
397

23

Limma: Linear Models for
Microarray Data

Gordon K. Smyth

Abstract

A survey is given of differential expression analyses using the
linear modeling features of the limma package. The chapter starts
with the simplest replicated designs and progresses through exper-
iments with two or more groups, direct designs, factorial designs
and time course experiments. Experiments with technical as well
as biological replication are considered. Empirical Bayes test statis-
tics are explained. The use of quality weights, adaptive background
correction and control spots in conjunction with linear modelling is
illustrated on the β7 data.

23.1 Introduction

Limma1 is a package for differential expression analysis of data arising from
microarray experiments. The package is designed to analyze complex exper-
iments involving comparisons between many RNA targets simultaneously
while remaining reasonably easy to use for simple experiments. The cen-
tral idea is to fit a linear model to the expression data for each gene.
The expression data can be log-ratios, or sometimes log-intensities, from
two color microarrays or log-intensity values from one channel technologies
such as Affymetrix�. Empirical Bayes and other shrinkage methods are
used to borrow information across genes making the analyses stable even
for experiments with small number of arrays [1, 2].

1Smyth, G. K. (2005). Limma: linear models for microarray data. In: Bioinformatics
and Computational Biology Solutions using R and Bioconductor, R. Gentleman, V.

Carey, S. Dudoit, R. Irizarry, W. Huber (eds.), Springer, New York, pages 397–420.

398 Smyth

Limma is designed to be used in conjunction with the affy or affyPLM
packages for Affymetrix� data as described in chapters 2 and 25. With two
color microarray data, the marray package may be used for pre-processing as
described in Chapter 4. Limma itself also provides input and normalization
functions which support features especially useful for the linear modeling
approach.

This chapter gives a survey of differential expression analyses starting
with the simplest replicated designs and progressing through experiments
with two or more groups, factorial designs and time course experiments.
For the most part, this chapter does not analyze specific data sets but gives
instead generic code which can be applied to any data set arising from the
designs described. Analyses of specific data sets are given in Chapters 4, 14,
16 and 25. One purpose of this chapter is to place these analyses in context
and to indicate how the methods would be extended to more complex
designs. This chapter was prepared using limma version 1.8.18.

23.2 Data Representations

The starting point for this chapter and many other chapters in this book
is that an experiment has been performed using a set of microarrays hy-
bridized with two or more different RNA sources. The arrays have been
scanned and image-analyzed to produce output files containing raw inten-
sities, usually one file for each array. The arrays may be one-channel with
one RNA sample hybridized to each array or they may be two-channel or
two-color with two RNA samples hybridized competitively to each array.

Expression data from experiments using one-channel arrays can be rep-
resented as a data matrix with rows corresponding to probes and columns
to arrays. The rma() function in the affy package produces such a matrix
for Affymetrix� arrays. The output from rma() is an exprSet object with
the matrix of log-intensities in the exprs slot. See Chapters 2 and 25 for
details.

Experiments using two-color arrays produce two data matrices, one each
for the green and red channels. The green and red channel intensities are
usually kept separate until normalization, after which they are summa-
rized by a matrix of log-ratios (M -values) and a matrix of log-averages
(A-values). See Chapter 4 for details.

Two-color experiments can be divided into those for which one channel
of every array is a common reference sample and those which make direct
comparisons between the RNA samples of interest without the intermedi-
ary of a common reference. Common reference experiments can be treated
similarly to one-channel experiments with the matrix of log-ratios taking
the place of the matrix of log-intensities. Direct two-color designs require
some special techniques. Many features of limma are motivated by the de-

23. Limma: Linear Models for Microarray Data 399

sire to obtain full information from direct designs and to treat all types of
experiment in a unified way.

Sections 23.3 to 23.11 will assume that a normalized data object called
MA or eset is available. The object eset is assumed to be of class exprSet
containing normalized probe-set log-intensities from an Affymetrix� exper-
iment while MA is assumed to contain normalized M and A-values from an
experiment using two-color arrays. The data object MA might be an mar-
rayNorm object produced by maNorm() in the marray package or an MAList
object produced by normalizeWithinArrays() or normalizeBetweenArrays()

in the limma package, although marrayNorm objects usually need some fur-
ther processing after normalization before being used for linear modeling
as explained in Section 23.4. The examples of Sections 23.4 to 23.11 remain
valid if eset or MA is just a matrix containing the normalized log-intensities
or log-ratios.

Apart from the expression data itself, microarray data sets need to in-
clude information about the probes printed on the arrays and information
about the targets hybridized to the arrays. The targets are of particular
interest when setting up a linear model. In this chapter the target labels
and any associated covariates are assumed to be available in a targets frame
called targets, which is just a data.frame with rows corresponding to ar-
rays in the experiment. In an exprSet object this data frame is often stored
as part of the phenoData slot, in which case it can be extracted by targets

<- pData(eset). Despite the name, there is no implication that the covari-
ates are phenotypic in nature, in fact they often indicate genotypes such
as wild-type or knockout. In an marrayNorm object the targets frame is
often stored as part of the maTargets slot, in which case it can be extracted
by targets <- maInfo(maTargets(MA)). Limma provides the function read-

Targets() for reading the targets frame directly from a text file, and doing
so is often the first step in a microarray data analysis.

23.3 Linear Models

Limma uses linear models to analyze designed microarray experiments [3,
1]. This approach allows very general experiments to be analyzed nearly
as easily as a simple replicated experiment. The approach requires two
matrices to be specified. The first is the design matrix which provides a
representation of the different RNA targets which have been hybridized to
the arrays. The second is the contrast matrix which allows the coefficients
defined by the design matrix to be combined into contrasts of interest.
Each contrast corresponds to a comparison of interest between the RNA
targets. For very simple experiments the contrast matrix may not need to
be specified explicitly.

400 Smyth

The first step is to fit a linear model using lmFit() which fully models the
systematic part of the data. Each row of the design matrix corresponds to an
array in the experiment and each column corresponds to a coefficient. With
one-channel data or common reference data, the number of coefficients will
be equal to the number of distinct RNA sources. With direct-design two-
color data there will be one fewer coefficient than distinct RNA targets, or
the same number if a dye-effect is included. One purpose of this step is to
estimate the variability in the data.

In practice one might be interested in more or fewer comparisons between
the RNA targets than there are coefficients. The contrast step, which uses
the function contrasts.fit(), allows the fitted coefficients to be compared
in as many ways as there are questions to be answered, regardless of how
many or how few these might be.

Mathematically we assume a linear model E[yj] = Xαj where yj con-
tains the expression data for the gene j, X is the design matrix and
αj is a vector of coefficients. Here yT

j is the jth row of the expression
matrix and contains either log-ratios or log-intensities. The contrasts of
interest are given by βj = CT αj where C is the contrasts matrix. The
coefficients component of the fitted model produced by lmFit() con-
tains estimated values for the αj . After applying contrasts.fit(), the
coefficients component now contains estimated values for the βj .

With one-channel or common reference microarray data, linear modeling
is much the same as ordinary ANOVA or multiple regression except that
a model is fitted for every gene. With data of this type, design matrices
can be created in the same way that one would do when modeling univari-
ate data. With data from two-color direct designs, linear modeling is very
flexible and powerful but the formation of the design matrix may be less fa-
miliar. The function modelMatrix() is provided to simplify the construction
of appropriate design matrices for two-color data.

23.4 Simple Comparisons

The simplest possible microarray experiment is one with a series of replicate
two-color arrays all comparing the same two RNA sources. For a three-array
experiment comparing wild-type (wt) and mutant (mu) RNA, the targets
frame might contain the following entries:

FileName Cy3 Cy5
File1 wt mu
File2 wt mu
File3 wt mu

A list of the top genes which show evidence of differential expression
between the mutant and wild-type might be found for this experiment by

23. Limma: Linear Models for Microarray Data 401

> fit <- lmFit(MA)

> fit <- eBayes(fit)

> topTable(fit, adjust = "fdr")

where MA holds the normalized data. The default design matrix used here
is just a single column of ones. This experiment estimates the fold change
of mutant over wild-type. Genes which have positive M -values are more
highly expressed in the mutant while genes with negative M -values are
more highly expressed in the wild-type. The analysis is analogous to the
classical single-sample t-test except that empirical Bayes methods have
been used to borrow information between genes.

A simple modification of the above experiment would be to swap the
dyes for one of the arrays. The targets frame might now be

FileName Cy3 Cy5
File1 wt mu
File2 mu wt
File3 wt mu

and the analysis would be

> design <- c(1, -1, 1)

> fit <- lmFit(MA, design)

> fit <- eBayes(fit)

> topTable(fit, adjust = "fdr")

Alternatively the design matrix could be constructed, replacing the first of
the above code lines, by

> design <- modelMatrix(targets, ref = "wt")

where targets is the targets frame.
If there are at least two arrays with each dye orientation, for example

FileName Cy3 Cy5
File1 wt mu
File2 mu wt
File3 wt mu
File4 mu wt

then it may be useful to estimate probe-specific dye-effects. The dye-effect
is estimated by an intercept term in the linear model. Including the dye-
effect uses up one degree of freedom, which might otherwise be used to
estimate the residual variability, but may be valuable if many genes show
non-negligible dye-effects.

Integrin α4β7 experiment. Chapter 4 introduces a data example with six
replicate arays including three dye-swaps in which integrin β7+ memory
T help cells play the role of “mutant” and β7- cells play the role of “wild-
type”. Here we continue from the“quick start”section of that chapter where

402 Smyth

an marrayNorm object normdata is created and a top table gene listing is
presented. For this data it proves important to include a dye effect.

> design <- cbind(Dye = 1, Beta7 = c(1,-1,-1,1,1,-1))

> fit <- lmFit(normdata, design, weights = NULL)

> fit <- eBayes(fit)

Now

> topTable(fit, coef = "Dye", adjust = "fdr")

reveals significant dye effects for many genes.
Note the use of weights=NULL in the above fit. This is needed because the

function read.GenePix used to input the data populates the maW slot of the
data object with GenePix® spot quality flags rather than with weights. The
flags are just indicators which take on various negative values to indicate
suspect spots with zero representing a normal spot, whereas functions in
R which accept “weights” expect them to be numeric non-negative values
with zero indicating complete unreliability. For this reason it was necessary
to use weights=NULL to tell lmFit() to ignore the weights slot in normdata.
Much better however is to convert the flags into quantitative weights. The
code below gives weight zero to all spots with negative flags and weight
one to all unflagged spots. This improves the power of the analysis and
increases the number of apparently differentially expressed genes.

> w <- 0 + (maW(normdata) >= 0)

> fit <- lmFit(normdata, design, weights = w)

> fit <- eBayes(fit)

> tab <- topTable(fit, coef = "Beta7", adjust = "fdr")

> tab$Name <- substring(tab$Name, 1, 20)

> tab

ID Name M A t P.Value B

6647 H200017286 GPR2 - G protein-cou -2.45 7.8 -14.7 0.011 5.6

11025 H200018884 Homo sapiens cDNA FL -1.60 6.6 -12.1 0.024 4.7

6211 H200019655 KIAA0833 - KIAA0833 -1.61 8.0 -10.9 0.034 4.1

11431 H200015303 CCR9 - Chemokine (C- 1.50 10.1 9.9 0.049 3.6

4910 H200003784 SEMA5A - Sema domain -1.35 6.8 -8.7 0.101 2.8

3152 H200012024 ITGA1 - Integrin, al 1.32 7.0 9.7 0.101 2.5

22582 H200017325 IFI27 - Interferon, 1.32 7.2 7.7 0.105 2.2

7832 H200004937 Homo sapiens cDNA FL -1.23 6.3 -9.0 0.105 2.2

20941 H200008015 PTPRJ - Protein tyro -0.88 11.0 -7.6 0.105 2.0

9314 H200006462 LMNA - Lamin A/C -1.21 7.9 -8.6 0.105 2.0

In this table, M is the log2 fold change, with positive values indicating higher
expression in the β7+ cells. For the meaning of the other columns see
Section 23.12.

23. Limma: Linear Models for Microarray Data 403

23.5 Technical Replication

In the previous sections we have assumed that all arrays are biological
replicates. Now consider an experiment in which two wild-type and two
mice from the same mutant strain are compared using two arrays for each
pair of mice. The targets might be

FileName Cy3 Cy5
File1 wt1 mu1
File2 wt1 mu1
File3 wt2 mu2
File4 wt2 mu2

The first and second and third and fourth arrays are technical replicates. It
would not be correct to treat this experiment as comprising four replicate
arrays because the technical replicate pairs are not independent, in fact
they are likely to be positively correlated.

One way to analyze these data is the following:

> biolrep <- c(1, 1, 2, 2)

> corfit <- duplicateCorrelation(MA, ndups = 1, block = biolrep)

> fit <- lmFit(MA, block = biolrep, cor = corfit$consensus)

> fit <- eBayes(fit)

> topTable(fit, adjust = "fdr")

The vector biolrep indicates the two blocks corresponding to biological
replicates. The value cofit$consensus estimates the average correlation
within the blocks and should be positive. This analysis is analogous to
mixed model analysis of variance [4, Chapter 18] except that information
has been borrowed between genes. Information is borrowed by constraining
the within-block correlations to be equal between genes and by using em-
pirical Bayes methods to moderate the standard deviations between genes
[2].

If the technical replicates were in dye-swap pairs as

FileName Cy3 Cy5
File1 wt1 mu1
File2 mu1 wt1
File3 wt2 mu2
File4 mu2 wt2

then one might use

> design <- c(1, -1, 1, -1)

> corfit <- duplicateCorrelation(MA, design, ndups = 1, block = biolrep)

> fit <- lmFit(MA, design, block = biolrep, cor = corfit$consensus)

> fit <- eBayes(fit)

> topTable(fit, adjust = "fdr")

404 Smyth

In this case the correlation corfit$consensus should be negative because the
technical replicates are dye-swaps and should vary in opposite directions.

This method of handling technical replication using duplicateCorre-

lation() is somewhat limited. If for example one techical replicate was
dye-swapped and the other not,

FileName Cy3 Cy5
File1 wt1 mu1
File2 mu1 wt1
File3 wt2 mu2
File4 wt2 mu2

then there is no way to use duplicateCorrelation() because the technical
replicate correlation will be negative for the first pair but positive for the
second. An alternative strategy is to include a coefficient in the design
matrix for each of the two biological blocks. This could be accomplished
by defining

> design <- cbind(MU1vsWT1 = c(1,-1,0,0), MU2vsWT2 = c(0,0,1,1))

> fit <- lmFit(MA, design)

This will fit a linear model with two coefficients, one estimating the mu-
tant vs wild-type comparison for the first pair of mice and the other
for the second pair of mice. What we want is the average of the two
mutant vs wild-type comparisons, and this is extracted by the contrast
(MU1vsWT1+MU2vsWT2)/2:

> cont.matrix <- makeContrasts(MUvsWT = (MU1vsWT1 + MU2vsWT2)/2,

+ levels = design)

> fit2 <- contrasts.fit(fit, cont.matrix)

> fit2 <- eBayes(fit2)

> topTable(fit2, adjust = "fdr")

The technique of including an effect for each biological replicate is well
suited to situations with a lot of technical replication. Here is a larger
example from a real experiment. Three mutant mice are to be compared
with three wild-type mice. Eighteen two-color arrays were used with each
mouse appearing on six different arrays:

> targets

FileName Cy3 Cy5

1391 1391.spot wt1 mu1

1392 1392.spot mu1 wt1

1340 1340.spot wt2 mu1

1341 1341.spot mu1 wt2

1395 1395.spot wt3 mu1

1396 1396.spot mu1 wt3

1393 1393.spot wt1 mu2

1394 1394.spot mu2 wt1

23. Limma: Linear Models for Microarray Data 405

1371 1371.spot wt2 mu2

1372 1372.spot mu2 wt2

1338 1338.spot wt3 mu2

1339 1339.spot mu2 wt3

1387 1387.spot wt1 mu3

1388 1388.spot mu3 wt1

1399 1399.spot wt2 mu3

1390 1390.spot mu3 wt2

1397 1397.spot wt3 mu3

1398 1398.spot mu3 wt3

The comparison of interest is the average difference between the mutant
and wild-type mice. duplicateCorrelation() could not be used here because
the arrays do not group neatly into biological replicate groups. In any case,
with six arrays on each mouse it is much safer and more conservative to fit
an effect for each mouse. We could proceed as

> design <- modelMatrix(targets, ref = "wt1")

> design <- cbind(Dye = 1, design)

> colnames(design)

[1] "Dye" "mu1" "mu2" "mu3" "wt2" "wt3"

The above code treats the first wild-type mouse as a baseline reference so
that columns of the design matrix represent the difference between each of
the other mice and wt1. The design matrix also includes an intercept term
which represents the dye effect of Cy5 over Cy3 for each gene. If no dye
effect is expected then the second line of code can be omitted.

> fit <- lmFit(MA, design)

> cont.matrix <- makeContrasts(muvswt = (mu1+mu2+mu3-wt2-wt3)/3,

+ levels = design)

> fit2 <- contrasts.fit(fit, cont.matrix)

> fit2 <- eBayes(fit2)

> topTable(fit2, adjust = "fdr")

The contrast defined by the function makeContrasts represents the average
difference between the mutant and wild-type mice, which is the comparison
of interest.

This general approach is applicable to many studies involving biological
replicates. Here is another example based on a real example conducted
by the Scott Lab at the Walter and Eliza Hall Institute (WEHI). RNA is
collected from four human subjects from the same family, two affected by
a leukemia-inducing mutation and two unaffected. Each of the two affected
subjects (A1 and A2) is compared with each of the two unaffected subjects
(U1 and U2):

406 Smyth

FileName Cy3 Cy5
File1 U1 A1
File2 A1 U2
File3 U2 A2
File4 A2 U1

Our interest is to find genes which are differentially expressed between
the affected and unaffected subjects. Although all four arrays compare an
affected with an unaffected subject, the arrays are not independent. We
need to take account of the fact that RNA from each subject appears on
two different arrays. We do this by fitting a model with a coefficient for
each subject and then extracting the contrast between the affected and
unaffected subjects:

> design <- modelMatrix(targets, ref = "U1")

> fit <- lmFit(MA, design)

> cont.matrix <- makeContrasts(AvsU = (A1+A2-U2)/2, levels = design)

> fit2 <- contrasts.fit(fit, cont.matrix)

> fit2 <- eBayes(fit2)

> topTable(fit2, adjust = "fdr")

23.6 Within-Array Replicate Spots

Robotic printing of spotted arrays can be set up to print more than one spot
from each well of the DNA plates. Such printing means that each probe
is printed two or more times a fixed distance apart. The most common
printing is in duplicate, with the duplicates being either side-by-side or in
the top and bottom halves of the array. The second option means that the
arrays are printed with two sub-arrays each containing a complete set of
probes.

Duplicate spots can be effectively handled by estimating a common value
for the intra-duplicate correlation [2]. Suppose that each probe is printed
twice in adjacent positions, side-by-side by columns. Then the correlation
may be estimated by

> corfit <- duplicateCorrelation(MA, design, ndups = 2, spacing = "columns")

Here spacing="rows" would indicate replicates side-by-side by rows and
spacing="topbottom" would indicate replicates in the top and bottom halves
of the arrays. The spacing may alternatively be given as a numerical value
counting the number of spots separating the replicate spots.

The estimated common correlation is corfit$consensus. This value
should be a large positive value, say greater than 0.4. The correlation is
then specified at the linear modeling step:

> fit <- lmFit(MA, design, ndups = 2, spacing = 1, cor = corfit$consensus)

23. Limma: Linear Models for Microarray Data 407

The object fit contains half as many rows as does MA, i.e., results for the
multiple printings of each probe have been consolidated. See Chapter 14 for
an example of this analysis applied to the Kidney cancer study. The analysis
given there demonstrates the greater power of the duplicate correlation
approach compared to simply averaging the log-ratios from the replicate
spots.

23.7 Two Groups

Suppose now that we wish to compare two wild-type (Wt) mice with
three mutant (Mu) mice using two-color arrays hybridized with a common
reference RNA (Ref):

FileName Cy3 Cy5
File1 Ref WT
File2 Ref WT
File3 Ref Mu
File4 Ref Mu
File5 Ref Mu

The interest is to compare the mutant and wild-type mice. There are two
major ways in which this comparison can be made. We can (1) create
a design matrix which includes a coefficient for the mutant vs wild-type
difference, or (2) create a design matrix which includes separate coefficients
for wild-type and mutant mice and then extract the difference as a contrast.

For the first approach, the design matrix might be

> design

WTvsREF MUvsWT

Array1 1 0

Array2 1 0

Array3 1 1

Array4 1 1

Array5 1 1

This is sometimes called the treatment-contrasts parametrization. The first
coefficient estimates the difference between wild-type and the reference for
each probe while the second coefficient estimates the difference between
mutant and wild-type. For those not familiar with model matrices in linear
regression, it can be understood in the following way. The matrix indicates
which coefficients apply to each array. For the first two arrays the fitted
values will be just the WTvsREF coefficient. For the remaining arrays the
fitted values will be WTvsREF + MUvsWT, which is equivalent to mutant vs
reference. Differentially expressed genes can be found by

408 Smyth

> fit <- lmFit(MA, design)

> fit <- eBayes(fit)

> topTable(fit, coef = "MUvsWT", adjust = "fdr")

There is no need here to use contrasts.fit() because the comparison of
interest is already built into the fitted model. This analysis is analogous
to the classical pooled two-sample t-test except that information has been
borrowed between genes.

For the second approach, the design matrix should be

WT MU

Array1 1 0

Array2 1 0

Array3 0 1

Array4 0 1

Array5 0 1

We will call this the group-means parametrization. The first coefficient
represents wild-type vs the reference and the second represents mutant vs
the reference. Our interest is in the difference between these two coefficients.
Differentially expressed genes can be found by

> fit <- lmFit(MA, design)

> fit2 <- contrasts.fit(fit, c(-1, 1))

> fit2 <- eBayes(fit2)

> topTable(fit2, adjust = "fdr")

The genelist will be the same as for the first approach.
The design matrices can be constructed manually or using the built-in

R function model.matrix(). Let Group be the factor defined by

> Group <- factor(c("WT", "WT", "Mu", "Mu", "Mu"), levels = c("WT", "Mu"))

For the first approach, the treatment-contrasts parametrization, the design
matrix can be computed by

> design <- cbind(WTvsRef = 1, MUvsWT = c(0, 0, 1, 1, 1))

or by

> design <- model.matrix(~Group)

> colnames(design) <- c("WTvsRef", "MUvsWT")

For the second approach, the group-means parametrization, the design
matrix can be computed by

> design <- cbind(WT = c(1, 1, 0, 0, 0), MU = c(0, 0, 1, 1, 1))

or by

> design <- model.matrix(~0 + Group)

> colnames(design) <- c("WT", "Mu")

23. Limma: Linear Models for Microarray Data 409

Suppose now that the experiment had been conducted with one-channel
arrays such as Affymetrix� rather than with a common reference, so the
targets frame might be

FileName Target
File1 WT
File2 WT
File3 Mu
File4 Mu
File5 Mu

The one-channel data can be analyzed exactly as for the common reference
experiment. For the treatment-contrasts parametrization, the design matrix
is as before

> design

WT MUvsWT

Array1 1 0

Array2 1 0

Array3 1 1

Array4 1 1

Array5 1 1

except that the first coefficient estimates now the mean log-intensity for
wild-type mice rather than the wild-type versus reference log-ratio. For
the group-means parametrization, the design matrix is as before but the
coefficients now represent mean log-intensties for wild-type and mutant
rather than log-ratios versus the wild-type. Design and contrasts matrices
are computed exactly as for the common reference experiment.

See Chapter 25 for a complete data analysis of a two group experiment
with six Affymetrix� arrays, three in each group, from the Affymetrix�
spike-in experiment.

23.8 Several Groups

The above approaches for two groups extend easily to any number of groups.
Suppose that three RNA targets are to be compared using Affymetrix�
arrays. Suppose that the three targets are called “RNA1”, “RNA2” and
“RNA3” and that the column targets$Target indicates which one was
hybridized to each array. An appropriate design matrix can be created
using

> f <- factor(targets$Target, levels = c("RNA1", "RNA2", "RNA3"))

> design <- model.matrix(~0 + f)

> colnames(design) <- c("RNA1", "RNA2", "RNA3")

410 Smyth

To make all pair-wise comparisons between the three groups one could
proceed

> fit <- lmFit(eset, design)

> contrast.matrix <- makeContrasts(RNA2-RNA1, RNA3-RNA2, RNA3-RNA1,

+ levels = design)

> fit2 <- contrasts.fit(fit, contrast.matrix)

> fit2 <- eBayes(fit2)

A list of top genes for RNA2 versus RNA1 can be obtained from

> topTable(fit2, coef = 1, adjust = "fdr")

Acceptance or rejection of each hypothesis test can be decided by

> results <- decideTests(fit2)

A Venn diagram showing numbers of genes significant in each comparison
is obtained from

> vennDiagram(results)

The statistic fit2$F and the corresponding fit2$F.p.value combine the
three pair-wise comparisons into one F -test. This is equivalent to a one-
way ANOVA for each gene except that the residual mean squares have been
moderated across genes. Small p-values identify genes which vary in any way
between the three RNA targets. The following code displays information
on the top 30 genes:

> o <- order(fit2$F.p.value)

> fit2$genes[o[1:30],]

Now suppose that the experiment had been conducted using two-color
arrays with a common reference instead of Affymetrix� arrays. For example
the targets frame might be

FileName Cy3 Cy5
File1 Ref RNA1
File2 RNA1 Ref
File3 Ref RNA2
File4 RNA2 Ref
File5 Ref RNA3

For this experiment the design matrix could be formed by

> design <- modelMatrix(targets, ref = "Ref")

and everything else would be as for the Affymetrix� experiment.

23. Limma: Linear Models for Microarray Data 411

CD4

CD8 DN

12
13 17

16

15

14

Figure 23.1. A direct design to compare three DC populations using six two-color
microarrays. Each arrow represents an array, the head pointing towards the target
labelled Cy5. Figure by Suzanne Thomas and James Wettenhall.

23.9 Direct Two-Color Designs

A direct design is one in which there is no single RNA source which is
hybridized to every array. As an example, we consider an experiment con-
ducted by Dr Mireille Lahoud at the WEHI to compare gene expression
in three different populations of dendritic cells (DC). This experiment in-
volved six cDNA microarrays in three dye-swap pairs, with each pair used
to compare two DC types (Figure 23.1). The targets frame was:

SlideNumber FileName Cy3 Cy5
12 ml12med.spot CD4 CD8
13 ml13med.spot CD8 CD4
14 ml14med.spot DN CD8
15 ml15med.spot CD8 DN
16 ml16med.spot CD4 DN
17 ml17med.spot DN CD4

There are many valid choices for a design matrix for such an experiment.
We chose the design matrix as

> design <- modelMatrix(targets, ref = "CD4")

> design

CD8 DN

ml12med 1 0

ml13med -1 0

ml14med 1 -1

ml15med -1 1

ml16med 0 1

ml17med 0 -1

In this design matrix, the CD8 and DN populations have been compared
back to the CD4 population. The coefficients estimated by the linear model
will correspond to the log-ratios of CD8 vs CD4 (first column) and DN vs
CD4 (second column). A linear model was fit using

> fit <- lmFit(MA, design)

412 Smyth

All pairwise comparisons between the three DC populations were made by

> cont.matrix <- cbind(

+ "CD8-CD4" = c(1, 0),

+ "DN-CD4" = c(0, 1),

+ "CD8-DN" = c(1, -1))

> fit2 <- contrasts.fit(fit, cont.matrix)

> fit2 <- eBayes(fit2)

23.10 Factorial Designs

Factorial designs are those where more than one experimental dimension
is being varied and each combination of treatment conditions is observed.
Suppose that cells are extracted from wild-type and mutant mice and these
cells are either stimulated (S) or unstimulated (U). RNA from the treated
cells is then extracted and hybridized to a microarray. We will assume for
simplicity that the arrays are one-channel arrays such as Affymetrix�. This
section explains the form of the analysis for a hypothetical experiment. A
detailed analysis of an actual factorial experiment, the Estrogen data, is
given Chapter 14. Consider the following targets frame:

FileName Strain Treatment
File1 WT U
File2 WT S
File3 Mu U
File4 Mu S
File5 Mu S

The two experimental dimensions or factors here are Strain and Treat-
ment. Strain specifies the genotype of the mouse from which the cells are
extracted and Treatment specifies whether the cells are stimulated or not.
All four combinations of Strain and Treatment are observed, so this is a
factorial design. It will be convenient for us to collect the Strain/Treatment
combinations into one vector as follows:

> TS <- paste(targets$Strain, targets$Treatment, sep = ".")

> TS

[1] "WT.U" "WT.S" "Mu.U" "Mu.S" "Mu.S"

It is especially important with a factorial design to decide what are the
comparisons of interest. We will assume here that the experimenter is in-
terested in (1) which genes respond to stimulation in wild-type cells, (2)
which genes respond to stimulation in mutant cells, and (3) which genes
respond differently in mutant compared to wild-type cells. These are the
questions which are most usually relevant in a molecular biology context.
The first of these questions relates to the WT.S vs WT.U comparison and the

23. Limma: Linear Models for Microarray Data 413

second to Mu.S vs Mu.U. The third relates to the difference of differences,
i.e., (Mu.S-Mu.U)-(WT.S-WT.U), which is called the interaction term.

We describe first a simple way to analyse this experiment using limma
commands in a similar way to that in which two-sample designs were ana-
lyzed. Then we will go on to describe a traditional statistical approach using
factorial model formulas. The two approaches are equivalent and yield iden-
tical bottom-line results. The most basic approach is to fit a model with a
coefficient for each of the four factor combinations and then to extract the
comparisons of interest as contrasts:

> TS <- factor(TS, levels = c("WT.U", "WT.S", "Mu.U", "Mu.S"))

> design <- model.matrix(~0 + TS)

> colnames(design) <- levels(TS)

> fit <- lmFit(eset, design)

This fits a model with four coefficients corresponding to WT.U, WT.S, Mu.U

and Mu.S respectively. Our three contrasts of interest can be extracted by

> cont.matrix <- makeContrasts(

+ WT.SvsU = WT.S - WT.U,

+ Mu.SvsU = Mu.S - Mu.U,

+ Diff = (Mu.S - Mu.U) - (WT.S - WT.U),

+ levels = design)

> fit2 <- contrasts.fit(fit, cont.matrix)

> fit2 <- eBayes(fit2)

We can use topTable() to look at lists of differentially expressed genes for
each of three contrasts, or else

> results <- decideTests(fit2)

> vennDiagram(results)

to look at all three contrasts simultaneously.
The analysis of factorial designs has a long history in statistics and a

system of factorial model formulas has been developed to facilitate the
analysis of complex designs. It is important to understand though that the
above three molecular biology questions do not correspond to any of the
usual parametrizations used in statistics for factorial designs. Suppose for
example that we proceed in the usual statistical way,

> Strain <- factor(targets$Strain, levels = c("WT", "Mu"))

> Treatment <- factor(targets$Treatment, levels = c("U", "S"))

> design <- model.matrix(~Strain * Treatment)

This creates a design matrix which defines four coefficients with the
following interpretations:

Coefficient Comparison

Intercept: baseline level of unstimulated wt WT.U

StrainMu: unstimulated strain effect Mu.U-WT.U

TreatmentS: stimulation effect for wt WT.S-WT.U

StrainMu:TreatmentS: interaction (Mu.S-Mu.U)-(WT.S-WT.U)

414 Smyth

This is called the treatment-contrast parametrization. Note that one of
our comparisons of interest, Mu.S-Mu.U, is not represented and instead the
comparison Mu.U-WT.U, which might not be of direct interest, is included.
We need to use contrasts to extract all the comparisons of interest:

> fit <- lmFit(eset, design)

> cont.matrix <- cbind(

+ WT.SvsU = c(0, 0, 1, 0),

+ Mu.SvsU = c(0, 0, 1, 1),

+ Diff = c(0,0, 0, 1))

> fit2 <- contrasts.fit(fit, cont.matrix)

> fit2 <- eBayes(fit2)

This extracts the WT stimulation effect as the third coefficient and the
interaction as the fourth coefficient. The mutant stimulation effect is ex-
tracted as the sum of the third and fourth coefficients of the original model.
This analysis yields the same results as the previous analysis. It differs from
the previous approach only in the parametrization chosen for the linear
model, i.e., in the coefficients chosen to represent the four distinct RNA
targets.

23.11 Time Course Experiments

Time course experiments are those in which RNA is extracted at several
time points after the onset of some treatment or stimulation. Simple time
course experiments are similar to experiments with several groups covered
in Section 23.8. Here we consider a two-way experiment in which time
course profiles are to be compared for two genotypes. Consider the targets
frame

FileName Target
File1 wt.0hr
File2 wt.0hr
File3 wt.6hr
File4 wt.24hr
File5 mu.0hr
File6 mu.0hr
File7 mu.6hr
File8 mu.24hr

The targets are RNA samples collected from wild-type and mutant animals
at 0, 6 and 24 hour time points. This can be viewed as a factorial experiment
but a simpler approach is to use the group-mean parametrization.

> lev <- c("wt.0hr", "wt.6hr", "wt.24hr", "mu.0hr", "mu.6hr", "mu.24hr")

> f <- factor(targets$Target, levels = lev)

> design <- model.matrix(~0 + f)

23. Limma: Linear Models for Microarray Data 415

> colnames(design) <- lev

> fit <- lmFit(eset, design)

Which genes respond at either the 6 hour or 24 hour times in the wild-
type? We can find these by extracting the contrasts between the wild-type
times.

> cont.wt <- makeContrasts("wt.6hr-wt.0hr", "wt.24hr-wt.6hr",

+ levels = design)

> fit2 <- contrasts.fit(fit, cont.wt)

> fit2 <- eBayes(fit2)

Choose genes so that the expected false discovery rate is less than 5%.

> sel.wt <- p.adjust(fit2$F.p.value, method = "fdr") < 0.05

Any two contrasts between the three times would give the same result. The
same gene list would be obtained had "wt.24hr-wt.0hr" been used in place
of "wt.24hr-wt.6hr" for example.

Which genes respond in the mutant?

> cont.mu <- makeContrasts("mu.6hr-mu.0hr", "mu.24hr-mu.6hr",

+ levels = design)

> fit2 <- contrasts.fit(fit, cont.mu)

> fit2 <- eBayes(fit2)

> sel.mu <- p.adjust(fit2$F.p.value, method = "fdr") < 0.05

Which genes respond differently in the mutant relative to the wild-type?

> cont.dif <- makeContrasts(

+ Dif6hr = (mu.6hr - mu.0hr) - (wt.6hr - wt.0hr),

+ Dif24hr = (mu.24hr - mu.6hr) - (wt.24hr - wt.6hr),

+ levels = design)

> fit2 <- contrasts.fit(fit, cont.dif)

> fit2 <- eBayes(fit2)

> sel.dif <- p.adjust(fit2$F.p.value, method = "fdr") < 0.05

23.12 Statistics for Differential Expression

Limma provides functions topTable() and decideTests() which summarize
the results of the linear model, perform hypothesis tests and adjust the
p-values for multiple testing. Results include (log) fold changes, standard
errors, t-statistics and p-values. The basic statistic used for significance
analysis is the moderated t-statistic, which is computed for each probe and
for each contrast. This has the same interpretation as an ordinary t-statistic
except that the standard errors have been moderated across genes, i.e.,
shrunk towards a common value, using a simple Bayesian model. This has
the effect of borrowing information from the ensemble of genes to aid with

416 Smyth

inference about each individual gene [1]. Moderated t-statistics lead to p-
values in the same way that ordinary t-statistics do except that the degrees
of freedom are increased, reflecting the greater reliability associated with
the smoothed standard errors. Chapter 25 demonstrates the effectiveness
of the moderated t approach on a test data set for which the differential
expression status of each probe is known.

A number of summary statistics are presented by topTable() for the
top genes and the selected contrast. The M -value (M) is the value of the
contrast. Usually this represents a log2-fold change between two or more ex-
perimental conditions although sometimes it represents a log2-expression
level. The A-value (A) is the average log2-expression level for that gene
across all the arrays and channels in the experiment. Column t is the mod-
erated t-statistic. Column p-value is the associated p-value after adjustment
for multiple testing. The most popular form of adjustment is "fdr" which
is Benjamini and Hochberg’s method to control the false discovery rate [5].
The meaning of "fdr" adjusted p-values is as follows. If all genes with p-
value below a threshold, say 0.05, are selected as differentially expressed,
then the expected proportion of false discoveries in the selected group is
controled to be less than the theshold value, in this case 5%.

The B-statistic (lods or B) is the log-odds that the gene is differentially
expressed [1, Section 5]. Suppose for example that B = 1.5. The odds of dif-
ferential expression is exp(1.5)=4.48, i.e, about four and a half to one. The
probability that the gene is differentially expressed is 4.48/(1+4.48)=0.82,
i.e., the probability is about 82% that this gene is differentially expressed.
A B-statistic of zero corresponds to a 50-50 chance that the gene is differ-
entially expressed. The B-statistic is automatically adjusted for multiple
testing by assuming that 1% of the genes, or some other percentage spec-
ified by the user in the call to eBayes(), are expected to be differentially
expressed. The p-values and B-statistics will normally rank genes in the
same order. In fact, if the data contains no missing values or quality weights,
then the order will be precisely the same.

As with all model-based methods, the p-values depend on normality
and other mathematical assumptions which are never exactly true for mi-
croarray data. It has been argued that the p-values are useful for ranking
genes even in the presence of large deviations from the assumptions [6, 2].
Benjamini and Hochberg’s control of the false discovery rate assumes in-
dependence between genes, although Reiner et al [7] have argued that it
works for many forms of dependence as well. The B-statistic probabilities
depend on the same assumptions but require in addition a prior guess for
the proportion of differentially expressed genes. The p-values may be pre-
ferred to the B-statistics because they do not require this prior knowledge.

The eBayes() function computes one more useful statistic. The moder-
ated F -statistic (F) combines the t-statistics for all the contrasts into an
overall test of significance for that gene. The F -statistic tests whether any

23. Limma: Linear Models for Microarray Data 417

of the contrasts are non-zero for that gene, i.e., whether that gene is differ-
entially expressed on any contrast. The denominator degrees of freedom is
the same as that of the moderated-t. Its p-value is stored as fit$F.p.value.
It is similar to the ordinary F -statistic from analysis of variance except
that the denominator mean squares are moderated across genes.

23.13 Fitted Model Objects

The output from lmFit() is an object of class MArrayLM . This section gives
some mathematical details describing what is contained in such objects,
following on from the Section 23.3. This section can be skipped by readers
not interested in such details.

The linear model for gene j has residual variance σ2
j with sample value

s2
j and degrees of freedom fj . The output from lmFit(), fit say, holds the

sj in component fit$sigma and the fj in fit$df.residual. The covariance
matrix of the estimated β̂j is σ2

jC
T (XT VjX)−1C where Vj is a weight

matrix determined by prior weights, any covariance terms introduced by
correlation structure and any iterative weights introduced by robust esti-
mation. The square-roots of the diagonal elements of CT (XT VjX)−1C are
called unscaled standard deviations and are stored in fit$stdev.unscaled.
The ordinary t-statistic for the kth contrast for gene j is tjk = β̂jk/(ujksj)
where ujk is the unscaled standard deviation. The ordinary t-statistics can
be recovered by

> tstat.ord <- fit$coef/fit$stdev.unscaled/fit$sigma

after fitting a linear model if desired.
The empirical Bayes method assumes an inverse Chisquare prior for the

σ2
j with mean s2

0 and degrees of freedom f0. The posterior values for the
residual variances are given by

s̃2
j =

f0s
2
0 + fjs

2
j

f0 + fj

where fj is the residual degrees of freedom for the jth gene. The output
from eBayes() contains s2

0 and f0 as fit$s2.prior and fit$df.prior and
the s̃2

j as fit$s2.post. The moderated t-statistic is

t̃jk =
β̂jk

ujks̃j

This can be shown to follow a t-distribution on f0 +fj degrees of freedom if
βjk = 0 [1]. The extra degrees of freedom f0 represent the extra information
which is borrowed from the ensemble of genes for inference about each
individual gene. The output from eBayes() contains the t̃jk as fit$t with
corresponding p-values in fit$p-value.

418 Smyth

23.14 Pre-processing Considerations

This section discusses some aspects of pre-processing which are often
neglected but which are important for linear modeling and assessing dif-
ferential expression for two-color data. The construction of spot quality
weights, has already been briefly addressed in Section 23.4. Other impor-
tant issues are the type of background correction used and the treatment
of control spots on the arrays.

Background correction is more important than often appreciated because
it impacts markedly on the variability of the log-ratios for low intensity
spots. Chapter 4 shows an MA-plot for the β7 data illustrating the fanning
out of log-ratios at low intensities when ordinary background subtraction is
used. Many more spots are not shown on the plot because the background
corrected intensities are negative leading to NA log-ratios. Fanning out of the
log-ratios is undesirable for two reasons. Firstly it is undesirable than any
log-ratios should be very variable, because this might lead those genes being
falsely judged to be differentially expressed. Secondly, the empirical Bayes
analysis implemented in eBayes() delivers most benefit when the variabil-
ity of the log-ratios is as homogeneous as possible across genes. Chapter 4
shows that simply ignoring the background is a viable option. Another
option is "vsn" normalization, a model-based method of stabilizing the vari-
ances which includes background correction [8, 9]. Here we illustrate a third
option using the β7 data, the model-based background correction method
"normexp" implemented in the backgroundCorrect() function. This method
uses the available background estimates but avoids negative corrected in-
tensities and reduces variability in the log-ratios. Background correction is
still an active research area and the optimal method has not yet been de-
termined, but the adaptive methods "normexp" and "vsn" have been found
to perform well in many cases.

For convenience, we read in the β7 data again using the limma function
read.maimages. A filter f is defined so that any spot which is flagged as
“bad” or “absent” is given zero weight.

> beta7.dir <- system.file("beta7", package = "beta7")

> targets <- readTargets("TargetBeta7.txt", path = beta7.dir)

> f <- function(x) as.numeric(x$Flags > -75)

> RG <- read.maimages(targets$FileName, source = "genepix",

+ path = beta7.dir, wt.fun = f)

> RG$printer <- getLayout(RG$genes)

Here RG is an RGList data object. The data read by read.maimages()

differs slightly from read.GenePix() because read.maimages() reads mean
foreground intensities for each spot while read.GenePix() reads median
foreground intensities, although this difference should not be important
here. The following code applies "normexp" background correction and then
applies an offset of 25 to the intensities to further stabilize the log-ratios.

23. Limma: Linear Models for Microarray Data 419

> RGne <- backgroundCorrect(RG, method = "normexp", offset = 25)

Now normalize and prepare for a linear model fit as in Section 23.4.

> MA <- normalizeWithinArrays(RGne)

> design <- cbind(Dye = 1, Beta7 = c(1, -1, -1, 1, 1, -1))

It is usually wise to remove uninteresting control spots from the data before
fitting the linear model. Control spots can be identified on arrays by setting
the controlCode matrix in the marray package before using read.GenePix()

or by using controlStatus() in the limma package. For the β7 data, control
codes have already been set in the mraw object, so we can restrict the fit to
interesting probes by

> isGene <- maControls(mraw) == "probes"

> fit <- lmFit(MA[isGene,], design)

> fit <- eBayes(fit)

> tab <- topTable(fit, coef = "Beta7", adjust = "fdr")

> tab$Name <- substring(tab$Name, 1, 20)

> tab[, -(1:3)]

ID Name M A t P.Value B

5626 H200019655 KIAA0833 - KIAA0833 -1.48 8.6 -11.4 0.011 5.3

6029 H200017286 GPR2 - G protein-cou -1.98 8.2 -10.9 0.011 5.0

10115 H200018884 Homo sapiens cDNA FL -1.04 7.2 -10.8 0.011 5.0

10488 H200015303 CCR9 - Chemokine (C- 1.31 10.6 10.5 0.011 4.8

19217 H200001929 EPLIN - Epithelial p -0.86 8.9 -9.2 0.026 4.0

19346 H200008015 PTPRJ - Protein tyro -0.85 11.0 -8.8 0.030 3.7

20200 H200005842 GFI1 - Growth factor 0.76 11.7 8.6 0.033 3.5

10500 H200015731 SCYA5 - Small induci 1.54 11.1 8.3 0.033 3.4

3561 H200007572 Homo sapiens, clone 0.86 7.4 8.3 0.033 3.4

18292 H200000831 LRRN3 - Leucine-rich 0.80 9.5 8.0 0.039 3.1

Comparing this table to that in Section 23.4 shows more significant results
overall suggesting that the adaptive background correction has reduced
variability and improved power. The "vsn" method could have been applied
here by substituting

> MA <- normalizeBetweenArrays(RG, method = "vsn")

for the background correction and normalization steps above. This also
gives good results for the β7 data, with fewer significant results but with
less attenuated fold change estimates compared to "normexp".

23.15 Conclusion

This chapter has demonstrated the ability of the linear modeling aproach
to handle a wide range of experimental designs. The method is applicable
to both one and two-channel microarray platforms. The method is flexible

420 Smyth

and extensible in principle to arbitrarily complex designs. Some ability
has also been demonstrated to accommodate both technical and biological
replication in the assessment of differential expression, although here only
simple experimental structures can so far be accommodated. The survey
of different designs given in this chapter complements the treatments of
individual data sets given in other chapters of the book.

References

[1] Smyth, G.: Linear models and empirical bayes methods for assessing differen-
tial expression in microarray experiments.Statistical Applications in Genetics
and Molecular Biology.3: Article 3, 2004.

[2] Smyth, G. K., Michaud, J., and Scott, H.: The use of within-array
replicate spots for assessing differential expression in microarray experi-
ments.Bioinformatics.21: to appear, 2005.

[3] Yang, Y. H. and Speed, T. P.Design and analysis of comparative microarray
experiments.In Speed, T. P. (Ed.): Statistical Analysis of Gene Expression
Microarray Data, pp 35–91. Chapman & Hall/CRC Press, 2003.

[4] Milliken, G. A. and Johnson, D. E.: Analysis of Messy Data Volume 1:
Designed Experiments.Chapman & Hall, New York, 1992.

[5] Benjamini, Y. and Hochberg, Y.: Controlling the false discovery rate: a prac-
tical and powerful approach to multiple testing.J. R. Statist. Soc. B.57:
289–300, 1995.

[6] Smyth, G. K., Yang, Y. H., and Speed, T.: Statistical issues in cDNA
microarray data analysis.Methods Mol Biol.224: 111–36, 2003.

[7] Reiner, A., Yekutieli, D., and Benjamini, Y.: Identifying differentially ex-
pressed genes using false discovery rate controlling procedures.Bioinformatics.19:
368–375, 2003.

[8] Huber, W., von Heydebreck, A., Sültmann, H., Poustka, A., and Vingron,
M.: Variance stabilization applied to microarray data calibration and to the
quantification of differential expression.Bioinformatics.18 Suppl. 1: S96–S104,
2002.ISMB 2002.

[9] Huber, W., von Heydebreck, A., Sültmann, H., Poustka, A., and Vingron,
M.: Parameter estimation for the calibration and variance stabilization of mi-
croarray data.Statistical Applications in Genetics and Molecular Biology.2(1),
2003.

