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ABSTRACT
Motivation: Gene expression microarray experiments can
generate data sets with multiple missing expression val-
ues. Unfortunately, many algorithms for gene expression
analysis require a complete matrix of gene array values as
input. For example, methods such as hierarchical cluster-
ing and K-means clustering are not robust to missing data,
and may lose effectiveness even with a few missing values.
Methods for imputing missing data are needed, therefore,
to minimize the effect of incomplete data sets on analy-
ses, and to increase the range of data sets to which these
algorithms can be applied. In this report, we investigate
automated methods for estimating missing data.
Results: We present a comparative study of several
methods for the estimation of missing values in gene
microarray data. We implemented and evaluated three
methods: a Singular Value Decomposition (SVD) based
method (SVDimpute), weighted K-nearest neighbors (KN-
Nimpute), and row average. We evaluated the methods
using a variety of parameter settings and over different real
data sets, and assessed the robustness of the imputation
methods to the amount of missing data over the range of
1–20% missing values. We show that KNNimpute appears
to provide a more robust and sensitive method for missing
value estimation than SVDimpute, and both SVDimpute
and KNNimpute surpass the commonly used row average
method (as well as filling missing values with zeros). We
report results of the comparative experiments and provide
recommendations and tools for accurate estimation of
missing microarray data under a variety of conditions.
Availability: The software is available at http://smi-web.
stanford.edu/projects/helix/pubs/impute/
Contact: russ.altman@stanford.edu

∗To whom correspondence should be addressed.

INTRODUCTION
DNA microarray technology allows for the monitoring
of expression levels of thousands of genes under a
variety of conditions (DeRisi et al., 1997; Spellman
et al., 1998). Microarrays have been used to study a
variety of biological processes, from differential gene
expression in human tumors (Perou et al., 2000) to yeast
sporulation (Chu et al., 1998). Various analysis techniques
have been developed, aimed primarily at identifying
regulatory patterns or similarities in expression under
similar conditions. Commonly used analysis methods
include clustering techniques (Eisen et al., 1998; Tamayo
et al., 1999), techniques based on partitioning of data
(Heyer et al., 1999; Tamayo et al., 1999), as well as
various supervised learning algorithms (Alter et al., 2000;
Brown et al., 2000; Golub et al., 1999; Raychaudhuri et
al., 2000; Hastie et al., 2000).

The data from microarray experiments is usually in
the form of large matrices of expression levels of genes
(rows) under different experimental conditions (columns)
and frequently with some values missing. Missing values
occur for diverse reasons, including insufficient resolution,
image corruption, or simply due to dust or scratches on
the slide. Missing data may also occur systematically
as a result of the robotic methods used to create them.
Our informal analysis of the distribution of missing
data in real samples shows a combination of all of
these, but none dominating. Such suspicious data is
usually manually flagged and excluded from subsequent
analysis (Alizadeh et al., 2000). Many analysis methods,
such as principle components analysis or singular value
decomposition, require complete matrices (Alter et al.,
2000; Raychaudhuri et al., 2000). Of course, one solution
to the missing data problem is to repeat the experiment.
This strategy can be expensive, but has been used in
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validation of microarray analysis algorithms (Butte et al.,
2001). Missing log2 transformed data are often replaced
by zeros (Alizadeh et al., 2000) or, less often, by an
average expression over the row, or ‘row average’. This
approach is not optimal, since these methods do not
take into consideration the correlation structure of the
data. Thus, many analysis techniques, as well as other
analysis methods such as hierarchical clustering, k-means
clustering, and self-organizing maps, may benefit from
using more accurately estimated missing values.

There is not a large published literature concerning
missing value estimation for microarray data, but much
work has been devoted to similar problems in other fields.
The question has been studied in contexts of non-response
issues in sample surveys and missing data in experiments
(Little and Rubin, 1987). Common methods include filling
in least squares estimates, iterative analysis of variance
methods (Yates, 1933), randomized inference methods,
and likelihood-based approaches (Wilkinson, 1958).
An algorithm similar to nearest neighbors was used to
handle missing values in CART-like algorithms (Loh and
Vanichsetakul, 1988). Most commonly applied statistical
techniques for dealing with missing data are model-based
approaches. We have tried to minimize the influence of
specific modeling assumptions in our methods.

In this work, we describe and evaluate three methods
of estimation for missing values in DNA microarrays. We
compare our KNN- and SVD-based methods to the row
average method, which is likely the most sophisticated
estimation technique currently employed for microarray
missing data estimation.

SYSTEM AND METHODS
Experimental methods
We implemented and evaluated three data imputation
methods: a method based on K Nearest Neighbors (KNN)
algorithm, a Singular Value Decomposition based method,
and simple row (gene) average.

Three microarray data sets were used: a study in yeast
Saccharomyces cerevisiae focusing on identification
of cell-cycle regulated genes (Spellman et al., 1998),
an exploration of temporal gene expression during the
metabolic shift from fermentation to respiration in Sac-
charomyces cerevisiae (DeRisi et al., 1997), and a study
of response to environmental changes in yeast (Gasch
et al., 2000). Two of the datasets were time-series data
(DeRisi et al., 1997; Spellman et al., 1998) and one
contained a non-time series subset of experiments from
Gasch et al. (2000). In addition, one of the time-series
data sets contained less apparent noise (Botstein, personal
communication) than the other. We refer to those data sets
by their characteristics: time series, noisy time series, and
non-time series.

Each data set was pre-processed for the evaluation by
removing rows and columns containing missing expres-
sion values, yielding ‘complete’ matrices. The methods
were then evaluated over each dataset as follows. Between
1 and 20% of the data were deleted at random to create
test data sets. Each method was then used to recover the
introduced missing values for each data set, and the esti-
mated values were compared to those in the original data
set. The metric used to assess the accuracy of estimation
(henceforth referred to as normalized RMS error) was cal-
culated as the Root Mean Squared (RMS) difference be-
tween the imputed matrix and the original matrix, divided
by the average data value in the complete data set. This
normalization allowed for comparison of estimation accu-
racy between different data sets.

We examined different parameter sets for the KNN- and
SVD-based algorithms. For KNN, the number of neigh-
boring genes optimal for estimation was varied, whereas
for SVD, different numbers of principal components, here
termed ‘eigengenes’ in the sense of Alter et al. (2000),
were used. Thus the experimental design allowed us to as-
sess the accuracy of each method under different condi-
tions (type of data, fraction of data missing) and determine
optimal parameters.

KNNimpute algorithm
The KNN-based method selects genes with expression
profiles similar to the gene of interest to impute missing
values. If we consider gene A that has one missing
value in experiment 1, this method would find K other
genes, which have a value present in experiment 1, with
expression most similar to A in experiments 2–N (where
N is the total number of experiments). A weighted average
of values in experiment 1 from the K closest genes is
then used as an estimate for the missing value in gene A.
In the weighted average, the contribution of each gene is
weighted by similarity of its expression to that of gene A.

After examining a number of metrics for gene similar-
ity (Pearson correlation, Euclidean distance, variance min-
imization), we determined that Euclidean distance was a
sufficiently accurate norm. This finding is somewhat sur-
prising, given that the Euclidean distance measure is often
sensitive to outliers, which could be present in microarray
data. However, we found that log-transforming the data
seems to sufficiently reduce the effect of outliers on gene
similarity determination.

SVDimpute algorithm
In this method, we employ singular value decomposi-
tion (1) to obtain a set of mutually orthogonal expression
patterns that can be linearly combined to approximate the
expression of all genes in the data set. These patterns,
which in this case are identical to the principle compo-
nents of the gene expression matrix, are further referred to
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as eigengenes (Alter et al., 2000; Anderson, 1984; Golub
and Van Loan, 1996).

Am×n = Um×m�m×nV T
n×n. (1)

Matrix V T now contains eigengenes, whose contribution
to the expression in the eigenspace is quantified by
corresponding eigenvalues on the diagonal of matrix
�. We then identify the most significant eigengenes
by sorting the eigengenes based on their corresponding
eigenvalue. Although it has been shown by Alter et al.
(2000) that several significant eigengenes are sufficient to
describe most of the expression data, the exact fraction
of eigengenes best for estimation needs to be determined
empirically.

Once k most significant eigengenes from V T are
selected, we estimate a missing value j in gene i by first
regressing this gene against the k eigengenes and then use
the coefficients of the regression to reconstruct j from a
linear combination of the k eigengenes. The j th value of
gene i and the j th values of the k eigengenes are not used
in determining these regression coefficients.

It should be noted that SVD can only be performed on
complete matrices; therefore we originally substitute row
average for all missing values in matrix A, obtaining A

′
.

We then utilize an expectation maximization method to
arrive at the final estimate, as follows. Each missing value
in A

′
is estimated using the above algorithm, and then the

procedure is repeated on the newly obtained matrix, until
the total change in the matrix falls below the empirically
determined threshold of 0.01.

RESULTS AND DISCUSSION
KNNimpute
Performance of the KNN-based method was assessed over
different data sets (both types of data and percent of
data missing) and over different values of K (Figure 1).
The method is very accurate, with the estimated values
showing only 6–26% average deviation from the true
values, depending on the type of data and fraction of
values missing. Notably, this method is successful in
accurate estimation of missing values for genes that are
expressed in small clusters. Other methods, such as row
average and SVD, are likely to be more inaccurate on
such clusters because the clusters themselves do not
contribute significantly to the global parameters upon
which these methods rely. When errors for individual
values are considered, approximately 88% of the values
are estimated with normalized RMS error under 0.25, with
KNN-based estimation for a noisy time series data set with
10% entries missing (Figure 2). Under low apparent noise
levels in time series data, as many as 94% of values are
estimated within 0.25 of the original value.

0.16

0.17

0.18

0.19

0.2

0.21

0.22

1 3 5 12 17 23 92 45
8

91
6

Number of genes used as neighbors

N
o

rm
a

li
z
e

d
 R

M
S

 e
rr

o
r

1% entries

missing

5% entries

missing

10% entries

missing

15% entries

missing

20% entries

missing

Fig. 1. Effect of number of nearest neighbors used for KNN-based
estimation on noisy time series data. Different curves correspond to
experiments performed for data sets with different percent of entries
missing.
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Fig. 2. Distribution of errors for KNN-based estimation on a noisy
time-series data set. Individual errors from estimation with K = 15
at 10% of data missing are displayed in a histogram. Most of the
normalized RMS errors are under 0.25.

Although a smaller percentage of missing data makes
data imputation more precise, the algorithm is robust to
increasing the percent of values missing, with a maximum
of 10% decrease in accuracy with 20% of the data missing
(Figure 1). In addition, the method is relatively insensitive
to the exact value of K within the range of 10–20
neighbors (Figure 1). Performance declines when a lower
number of neighbors is used for estimation, primarily due
to overemphasis of a few dominant expression patterns.
However, when the same gene is present twice on the
arrays, the method appropriately gives a very strong
weight to that gene in the estimation. The deterioration
in performance at larger values of K (above 20) may be
explained as follows. First, the inclusion of expression
patterns that are significantly different from the gene of
interest can decrease accuracy because the ‘neighborhood’
has become too large and not sufficiently relevant to the
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Fig. 3. Effect of reduction of array number on KNN- and SVD-based
estimation. On a time series data set, estimation was performed on
matrices with successively lower number of columns. The SVD
algorithm could not be applied to matrices with less than eight
columns.

estimation problem. In fact, optimal selection of K likely
depends on the average cluster size for the given data
set. Second, there may be significant noise present in
microarray data. As K increases, the contribution of noise
to the estimate overwhelms the contribution of the signal,
leading to a decrease in accuracy.

To assess the variance in RMS error over repeated
estimations for the same file with the same percent of
missing values removed, we performed 60 additional runs
of missing value removal and subsequent estimation on
one of the time series data sets. At 5% values missing
and K = 123, the average RMS error was 0.203, with
variance of 0.001. Thus, our evaluation method appears
to be reliable.

Although microarray experiments typically involve a
large number of arrays, sometimes experimenters need
to analyze data sets with small numbers of experiments
(columns in the matrix). KNNimpute can accurately
estimate data for matrices with as low as six columns
(Figure 3). We do not recommend using this method on
matrices with less than four columns.

SVDimpute
To determine the optimal parameter set for SVDimpute,
the method was evaluated using the most significant 5, 10,
20, and 30% of the eigengenes for estimation (Figure 4).
The most accurate estimation is achieved when approxi-
mately 20% of the eigengenes are used for estimation. In
contrast with KNNimpute, where the error curve appears
relatively flat between 10 and 20 neighbors, performance
of the SVD-based method deteriorates sharply as the num-
ber of eigengenes used is changed.

Although SVD-based estimation provides significantly
higher accuracy than row average on all data sets, its
performance is sensitive to the type of data being an-
alyzed. SVDimpute yields best results on time-series
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Fig. 4. Performance of SVD-based imputation with different
fractions of eigengenes used for estimation. Normalized RMS error
was assessed for a non-time course microarray (most challenging
estimation) with 5–30% eigengenes used. Different color curves
correspond to various percents of data missing from the data set.

data with low noise level (Figures 5 and 6). Under such
conditions the method performs better than KNNimpute
if the right number of eigengenes is used for estimation
(Figure 6). This likely reflects the signal-processing nature
of the SVD-based method. When the expression data
is dominated by the combined effect of strong patterns
of regulation over time (as in time-series data), SVD is
ideally suited to estimating expression of an individual
gene in terms of these constituent patterns. In contrast,
the KNN-based method exhibits higher performance for
both noisy time series data and non-time series data. As
SVD-based estimation is essentially a linear regression
method in lower-dimensional space, this deterioration in
performance is not surprising for non-time series data,
where a clear expression pattern is often not present.
The slightly lower sensitivity to noise compared to
KNNimpute is most likely due to the fact that expression
patterns for smaller groups of genes can sometimes not be
sufficiently represented in the dominant eigengenes used
for estimation.

Row average
Estimation by row (gene) average, although an im-
provement upon replacing missing values with zeros,
yielded drastically lower accuracy than either KNN-
or SVD-based estimation (Figure 5). As expected, the
method performs most poorly on non-time series data
(normalized RMS error of 0.40 and more), but error on
other data sets was also significantly higher than both of
the other methods. This is not surprising, since this row
averaging assumes that the expression of a gene in one of
the experiments is similar to its expression in a different
experiment, which is often not true. In contrast to SVD
and KNN, row average does not take advantage of the
rich information provided by the expression patterns of
other genes (or even duplicate runs of the same gene) in
the data set.
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Although an in-depth study was not performed on
column average, some experiments were performed with
this method and it does not yield satisfactory performance
(results not shown).

Performance
For a matrix of m rows (genes) and n columns (experi-
ments), the computational complexity of the KNNimpute
method is approximately O(m2n), assuming m � k and
fewer than 20% of the values missing. The computational
complexity of a full SVD calculation is O(n2m). How-
ever, SVDimpute utilizes an expectation–maximization
algorithm, thus bringing the complexity to O(n2mi),
where i is the number of iterations performed before the
threshold value is reached. The row average algorithm is
the fastest, with computational complexity of O(nm). The
KNNimpute method, implemented in C++, takes 3.23 min
on a Pentium III 500 MHz computer to estimate missing
values for a data set with 6153 genes and 14 experiments,
with 10% of the entries missing.

CONCLUSIONS
KNN- and SVD-based methods provide fast and accurate
ways of estimating missing values for microarray data.
Both methods far surpass the currently accepted solutions
(filling missing values with zeros or row average) by
taking advantage of the correlation structure of the data to
estimate missing expression values. Based on the results
of our study, we recommend KNN-based method for
imputation of missing values.

Although both KNN and SVD methods are robust
to increasing the fraction of data missing, KNN-based
imputation shows less deterioration in performance with
increasing percent of missing entries. In addition, the
KNNimpute method is more robust than SVD to the type
of data for which estimation is performed, performing
better on non-time series or noisy data. KNNimpute is
also less sensitive to the exact parameters used (number of
nearest neighbors), whereas the SVD-based method shows
sharp deterioration in performance when a non-optimal
fraction of missing values is used. From the biological
standpoint, KNNimpute has the advantage of providing
accurate estimation for missing values in genes that belong
to small tight expression clusters. Missing points for such
genes could be estimated poorly by SVD-based estimation
if their expression pattern is not similar to any of the
eigengenes used for regression.

KNN-based imputation provides for a robust and sensi-
tive approach to estimating missing data for microarrays.
However, it is important to exercise caution when drawing
critical biological conclusions from data that is partially
imputed. The goal of this method is to provide an accurate
way of estimating missing values in order to minimally
bias the performance of microarray analysis methods.
However, estimated data should be flagged where possible
and its significance on the discovery of biological results
should be assessed in order to avoid drawing unwarranted
conclusions.
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