did not observed significant differences between the sim-
ple average and majority voting, another popular aggregation
method.

2.2. Bagging SVM for transductive PU learning

We now consider the situation where the goal is only to assign
a score to the elements of U reflecting our confidence that these
elements belong to the positive class. Liu et al. (2002) have stud-
ied the same problem which they call ‘‘partially supervised clas-
sification’’. Their proposed technique combines Naive Bayes
classification and the Expectation–Maximization algorithm to
iteratively produce classifiers. The training scores of these classi-
fiers are then directly used to rank U. Following this approach, a
straightforward solution to the transductive PU learning problem
is to train any classifier to discriminate between P and U and to
use this classifier to assign a score to the unlabeled data that
were used to train it. Using SVMs this amounts to using the
biased SVM training scores. We will subsequently denote this
approach by transductive biased SVM.

However, one may argue that assigning a score to an
unlabeled example that has been used as negative
training example is problematic. In particular, if the classifier
fits too tightly to the training data, a false negative xi will
hardly be given a high training score when used as a negative.
In a related situation in the context of semi-supervised learning,
Zhang et al. (2009) showed for example that unlabeled exam-
ples used as negative training examples tend to have underesti-
mated scores when an SVM is trained with the classical hinge
loss. More generally, most theoretical consistency properties of
machine learning algorithms justify predictions on samples
outside of the training set, raising questions on the use of all
unlabeled samples as negative training samples at the same
time.

Alternatively, the inductive bagging PU learning lends itself
particularly well to the transductive setting, through the
procedure described in Algorithm 2. Each time a random
subsample Ut of U is generated, a classifier is trained to dis-
criminate P from U t , and used to assign a predictive score to
any element of U n U t . At the end the score of any element
x 2 U is obtained by aggregating the predictions of the classifi-
ers trained on subsamples that did not contain x (the counter
nðxÞ simply counts the number of such classifiers). As such, no
point of U is used simultaneously to train a classifier and to test
it. In practice, it is useful to ensure that we average the predic-
tions over a sufficient number of classifiers. Typically, if we
wish to average over n scores, we need to choose T such that
Tð1" K

jUjÞ + n.

Algorithm 2. Transductive bagging PU learning

INPUT: P;U;K ¼ size of bootstrap samples, T ¼ number of
bootstraps

OUTPUT: a score s : U ! R

Initialize 8x 2 U; nðxÞ 0; f ðxÞ 0
for t ¼ 1 to T do

Draw a bootstrap sample Ut of size K in U .
Train a classifier ft to discriminate P against Ut .
For any x 2 U n Ut , update:

f ðxÞ f ðxÞ þ ftðxÞ;

nðxÞ nðxÞ þ 1:

end for
Return sðxÞ ¼ f ðxÞ=nðxÞ for x 2 U

3. Results

In this section we investigate the empirical behavior of our bag-
ging algorithm on one simulated dataset (Section 3.1) and two real
applications: text retrieval with the 20 newsgroup benchmark
(Section 3.2), and reconstruction of gene regulatory networks (Sec-
tion 3.3). We compare the new bagging SVM to the state-of-the-art
biased SVM, and also add in the comparison for real data two
one-class approaches, namely, ranking unlabeled examples by
decreasing mean similarity to the positive examples (called Base-
line below), and the one-class SVM (Schölkopf et al., 2001). The
biased SVM consists in training a soft margin SVM to discriminate
between P and U. Both bagging and biased methods involve an
SVM with asymmetric penalties Cþ and C" for the positive and
negative class, respectively. By default we always set them to en-
sure that the total penalty is equal for the two classes, i.e.,
Cþnþ ¼ C"n", where nþ and n" are the number of positive and neg-
ative examples fed to the SVM, and optimized the single parameter
C ¼ Cþ þ C" over a grid. We checked on all experiments that this
choice was never significantly outperformed by another penalty
ratio Cþ=C".

All methods were implemented in MATLAB, using the
LIBSVM software (Chang and Lin, 2011) to train one- and
two-class SVM. All experiments were run under Linux on a
machine with two 4-core Intel Xeon 3.16 GHz processors and
16 Gb or RAM.

3.1. Simulated data

A first series of experiments were conducted on simulated data
to compare our bagging procedure to the biased approach in an
inductive setting. We consider the simple situation where the po-
sitive examples are generated from an isotropic Gaussian distribu-
tion in Rp : P ) Pþ ¼ N ð0p;r * IpÞ, with p ¼ 50 and r ¼ 0:6, while
the negative examples are generated from another Gaussian distri-
bution with same isotropic covariance and a different mean, of
norm 1. We replicate the following iteration 50 times for different
values of c:

% Draw a sample P of 5 positives examples, and a sample U of 50
unlabeled examples from c * Pþ þ ð1" cÞ * P".
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% Train respectively the biased and bagging logit (with 200
bootstraps).1

% Compare their performance on a test set of 1000 examples
containing 50% positives.

For K, we tested equally spaced values between 1 and 50, and
we varied c on the interval ½0; 0:8-. The performance is measured
by computing the area under the Receiving Operator Characteristic
curve (AUC) on the independent test set. Fig. 1 (left) shows the per-
formance of bagging logit for different levels of contamination of U,
as a function of K, the size of the random samples. The uppermost
curve thus corresponds to c ¼ 0, i.e., the case where all unlabeled
data are negative, while the bottom curve corresponds to c ¼ 0:8,
i.e., the case where 80% of unlabeled data are positive. Note that
K ¼ 50 corresponds to classical bagging on the biased logit classi-
fier, i.e., to the case where all unlabeled examples are used to train
the classifier.

We observe that in the classical setting of supervised binary
classification where U is not contaminated by positive samples
(c ¼ 0), the bagging procedure does not improve performance,
whatever the size of the bootstrap samples. On the other hand,
as contamination increases, we observe an overall decrease of
the performance, confirming that the classification problem be-
comes more difficult when contamination increases. In addition,
the bagging logit always succeeds in reaching at least the same
performance for a value of K below 50, even for high rates of con-
tamination. Fig. 1 (right) shows the evolution of AUC as c increases,
for both methods. For the bagging logit we report the AUC reached
for the best K value. We see that bagging logit slightly outperforms
the biased logit method.

To further illustrate the assumption that motivated bagging
SVM, namely that decreasing K would decrease the average
performance of single classifiers but would increase their variance
due to the variations in contamination, we take a closer look at the
successive classifiers learnt when training Algorithm 1. Each clas-
sifier corresponds to a random bootstrap subsample Ut . We show
in Fig. 2 a scatter plot of the AUC of these individual classifiers as
a function of ĉ, the empirical contamination of the bootstrap sam-
ple Ut , for two values of K (10 and 40). Here the mean contamina-

tion was set to c ¼ 0:2. Obviously, the variations of ĉ are much
larger for K ¼ 10 (between 0 and 0.5) than for K ¼ 40 (between
0.1 and 0.25). The correlation coefficient between ĉ and the perfor-
mance (reported above each plot) is strongly negative, in particular
for smaller K. It is quite clear that less contaminated subsamples
tend to yield better classifiers, and that the variation in the con-
tamination is an important factor to increase the variance between
individual predictors, which aggregation can benefit from.

3.2. Newsgroup dataset

The 20 Newsgroup benchmark is widely used to test PU learn-
ing methods. The version we used is a collection of 11,293 articles
partitioned into 20 subsets of roughly the same size (around 500),2

corresponding to post articles of related interest. For each news-
group, the positive class consists of those )500 articles known to
be relevant, while the negative class is made of the remainder. After
pre-processing, each article is represented by a 8165-dimensional
feature vector, based on word counts, using the TFIDF representation
over a dictionary of 8165 words (Joachims, 1997).

To simulate a PU learning problem, we applied the following
strategy. For a given newsgroup, we created a set P of known po-
sitive examples by randomly selecting a given number of positive
examples, while U contains the non-selected positive examples
and all negative examples. We varied the size NP of P in
f5;10;20;50;100;200;300g to investigate the influence of the
number of known positive examples. For each newsgroup and each
value of NP , we train all 4 methods described above (bagging SVM,
biased SVM, baseline, one-class SVM) and rank the samples in U by
decreasing score (transductive setting). We then compute the AUC,
and average this measure over 10 replicates of each newsgroup
and each value of NP . For bagging and biased SVM, we varied the
C parameter over the grid e"12; e"10; . . . ; e2

" #
, while we vary param-

eter m in 0:1;0:2; . . . ;0:9f g for 1-class SVM. We only used the linear
kernel.

We first investigated the influence of T. Fig. 3 shows, for the first
newsgroup (alt.atheism), the performance reached as a function of
T, for different settings in NP and K. As expected we observe that in
general the performance increases with T, but quickly reaches a
plateau beyond which additional bootstraps do not improve
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Fig. 1. Results on simulated data. Left: AUC of the bagging logit as a function of K, the size of the bootstrap samples, on simulated data. Each curve, from top to bottom,
corresponds to a contamination level c 2 f0; 0:1; 0:2; . . . ; 0:8g. Right Performance of two methods as a function of c, the contamination level, on simulated data. The
performance of bagging logit was taken at the optimal K value.

1 The bagging logit corresponds to the procedure described above, when the
classifier is a logistic regression. This is the same for the biased logit, see also Lee and
Liu (2003).

2 We used the Matlab pre-processed version available at http://renatocor-
rea.googlepages.com/ng2011293x8165itrn.mat
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performance. Overall the smaller K, the larger T must be to reach
the plateau. From these preliminary results we set T ¼ 35 for
K 6 20, and T ¼ 10 for K > 30, and kept it fix for the rest of the
experiments. To further clarify the benefits of bagging, we show
in Fig. 4 the performance of the bagging SVM versus the perfor-
mance of a SVM trained on a single bootstrap sample (T ¼ 1), for
different values of K and a fixed number of positives NP ¼ 10. We
observe that, for K below 200, aggregating classifiers over several
bootstrap subsamples is clearly beneficial, while for larger values
of K it does not really help. This is coherent with the observation
that SVM usually rarely benefit from bagging: here the benefits

come from our particular bagging scheme. Interestingly, we see
that very good performance is reached even for small values of K
with the bagging.

Fig. 5 shows the mean AUC averaged over the 10 folds and the
20 newsgroups for bagging SVM as a function of K, and compares it
to that of the biased SVM. More precisely, each point on the curve
corresponds to the performance averaged over the 20 Newsgroups
after choosing a posteriori the best C parameter for each news-
group. This is equivalent to comparing optimal cases for both
methods. Contrary to what we observed on simulated data, we ob-
serve that K has in general very little influence on the performance.

Fig. 2. Distribution of AUC and ĉ over the 500 iterations of one bootstrap loop on the simulated dataset, c ¼ 0:2.
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Fig. 3. Performance on newsgroup 1 (alt.atheism) as a function of the number of bootstraps T, for different values of NP and K.
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The AUC of the bagging SVM is similar to that of the biased SVM for
most values of K, although for NP larger than 50, a slight advantage
can be observed for the biased SVM over bagging SVM when K is
too small. We conclude that in practice, parameter K may not need

to be finely tuned since it does not always have a big impact on the
performance. In all cases, K ¼ NP seems to be a safe choice for the
bagging SVM.

Finally, Fig. 6 shows the average AUC over the 20 newsgroups
for all four methods, as a function of NP . Overall all methods are
very similar, with the Baseline slightly below the others. In details,
the bagging SVM curve dominates all other methods for NP P 20,
while the 1-class SVM is the one which dominates for smaller val-
ues of NP . Although the differences in performance are small, the
bagging SVM outperforms the biased SVM significantly for
NP > 20 according to a Wilcoxon paired sample test (at 5% confi-
dence). For small values of NP however, no significant difference
can be proven in either way between bagging SVM and 1-class
SVM, which remains a very competitive method.

3.3. Escherichia coli dataset: inference of transcriptional regulatory
network

In this section we test the different PU learning strategies on the
problem of inferring the transcription regulatory network of the
bacteria E. coli from gene expression data. The problem is, given
a transcription factor (TF), to predict which genes it regulates. Fol-
lowing Mordelet and Vert (2008), we can formulate this problem
as transductive PU learning by starting from known regulated
genes (considered positive examples), and looking for additional
regulated genes in the bacteria’s genome.

To represent the genes, we use a compendium of microarray
expression profiles provided by Faith et al. (2008), in which 4345
genes of the E. coli genome are represented by vectors in 445
dimensions, corresponding to their expression level in 445 differ-
ent experiments. We extracted the list of known regulated genes
for each TF from the RegulonDB (Salgado et al., 2006).

For each TF, we ran a double 3-fold cross validation with an
internal loop on each training set to select parameter C of the
SVM (or m for the 1-class SVM). To make this possible, we restrict
ourselves to 31 TFs with at least 8 known regulated genes. Follow-
ing Mordelet and Vert (2008), we normalize the expression data to
unit norm, use a Gaussian RBF kernel with r ¼ 8, and perform a
particular cross-validation scheme to ensure that operons are not
split between folds. Finally, following our previous results on sim-
ulated data and the newsgroup benchmark, we test two variants of
bagging SVM, setting K successively to NP and 5 * NP . These choices
are denoted respectively by bagging1 SVM and bagging5 SVM.

Fig. 7 shows the average precision/recall curves of all methods
tested. Overall we observe that all three PU learning methods give
significantly better results than the two methods which use only
positive examples (Wilcoxon paired sample test at 5% significance
level). No significant difference was found between the three PU
learning methods. This confirms again that for different values of
K bagging SVM matches the performance of biased SVM.

4. Discussion

The main contribution of this work is to propose a new method,
bagging SVM, both for inductive and transductive PU learning, and
to assess in detail its performance and the influence of various
parameters on simulated and real data.

The motivation behind bagging SVM was to exploit an intrinsic
feature of PU learning to benefit from classifier aggregation
through a random subsample strategy. Indeed, by randomly sam-
pling K examples from the unlabeled examples, we can expect var-
ious contamination rates, which in turn can lead to very different
single classifiers (good ones when there is little contamination,
worse ones when contamination is high). Aggregating these classi-
fiers can in turn benefit from the variations between them. This
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Fig. 4. Performance on one newgroup of bagging SVM (bagged AUC) vs a SVM
trained on a single bootstrap sample (mean AUC), for different values of K.
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suggests that K may play an important role in the final perfor-
mance of bagging SVM, since it controls the trade-off between
the mean and variance of individual classifiers. While we showed
on simulated data that this is indeed the case, and that there can
be some optimum K to reach the best final accuracy, the two
experiments on real data did not show any strong influence of
K and suggested that K ¼ NP may be a safe default choice. This
is a good news since it does not increase the number of parame-
ters to optimize for the bagging SVM and leads to balanced train-
ing sets that most classification algorithms can easily handle.
Regarding parameter C optimization, our experiments on the
Newsgroup dataset were designed so as to compare optimal cases
and therefore did not include any parameter selection strategy.
Hence they were rather intended as a proof of concept, to show
that if one is able to successfully select optimal parameters C,
then one would be able to reach same performance with the bag-
ging SVM scheme as with the biased SVM method. However note
that in practice, parameter optimization is a crucial step which
may be carried out using cross validation, as was done on the
E. coli dataset.

The comparison between different methods is mitigated. While
bagging SVM outperforms biased SVM on simulated data, they are
not significantly different on the two experiments with real data.
Interestingly, while these PU learning methods were significantly
better than two methods that learned from positive examples only
on the gene regulatory network example, the 1-class SVM behaved
very well on the 20 newsgroup benchmark, even outperforming
the PU learning methods when less than 10 training examples
were provided. Many previous works, including Liu et al. (2003)
and Yu et al. (2004) discard 1-class SVMs for showing a bad perfor-
mance in terms of accuracy, while Manevitz and Yousef (2001) re-
port the lack of robustness of this method arguing that it has
proved very sensitive to changes of parameters. Our results suggest
that there are cases where it remains very competitive, and that PU
learning may not always be a better strategy than simply learning
from positives.

Finally, the main advantage of bagging SVM over biased SVM is
that it greatly alleviates the computation burden, in particular
when there are far more unlabeled than positive examples. Indeed,
a typical algorithm, such as an SVM, trained on N samples, has time
complexity proportional to Nb, with b between 2 and 3. Therefore,
biased SVM has complexity proportional to ðP þ UÞb while bagging
SVM’s complexity is proportional T * ðP þ KÞb. With the default
choice K ¼ P ratio of CPU time to train the biased SVM vs the bag-
ging SVM can therefore be expected to be ðP þ UÞ=ð2PÞð Þb=T. Then
we conclude that bagging SVM should be faster than biased SVM
as soon as U=P > 2T1=b " 1. For example, taking T ¼ 35 and b ¼ 3,
bagging SVM should be faster than biased SVM as soon as
U=P > 6, a situation very often encountered in practice where the
ratio U=P is more likely to be several orders of magnitude larger.
In the two real datasets, this was always the case. Table 1 reports
CPU time in seconds and performance measure for training bag-
ging SVM on the first fold of newsgroup 1 with C fixed at its best
value a posteriori and NP ¼ 10.

In comparison, the biased SVM’s CPU time is 227 s for
AUC ¼ 0:932 and AUP ¼ 0:491. This confirms that for reasonable
values of T and K, the bagging SVM is much faster than the biased
SVM for a comparable performance.

5. Conclusion

We have presented an original approach to the problem of
learning from positive and unlabeled examples. Our approach uses
a bagging-like strategy to exploit the availability of the numerous
unlabeled examples. Extensive experiments on simulated and real
data have allowed us to assess the sensitivity of the algorithm to its
parameter and to compare its performance to existing methods.
We have provided safe choices of the parameters, thus reducing
the number of parameters to optimize and making our algorithm
simple to implement and to apply. We have shown that our bag-
ging SVM outperforms existing approaches on simulated data. On

Fig. 7. Precision-recall curves to compare the performance between the baggin1 SVM, the bagging5 SVM, the biased SVM, the 1-class SVM and the baseline method.

Table 1
CPU time (in s) and performance measures (AUC: area under the ROC curve and AUP: area under the precision/recall curve) for different settings of T and K for bagging SVM.

Bagging CPU AUC-AUP

K = 10 K = 50 K = 200 K = 10 K = 50 K = 200

T 35 13 39 91 0.921–0.531 0.917–0.524 0.902–0.518
50 18 54 127 0.920–0.539 0.914–0.522 0.904–0.522

200 72 170 473 0.918–0.539 0.910–0.528 0.904–0.511
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real data, the results were more mitigated, but the bagging SVM re-
mained competitive being either the dominant method or per-
forming equally (no significance difference was found). Finally,
our method greatly improves over the state-of-art biased SVM in
terms of computation time.
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