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SUMMARY

I propose a new method for variable selection and shrinkage in Cox’s proportional hazards model. My
proposal minimizes the log partial likelihood subject to the sum of the absolute values of the parameters
being bounded by a constant. Because of the nature of this constraint, it shrinks coefficients and produces
some coefficients that are exactly zero. As a result it reduces the estimation variance while providing an
interpretable final model. The method is a variation of the ‘lasso’ proposal of Tibshirani, designed for the
linear regression context. Simulations indicate that the lasso can be more accurate than stepwise selection in
this setting.

1. INTRODUCTION
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The proportional-hazards model for survival data, also known as the Cox model,! assumes
that
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In equation (2) D is the set of indices of the failures, R
&
is the set of indices of the individuals at risk

at time t
&
!0, and j

&
is the index of the failure at time t

&
. Assume for simplicity that there are no

tied failure times; suitable modifications of the partial likelihood exist for the case of ties. Assume
also that the censoring is non-informative, so that the construction of the partial likelihood is
justified.
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Denote the log partial likelihood by l (! )"log ¸ (!), and assume that the x
"%

are standardized
so that !

"
x
"%
/N"0, !

"
x"
"%
/N"1.

In this paper I propose to estimate ! via the criterion

!K "argmin l (! ), subject to ! #$
%
#)s (3)

where s'0 is a user-specified parameter. In the linear regression setting, Tibshirani" proposed
minimization of the residual sum of squares, subject to a constraint of the form ! #$

%
#)s and

called the resulting procedure the ‘lasso’ for ‘Least Absolute Shrinkage and Selection Operator’.
Here I use the term ‘lasso’ for the present proposal as well.

Suppose $K (
%
are the maximizers of the partial likelihood (2). Then if s*! #$K (

%
# , the solutions to

(3) are the usual partial likelihood estimates. If s(! #$K (
%
# , however, then the solutions to (3) are

shrunken towards zero. An attractive feature of the particular constraint ! #$
%
#)s is that quite

often some of the solution coefficients are exactly zero. This makes for a more interpretable final
model. On the other hand, the smooth form of the constraint should provide a more stable final
model than that given by stepwise or best subset selection. In the regression setting, Tibshirani"
confirmed this in simulation studies. In contrast, the ridge regression approach (used mainly in
the linear model setting) shrinks coefficients but does not give coefficients that are exactly zero.
Note that like model selection, the lasso is a tool for achieving parsimony; in actuality an exact
zero coefficient is unlikely to occur.

The next section gives an algorithm for obtaining the lasso estimates. Section 3 contains two
real data examples. Automatic estimation of the constraint parameter s appears in Section 4,
and in Section 5 I report a simulation study that compares the lasso to stepwise selection.
Section 6 discusses estimation of standard errors, while Section 7 contains some discussion,
including a brief summary of other approaches to model selection.

2. COMPUTATION OF THE ESTIMATES

Tibshirani" gave two algorithms for the lasso procedure in the least squares regression setting,
based on quadratic programming techniques. The algorithms are iterative and involve repeated
solution of least squares problems. Typically one needs between p and 2p iterations, where p is the
number of regressor variables.

The strategy for solving (3) is to express the usual Newton—Raphson update as an iterative
reweighted least squares (IRLS) step, and then replace the weighted least squares step by
a constrained weighted least squares procedure. If X denotes the design matrix of regressor
variables and ""X!, define u"(l/(", A"!("l/(""$ and z""#A&!u (detailed
expressions for u, A and z appear in Hastie and Tibshirani,' Chapter 8, pp. 213—214). Then
a one-term Taylor series expansion for l ($) has the form

(z!")$ A (z!") . (4)

Hence to solve the original problem (3), we use the following procedure:

1. Fix s and initialize !K "0.
2. Compute ", u, A and z based on the current value of !K .
3. Minimize (z! X! )$A(z!X! ) subject to ! #$

"
#)s.

4. Repeat steps 2 and 3 until !K does not change.

The minimization in step 3 is done through a quadratic programming procedure, as described in
Tibshirani." Note that if one used instead an unconstrained minimization in step 3, this procedure
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would be equivalent to the usual Newton—Raphson algorithm for maximizing the partial
likelihood (Hastie and Tibshirani,' Chapter 8, p. 212).

One difficulty with the above procedure is that A is a full matrix and hence it requires
computation of O (N") elements. One can avoid this, however by, replacing A with a diagonal
matrix D that has the same diagonal elements as A. As argued in Hastie and Tibshirani' (Chapter
8, pp. 212—213), the diagonal elements of A are larger than the off-diagonal elements and hence the
modified algorithm should behave similarly to the original one.

There is no intercept in the Cox model and hence the minimization in step 3 does not require an
intercept. I have found however that inclusion of an intercept dramatically improves the
convergence of the procedure. This is purely a computational issue; it makes no difference in the
final model, as the intercept is absorbed into the baseline hazard.

If the log partial likelihood is bounded in ! for the given data set, then for fixed s a solution to
(3) exists since the region ! #$

%
#)s is compact. However, the solution may not be unique. For

example, if two regressors variables X
!

and X
"

are identically equal, then if $'0, for any ) in
[0, $] the linear combination X

!
)#($!))X

"
has exactly the same value for the l and the

constraint #) ###$!)# . Note that this is due to the linearity of the constraint; in ridge style
penalization involving the squared coefficients, this does not occur.

3. EXAMPLES

3.1. Lung cancer data

The data in this example come from the Veteran’s Administration lung cancer trial, listed in
Kalbfleisch and Prentice,( pp. 223—224. The time variable is survival in days, and the regressors
are:

1. Treatment 1"standard, 2"test.
2. Cell type 1"squamous, 2"small cell, 3"adeno, 4"large.
3. Karnofsky score.
4. Months from diagnosis.
5. Age in years.
6. Prior therapy 0"no, 10"yes.

For simplicity, and because the categories exhibit increasing risk, I have left cell type as
a numerical variable. A standard proportional hazards analysis shows that the Karnofsky score is
extremely important, while cell type is also strongly significant. The other regressors show
moderate effects.

Figure 1 shows the estimated coefficients from the lasso fit as a function of the standardized
constraint parameter u"s/! #$K (

%
# (where $(

%
are the unconstrained partial likelihood estimates).

Karnofsky score is clearly the dominant effect with treatment and cell type also showing
moderate influence. The vertical broken line is drawn at 0·45, which is the value of u chosen by
generalized cross-validation (GCV, see Section 4). The model selected by generalized
cross-validation has a non-zero coefficient only for Karnofsky score, with a coefficient of !0·47,
corresponding to a relative risk of 0·63. It standard error is 0·085, computed by the technique
discussed in Section 6. Backward stepwise selection in the standard Cox model yields the same
single variable model, but with a coefficient of !0·67 (0·10) or a relative risk 0·51. The stepwise
method refers to backward—forward stepwise selection as implemented in Scott Emerson’s
S language function ‘coxrgrss’ with the default P-values to enter and remove of 0·05 and 0·10,
respectively. I also applied Schwarz’s criterions (also known as BIC) to these data; this has the
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Figure 1. Coefficient estimates for lung cancer example, as a function of the standardized constraint parameter
u"s/! #$K (

%
#

form minus log partial likelihood plus klog n where k is the number of regressors in the model
considered and n is the sample size. Searching over all subsets, the model that minimizes
Schwarz’s criterion again contained only the Karnofsky score.

3.2. Liver data

The data in this example and the following (edited) description were provided by Harrington and
Fleming.

‘Primary biliary cirrhosis (PBC) of the liver is a rare but fatal chronic liver disease of
unknown cause, with a prevalence of about 50-cases-per-million population. The
primary pathologic event appears to be the destruction of interlobular bile ducts,
which may be mediated by immunologic mechanisms.
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The following briefly describes data collected for the Mayo Clinic trial in PBC of
the liver conducted between January 1974 and May 1984 comparing the drug
D-penicillamine (DPCA) with a placebo. The first 312 cases participated in the
randomized trial of D-penicillamine versus placebo, and contain largely complete
data. An additional 112 cases did not participate in the clinical trial, but consented to
have basic measurements recorded and to be followed for survival. Six of those cases
were lost to follow-up shortly after diagnosis, so there are data here on an additional
106 cases as well as the 312 randomized participants.’

I discarded observations with missing values, leaving 276 observations. The variables in the
data set are:

N Case number.
½ The number of days between registration and the earlier of death or study analysis time in 1986.
! 1 if ½ is time to death, 0 if time to censoring.
X

!
Treatment code, 1 " D-pencillamine, 2"placebo.

X
"

Age in years. For the first 312 cases, age was calculated by dividing the number of days
between birth and study registration by 365.
X

'
Sex, 0"male, 1"female.

X
(

Presence of ascites, 0"no, 1"yes.
X

)
Presence of hepatomegaly, 0"no, 1"yes.

X
*

Presence of spiders, 0"no, 1"yes.
X

+
Presence of oedema, 0"no, 0·5"yes but responded to diuretic treatment, 1"yes, did

not respond to treatment.
X

,
Serum bilirubin, in mg/dl.

X
-

Serum cholesterol, in mg/dl.
X

!#
Albumin, in g/dl.

X
!!

Urine copper, in *g/day.
X

!"
Alkaline phosphatase, in U/litre.

X
!'

SGOT, in U/ml.
X

!(
Triglycerides, in mg/dl.

X
!)

Platelet count; coded value is number of platelets per cubic ml of blood divided by 1000.
X

!*
Prothrombine time, in seconds.

X
!+

Histologic state of disease, graded 1, 2, 3 or 4.

Some results appear in Table I. The stepwise method refers to backward—forward stepwise
selection as implemented in Scott Emerson’s S language function ‘coxrgrss’ with the default
P-values to enter and remove of 0·05 and 0·10 respectively. Coxrgrss is available from the Statlib
archive (ftp site lib.stat.cmu.edu). This gave a model with eight variables, all having large
Z-scores. The GCV procedure gave uL "0·56 for the standardized lasso parameter and the
resulting model from the lasso looks similar to the stepwise model, with most of the effects
shrunken towards zero. While the stepwise procedure often inflates the Z scores of chosen
variables relative to the full model fit, the lasso seems to shrink them towards zero. I computed
standard errors for the lasso estimates using the method given in Section 6.

4. ESTIMATION OF THE CONSTRAINT PARAMETER s

In some situations it is desirable to have an automatic method for choosing s based on the data.
Such a procedure is analogous to an automatic subset selection procedure such as forward,
backward or all subsets regression.
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Table I. Results for liver data example

Variables Full Stepwise Lasso

Coefficient SE Z-score Coefficient SE Z-score Coefficient SE Z-score

1 !0·06 0·11 !0·58 — — — 0·00 0·00 0·00
2 0·30 0·12 2·49 0·33 0·11 3·08 0·17 0·09 1·89
3 !0·12 0·10 !1·17 — — — !0·01 0·03 !0·31
4 0·02 0·10 0·23 — — — 0·04 0·07 0·63
5 0·01 0·13 0·10 — — — 0·00 0·00 0·00
6 0·05 0·11 0·42 — — — 0·02 0·05 0·40
7 0·27 0·11 2·56 0·22 0·09 2·37 0·18 0·11 1·71
8 0·37 0·12 3·14 0·39 0·09 4·39 0·35 0·12 2·97
9 0·12 0·10 1·11 — — — 0·00 0·01 0·28

10 !0·30 0·12 !2·40 !0·29 0·11 !2·63 !0·22 0·10 !2·27
11 0·22 0·10 2·13 0·25 0·09 2·90 0·21 0·11 1·98
12 0·00 0·08 0·03 — — — 0·00 0·00 0·00
13 0·23 0·11 2·08 0·25 0·10 2·42 0·09 0·08 1·04
14 !0·06 0·09 !0·75 — — — 0·00 0·00 0·00
15 0·08 0·11 0·76 — — — 0·00 0·00 0·00
16 0·23 0·11 2·19 0·23 0·10 2·25 0·09 0·09 0·97
17 0·39 0·15 2·59 0·37 0·12 2·97 0·21 0·09 2·28

My proposal is to minimize an approximate generalized cross-validation (GCV) statistic
(Wahba*). To construct this statistic, we need a linear approximation to the lasso estimate. We
write the constraint ! #$

%
#)s as ! $"

%
/ #$

%
#)s. This latter constraint is equivalent to adding

a Lagrangian penalty "! $"
%
/ #$

%
# to the log partial likelihood, with "*0 depending on s.

Intuitively, these are equivalent since they both lead to a balance between fit, as measured by the
log partial likelihood, and the value of "!$"

%
/ #$

%
#. Using standard matrix manipulations, we may

write the constrained solution !I in step 3 in the form

!I "(X$DX#"W)&!X$Dz (5)

W"diag(W
%
), W

"
"1/ #$I

%
# if #$I

%
#'0 and 0 otherwise. (This expression does not give

a numerically effective way of computing the lasso estimate, but it is useful for assessing the
complexity of the fit.) Therefore we may approximate the number of effective parameters in the
constrained fit !I by

p(s)"tr [X(X$ DX#"W&)&!X$D] .

Letting l
)
be the log-partial likelihood for the constrained fit with constraint s, we construct the

GCV-style statistic

GCV(s)" 1
N

!l
)

N[1!p (s)/N]"
. (6)

Intuitively, the GCV criterion inflates the negative log partial likelihood by a factor that involves
p(s), the effective number of parameters. Larger values of p (s) cause more inflation (penalization)
of the negative log partial likelihood. See Wahba* for details of generalized cross-validation; one
could also use an Akaike-style criterion, as in Akaike.+ Figure 2 shows the GCV plot for the lung
cancer example, as a function of the standardized constraint parameter. The minimum occurs
near u"0·45.
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Figure 2. GCV plot for lung cancer example. The generalized cross-validation score is plotted against the standardized
constraint parameter u"s/! #$K (

%
#

5. A SIMULATION STUDY

5.1. A few large effects

In this example we simulated 50 datasets each with 50 observations, from the exponential hazard
model

"(t #x) " exp (!$ x)

where !"(!0·35, !0·35, 0, 0, 0, !0·35, 0, 0, 0)$. The x
"
were each marginally standard normal,

and the correlation between x
"
and x

%
was +#i!j # with +"0·5. This gave moderate to strong effects

for the three regressors with non-zero coefficients.
Letting ! be the population covariance matrix of the regressors, Table II shows the median of

the mean squared errors (!K !!)$ !(!K !!) over 50 simulations from this model. As before, the
stepwise method refers to backward—forward stepwise selection as implemented in Scott
Emerson’s S language function ‘coxrgrss’ with the default P-values to enter and remove of 0·05
and 0·10, respectively.

The lasso clearly outperforms stepwise selection, and picks approximately the correct number
of zero coefficients.

Figure 3 shows box plots of the coefficients from each of the three methods. The lasso does
a better job of isolating the non-zero coefficients and shrinks the others substantially.

5.2. Many small effects

Here we used the same model as in the previous section, but with $
%
"0·1 ∀

%
. This resulted in an

occasional effect significant at the 0·05 level, as measured by the full Cox model fit. Table III
shows the results. The lasso outperforms the full and stepwise models by shrinking the coefficients
almost all of the way to zero.
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Table II. Results for example 3 (a few large effects). Mean squared errors (MSE)
over 50 simulations

Method Median MSE (standard errors) Average numbers of zero
coefficients

Null 0·44 (—) 9·0
Full model 0·82 (0·13) 0·0
Stepwise 0·63 (0·12) 5·6
Lasso 0·26 (0·07) 6·7

Figure 3. Box plot of coefficients from first simulation study (a few large coefficients)
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Table III. Results for second simulation study (many small effects). Mean
squared errors (MSE) over 50 simulations

Method Median MSE (standard errors) Average numbers of zero
coefficients

Null 0·15 (—) 9·0
Full model 0·57 (0·04) 0·0
Stepwise 0·53 (0·04) 5·5
Lasso 0·15 (0·00) 7·8

Table IV. Estimated and actual standard errors for simulated example

Variable u"0·7 u"0·3

Mean coefficient Mean SEY Actual SE Mean coefficient Mean SEY Actual SE

1 !0·55 0·17 0·19 !0·30 0·13 0·16
2 !0·58 0·18 0·24 !0·35 0·15 0·17
3 !0·01 0·09 0·16 !0·02 0·02 0·06
4 0·01 0·07 0·10 0·00 0·00 0·01
5 0·00 0·07 0·13 !0·01 0·01 0·05
6 !0·50 0·16 0·20 !0·23 0·12 0·12
7 !0·05 0·09 0·15 !0·01 0·01 0·03
8 0·00 0·09 0·15 0·00 0·01 0·02
9 !0·01 0·06 0·11 0·00 0·00 0·01

6. STANDARD ERRORS

We can use approximation (5) to yield an approximate method for obtaining standard errors for
the lasso estimates. In the notation of equation (5), we can show using standard partial likelihood
theory that the variance of z is approximately D&! . Letting M denote the matrix that multiplies
z in equation (5), then the variance of $K "Mz is approximately MD&!M$. Hence we can obtain
the approximate standard errors of $K from the square root of the diagonal of MD&!M$. To
investigate the accuracy of this procedure, I simulated 50 datasets from the example of Section
5.1. The regressor variables were generated once and fixed for the 50 simulations. Table IV shows
the results.

In the left part of the table the standardized constraint parameter was fixed at 0·7; in the right
half, it was 0·3. In each half, the first column shows the mean coefficient over the 50 simulations,
the second column gives the mean of the standard error estimate, and the third column shows the
actual standard error of the coefficients over the 50 simulations. Note that on the average the
standard error formula gives a reasonable estimate for the large effects (variables 1, 2, 6). For the
small effects, it tends to underestimate the standard error, but not so much (except in one
instance) as to affect that the perceived significance of the variable. Thus the approximate
standard errors appear reliable, except when the estimated coefficient itself is very small. Note
also that the sampling distribution of the estimates tends to be skewed, especially for small values
of the constraint parameter (see Figure 3), so this will degrade the accuracy of normal confidence
limits.
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7. DISCUSSION

The lasso technique for variable selection in the Cox model seems a worthy competitor to
stepwise selection. It is less variable than the stepwise approach and still yields interpretable
models.

In practice the lasso should be used in conjunction with other model building tools. In
particular, in our examples we have assumed that linearity is reasonable for all of the predictors.
This may not be a good assumption and it should be checked in a real data analysis. Similarly,
a referee pointed out that the proportional hazards assumption is unreasonable of cell type and
Karnofsky score in the first example, and this should be checked; I have not attempted to provide
thorough analyses in my examples.

The lasso method requires initial standardization of the regressors, so that the penalization
scheme is fair to all regressors. For categorical regressors, one codes the regressor with dummy
variables and then standardizes the dummy variables. As pointed out by a referee, however, the
relative scaling between continuous and categorical variables in this scheme can be somewhat
arbitrary.

In some problems there might be effects that the analyst does not want to shrink at all. Such an
example is a treatment factor known to be effective a priori, with interest lying in more accurate
adjustment for other covariates. In such an instance, one simply omits the corresponding $

%
from

the constraint, and one solves the problem by a simple modification of the optimization
procedure discussed earlier.

There are some other recently proposed approaches to model selection. The Bayesian
approach has been developed by Michell and Beauchamp, and George and McCulloch.- They
use a hierarchical Bayes model; the second authors apply the Gibbs sampler to simulate a large
collection of subset models from the posterior distribution. Sauerbrei and Schumacher!# propose
a bootstrap-based approach to model selection.

There are some ways to extend this work. This paper has focused on fixed covariates, but one
can incorporate time-dependent covariates without any new difficulty. Adaptation of the lasso
technique to the matched case control models is also fairly straightforward.
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