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A motivation: comparing two samples

Given: Samples from unknown distributions P and Q .
Goal: do P and Q differ?
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A real-life example: two-sample tests
Have: Two collections of samples X Y from unknown distributions
P and Q .
Goal: do P and Q differ?

MNIST samples Samples from a GAN

Significant difference in GAN and MNIST?

T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, Xi Chen, NIPS 2016
Sutherland, Tung, Strathmann, De, Ramdas, Smola, G., ICLR 2017.
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Training generative models
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Training generative models
Have: One collection of samples X from unknown distribution P .
Goal: generate samples Q that look like P

LSUN bedroom samples P Generated Q , MMD GAN

Using MMD to train a GAN

(Binkowski, Sutherland, Arbel, G., ICLR 2018)̄,
(Arbel, Sutherland, Binkowski, G., arXiv 2018)̄
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Part 2: testing goodness of fit
Given: A model P and samples and Q .
Goal: is P a good fit for Q?

Chicago crime data
Model is Gaussian mixture with two components.
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Part 2: testing independence
Given: Samples from a distribution PXY

Goal: Are X and Y independent?

Their	noses	guide	them	
through	life,	and	they're	
never	happier	than	when	
following	an	interesting	scent.	

A	large	animal	who	slings	slobber,	
exudes	a	distinctive	houndy odor,	
and	wants	nothing	more	than	to	
follow	his	nose.	

Text	from	dogtime.com and	petfinder.com

A responsive,		interactive	
pet,	one	that	will	blow	in	
your	ear	and	follow	you	
everywhere.

YX
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Outline

Maximum Mean Discrepancy (MMD)...
• ...as a difference in feature means
• ...as an integral probability metric (not just a technicality!)

A statistical test based on the MMD

Training generative adversarial networks with MMD
• Gradient regularisation and data adaptivity
• Evaluating GAN performance? Problems with Inception and FID.
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Maximum Mean Discrepancy
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Feature mean difference

Simple example: 2 Gaussians with different means
Answer: t-test
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Feature mean difference

Two Gaussians with same means, different variance
Idea: look at difference in means of features of the RVs
In Gaussian case: second order features of form x x 2
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Feature mean difference

Two Gaussians with same means, different variance
Idea: look at difference in means of features of the RVs
In Gaussian case: second order features of form x x 2
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Feature mean difference

Gaussian and Laplace distributions
Same mean and same variance
Difference in means using higher order features...RKHS
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Infinitely many features using kernels

Kernels: dot products
of features

Feature map x ,

x i x 2

For positive definite k ,

k x x x x

Infinitely many features
x , dot product in

closed form!
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Infinitely many features using kernels

Kernels: dot products
of features

Feature map x ,

x i x 2

For positive definite k ,

k x x x x

Infinitely many features
x , dot product in

closed form!

Exponentiated quadratic kernel

k x x exp x x 2

Features: Gaussian Processes for Machine learning, Ras-
mussen and Williams, Ch. 4. 13/75



Feature space construction: details
Consider (truncated) Gaussian density on ,

p x exp x 2 x

Define the eigenexpansion of k x x wrt this density:

e x k x x e x p x dx ei x ej x p x dx
1 i j

0 i j

We can write

k x x
1

e x e x
1

e x

x

e x

x

which converges in L2 p .
Warning: for RKHS, need absolute and uniform convregence, eg via Mercer’s theorem for
compact .
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Infinitely many features of distributions

Given P a Borel probability measure on , define feature map of
probability P ,

P EP i x

For positive definite k x x ,

P Q EP Qk x y

for x P and y Q .

Fine print: is this allowed for infinite feature spaces?
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Does the feature space mean exist?
Does there exist an element P such that

EPf x f P f

We recall the concept of a bounded operator: a linear operator
A is bounded when

Af A f f

Riesz representation theorem: In a Hilbert space , all bounded linear
operators A can be written gA , for some gA ,

Af f gA
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Does the feature space mean exist?
Existence of mean embedding: If EP k x x EP x
then P .

Proof:
The linear operator TPf EPf x for all f is bounded under
the assumption, since

TPf EPf x

EP f x

EP f x

EP k x x f

Hence by Riesz (with TP EP k x x ), P such that

TPf f P
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The maximum mean discrepancy

The maximum mean discrepancy is the distance between feature
means:

MMD2 P Q P Q
2

P P Q Q 2 P Q

EPk X X

a

EQk Y Y

a

2EP Qk X Y

b
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The maximum mean discrepancy

The maximum mean discrepancy is the distance between feature
means:

MMD2 P Q P Q
2

P P Q Q 2 P Q

EPk X X

a

EQk Y Y

a

2EP Qk X Y

b

(a)= within distrib. similarity, (b)= cross-distrib. similarity.
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Illustration of MMD
Dogs P and fish Q example revisited
Each entry is one of k dogi dogj , k dogi fishj , or k fishi fishj
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Illustration of MMD
The maximum mean discrepancy:

MMD
2 1

n n 1
i j

k dogi dogj
1

n n 1
i j

k fishi fishj

2
n2

i j

k dogi fishj
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MMD as an integral probability metric

Are P and Q different?
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MMD as an integral probability metric
Integral probability metric:
Find a "well behaved function" f x to maximize

EPf X EQf Y

0 0.2 0.4 0.6 0.8 1

x
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1

f(
x)

Smooth function
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MMD as an integral probability metric
What if the function is not smooth?

EPf X EQf Y
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MMD as an integral probability metric
What if the function is not smooth?

EPf X EQf Y
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MMD as an integral probability metric
Maximum mean discrepancy: smooth function for P vs Q

MMD P Q F sup
f 1

EPf X EQf Y

(F unit ball in RKHS )
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MMD as an integral probability metric
Maximum mean discrepancy: smooth function for P vs Q

MMD P Q F sup
f 1

EPf X EQf Y

(F unit ball in RKHS )

Functions are linear combinations of features:

f 2
i 1 fi 2 1
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MMD as an integral probability metric
Maximum mean discrepancy: smooth function for P vs Q

MMD P Q F sup
f 1

EPf X EQf Y

(F unit ball in RKHS )
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MMD as an integral probability metric
Maximum mean discrepancy: smooth function for P vs Q

MMD P Q F sup
f 1

EPf X EQf Y

(F unit ball in RKHS )

For characteristic RKHS , MMD P Q F 0 iff P Q

Other choices for witness function class:

Bounded continuous [Dudley, 2002]

Bounded varation 1 (Kolmogorov metric) [Müller, 1997]

Bounded Lipschitz (Wasserstein distances) [Dudley, 2002]
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MMD as an integral probability metric
Maximum mean discrepancy: smooth function for P vs Q

MMD P Q F sup
f 1

EPf X EQf Y

(F unit ball in RKHS )

Reminder for next slide: expectations of
functions are linear combinations of expected
features

EP f X f P

(always true if kernel is bounded) 27/75



Integral prob. metric vs feature difference

The MMD:

MMD P Q F

sup
f F

EPf X EQf Y
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Integral prob. metric vs feature difference

The MMD:

MMD P Q F

sup
f F

EPf X EQf Y

sup
f F

f P Q

use

EPf X P f
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Integral prob. metric vs feature difference

The MMD:

MMD P Q F

sup
f F

EPf X EQf Y

sup
f F

f P Q

f*
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Integral prob. metric vs feature difference

The MMD:

MMD P Q F

sup
f F

EPf X EQf Y

sup
f F

f P Q

P Q

Function view and feature view equivalent
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Construction of MMD witness
Construction of empirical witness function (proof: next slide!)

Observe X x1 xn P

Observe Y y1 yn Q
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Construction of MMD witness
Construction of empirical witness function (proof: next slide!)

v
witness v
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Derivation of empirical witness function
Recall the witness function expression

f P Q
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P
1
n

n

i 1
xi
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Derivation of empirical witness function
Recall the witness function expression

f P Q

The empirical feature mean for P

P
1
n

n

i 1
xi

The empirical witness function at v

f v f v

P Q v

1
n

n

i 1
k xi v

1
n

n

i 1
k yi v

Don’t need explicit feature coefficients f f1 f2 30/75



Interlude: divergence measures
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Divergences
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Divergences
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Divergences
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Divergences
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Divergences

Sriperumbudur, Fukumizu, G, Schoelkopf, Lanckriet (EJS, 2012, Theorem A.1)
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Two-Sample Testing with MMD

37/75



A statistical test using MMD
The empirical MMD:

MMD
2 1

n n 1
i j

k xi xj
1

n n 1
i j

k yi yj

2
n2

i j

k xi yj

How does this help decide whether P Q?

Perspective from statistical hypothesis testing:

Null hypothesis 0 when P Q
• should see MMD

2
“close to zero”.

Alternative hypothesis 1 when P Q
• should see MMD

2
“far from zero”

Want Threshold c for MMD
2

to get false positive rate
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2
“close to zero”.
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2
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Behaviour of MMD
2

when P Q
Draw n 200 i.i.d samples from P and Q

Laplace with different y-variance.

n MMD
2
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Behaviour of MMD
2

when P QDraw n 200 new samples from P and Q

Laplace with different y-variance.
n MMD

2
1 5

0 0.5 1 1.5 2 2.5
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Behaviour of MMD
2

when P Q

Repeat this 150 times
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Behaviour of MMD
2

when P Q

Repeat this 3000 times
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Asymptotics of MMD
2

when P Q
When P Q , statistic is asymptotically normal,

MMD
2

MMD2 P Q
Vn P Q

D 0 1

where variance Vn P Q O n 1 .
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Behaviour of MMD
2

when P Q

Case of P Q 0 1

-2 0 2 4 6
0

0.1
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Asymptotics of MMD
2

when P Q
Where P Q , statistic has asymptotic distribution

nMMD
2

l 1
l z 2

l 2

-2 0 2 4 6
0

0.2

0.4

0.6

where

i i x k x x

centred

i x dP x

zl 0 2 i i d
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A statistical test

A summary of the asymptotics:
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A statistical test
Test construction: (G., Borgwardt, Rasch, Schoelkopf, and Smola, JMLR 2012)
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How do we get test threshold c ?
Original empirical MMD for dogs and fish:

MMD
2 1

n n 1
i j

k xi xj

1
n n 1

i j

k yi yj

2
n2

i j

k xi yj

k(xi, yj)k(xi, xj)

k(yi, yj)
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How do we get test threshold c ?
Permuted dog and fish samples (merdogs):
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How do we get test threshold c ?
Permuted dog and fish samples (merdogs):

MMD
2 1

n n 1
i j

k xi xj

1
n n 1

i j

k ~yi ~yj

2
n2

i j

k xi ~yj

Permutation simulates
P Q

k(x̃i, ỹj)k(x̃i, x̃j)

k(ỹi, ỹj)
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How to choose the best kernel:
optimising the kernel parameters
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Graphical illustration
Maximising test power same as minimizing false negatives
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Optimizing kernel for test power

The power of our test (Pr1 denotes probability under P Q):

Pr1 nMMD
2

c
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Optimizing kernel for test power

The power of our test (Pr1 denotes probability under P Q):

Pr1 nMMD
2

c

MMD2 P Q
Vn P Q

c
n Vn P Q

where

is the CDF of the standard normal distribution.
c is an estimate of c test threshold.

51/75



Optimizing kernel for test power

The power of our test (Pr1 denotes probability under P Q):

Pr1 nMMD
2

c

MMD2 P Q
Vn P Q

O n1 2

c
n Vn P Q

O n 1 2

Variance under 1 decreases as Vn P Q O n 1 2

For large n , second term negligible!
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Optimizing kernel for test power
The power of our test (Pr1 denotes probability under P Q):

Pr1 nMMD
2

c

MMD2 P Q
Vn P Q

c
n Vn P Q

To maximize test power, maximize

MMD2 P Q
Vn P Q

(Sutherland, Tung, Strathmann, De, Ramdas, Smola, G., ICLR 2017)
Code: github.com/dougalsutherland/opt-mmd
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Troubleshooting for generative adversarial networks

MNIST samples Samples from a GAN
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Troubleshooting for generative adversarial networks

MNIST samples Samples from a GAN

ARD map

Power for optimzed ARD
kernel: 1.00 at 0 01
Power for optimized RBF
kernel: 0.57 at 0 01
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Troubleshooting generative adversarial networks
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Training GANs with MMD
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What is a Generative Adversarial Network (GAN)?
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What is a Generative Adversarial Network (GAN)?
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Why is classification not enough?
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MMD for GAN critic
Can you use MMD as a critic to train GANs?
From ICML 2015:

From UAI 2015:
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MMD for GAN critic

Can you use MMD as a critic to train GANs?

Need better image features.
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How to improve the critic witness

Add convolutional features!
The critic (teacher) also needs to be trained.
How to regularise?

MMD GAN Li et al., [NIPS 2017]
Coulomb GAN Unterthiner et al., [ICLR 2018]
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WGAN-GP

Wasserstein GAN Arjovsky et al. [ICML 2017]
WGAN-GP Gukrajani et al. [NeurIPS 2017]
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WGAN-GP

Wasserstein GAN Arjovsky et al. [ICML 2017]
WGAN-GP Gukrajani et al. [NeurIPS 2017]

Given a generator G with parameters to be trained.
Samples Y G Z where Z R
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Wasserstein GAN Arjovsky et al. [ICML 2017]
WGAN-GP Gukrajani et al. [NeurIPS 2017]

Given a generator G with parameters to be trained.
Samples Y G Z where Z R

Given critic features h with parameters to be trained. f
a linear function of h .

WGAN-GP gradient penalty:

maxEX Pf X EZ Rf G Z EX X f X 1
2

where

X xi 1 G zj
0 1 xi x m

1 zj z n
1
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The (W)MMD
Train MMD critic features with the witness function gradient penalty
Binkowski, Sutherland, Arbel, G. [ICLR 2018], Bellemare et al. [2017] for energy distance:

maxMMD2 h X h G Z EX X f X 1
2

where

X xi 1 G zj
0 1 xi x m

1 zj z n
1

Remark by Bottou et al. (2017): gradient penalty modifies the function class. So critic is
not an MMD in RKHS .
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MMD for GAN critic: revisited

From ICLR 2018:
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Can we do better still?
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Convergence issues for WGAN-GP penalty
WGAN-GP style gradient penalty may not converge near solution
Nagarajan and Kolter [NeurIPS 2017], Mescheder et al. [ICML 2018], Balduzzi et al.
[ICML 2018]

The Dirac-GAN

P 0 Q f x x

Figure from Mescheder et al. [ICML 2018] 62/75
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A better gradient penalty
New MMD GAN witness regulariser (NeurIPS 2018)
Arbel, Sutherland, Binkowski, G. [NeurIPS 2018]
Based on semi-supervised learning regulariser Bousquet et al. [NeurIPS
2004]
Related to Sobolev GAN Mroueh et al. [ICLR 2018]
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Based on semi-supervised learning regulariser Bousquet et al. [NeurIPS
2004]
Related to Sobolev GAN Mroueh et al. [ICLR 2018]

Modified witness function:

where

Problem: not computationally feasible: O n3 per iteration. 63/75



A better gradient penalty

New MMD GAN witness regulariser (NeurIPS 2018)
Arbel, Sutherland, Binkowski, G. [NeurIPS 2018]
Based on semi-supervised learning regulariser Bousquet et al. [NeurIPS
2004]
Related to Sobolev GAN Mroueh et al. [ICLR 2018]

The scaled MMD:
SMMD k P MMD

where

k P k x x dP x
d

i 1
i i dk x x dP x

1 2

Replace expensive constraint with cheap upper bound:

f 2
S

1
k P f 2

k
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A better gradient penalty
New MMD GAN witness regulariser (NeurIPS 2018)
Arbel, Sutherland, Binkowski, G. [NeurIPS 2018]
Based on semi-supervised learning regulariser Bousquet et al. [NeurIPS
2004]
Related to Sobolev GAN Mroueh et al. [ICLR 2018]

The scaled MMD:
SMMD k P MMD

where

k P k x x dP x
d

i 1
i i dk x x dP x

1 2

Replace expensive constraint with cheap upper bound:

f 2
S

1
k P f 2

k

Idea: rather than regularise the critic or witness function, regularise
features directly 63/75



Evaluation and experiments
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Evaluation of GANs

The inception score? Salimans et al. [NeurIPS 2016]

Based on the classification output p y x of the inception model Szegedy

et al. [ICLR 2014],
EX expKL P y X P y

High when:

predictive label distribution P y x has low entropy (good quality
images)
label entropy P y is high (good variety).
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The inception score? Salimans et al. [NeurIPS 2016]

Based on the classification output p y x of the inception model Szegedy

et al. [ICLR 2014],
EX expKL P y X P y

High when:

predictive label distribution P y x has low entropy (good quality
images)
label entropy P y is high (good variety).

Problem: relies on a trained classifier! Can’t be used on new
categories (celeb, bedroom...)
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Evaluation of GANs
The Frechet inception distance? Heusel et al. [NeurIPS 2017]

Fits Gaussians to features in the inception architecture (pool3 layer):

FID P Q P Q
2 tr P tr Q 2tr P Q

1
2

where P and P are the feature mean and covariance of P
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Evaluation of GANs
The Frechet inception distance? Heusel et al. [NeurIPS 2017]

Fits Gaussians to features in the inception architecture (pool3 layer):

FID P Q P Q
2 tr P tr Q 2tr P Q

1
2

where P and P are the feature mean and covariance of P

Problem: bias. For
finite samples can
consistently give
incorrect answer.
Bias demo,
CIFAR-10 train vs
test
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Evaluation of GANs
The FID can give the wrong answer in practice.
Let d 2048, and define

P1 relu 0 Id P2 relu 1 8 2Id Q relu 1 Id

where 4
d CCT , with C a d d matrix with iid standard normal

entries.
For a random draw of C :

FID P1 Q 1123 0 1114 8 FID P2 Q

With m 50 000 samples,

FID P1 Q 1133 7 1136 2 FID P2 Q

At m 100 000 samples, the ordering of the estimates is correct.
This behavior is similar for other random draws of C . 67/75
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The kernel inception distance (KID)

The Kernel inception distance Binkowski, Sutherland, Arbel, G. [ICLR 2018]

Measures similarity of the samples’ representations in the inception
architecture (pool3 layer)
MMD with kernel

k x y
1
d
x y 1

3

Checks match for feature
means, variances, skewness
Unbiased : eg CIFAR-10
train/test
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Measures similarity of the samples’ representations in the inception
architecture (pool3 layer)
MMD with kernel

k x y
1
d
x y 1

3

Checks match for feature
means, variances, skewness
Unbiased : eg CIFAR-10
train/test

...“but isn’t KID is computationally costly?”

“Block” KID implementation is cheaper than FID: see paper
(or use Tensorflow implementation)!
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The kernel inception distance (KID)
The Kernel inception distance Binkowski, Sutherland, Arbel, G. [ICLR 2018]

Measures similarity of the samples’ representations in the inception
architecture (pool3 layer)
MMD with kernel

k x y
1
d
x y 1

3

Checks match for feature
means, variances, skewness
Unbiased : eg CIFAR-10
train/test

Also used for automatic learning rate adjustment: if KID Pt 1 Q
not significantly better than KID Pt Q then reduce learning rate.
[Bounliphone et al. ICLR 2016]

Related: “An empirical study on evaluation metrics of generative adversarial networks”, Xu et al. [arxiv,
June 2018]
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Benchmarks for comparison (all from ICLR 2018)
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Results: what does MMD buy you?
Critic features from DCGAN: an f -filter critic has f , 2f , 4f and 8f
convolutional filters in layers 1-4. LSUN 64 64.

MMD GAN samples, f 64,
KID=3

WGAN samples, f 64,
KID=4 70/75



Results: what does MMD buy you?
Critic features from DCGAN: an f -filter critic has f , 2f , 4f and 8f
convolutional filters in layers 1-4. LSUN 64 64.

MMD GAN samples, f 16,
KID=9

WGAN samples, f 16,
f 64, KID=37 70/75



Results: celebrity faces 160 160

KID scores:

Sobolev GAN:
14
SN-GAN:
18
Old MMD
GAN:
13
SMMD GAN:
6

202 599 face images, re-
sized and cropped to 160

160
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Results: unconditional imagenet 64 64

KID scores:

BGAN:
47
SN-GAN:
44
SMMD GAN:
35

ILSVRC2012 (ImageNet)
dataset, 1 281 167 im-
ages, resized to 64 × 64.
Around 20 000 classes.
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Summary
MMD critic gives state-of-the-art performance for GAN training
(FID and KID)

• use convolutional input features
• train with new gradient regulariser

Faster training, simpler critic network
Reasons for good performance:

• Unlike WGAN-GP, MMD loss still a valid critic when features not
optimal

• Kernel features do some of the “work”, so simpler h features possible.
• Better gradient/feature regulariser gives better critic

“Generative Models and Model Criticism via Optimized Maximum Mean Discrepancy,”
ICLR 2017 https://github.com/dougalsutherland/opt-mmd

“Demystifying MMD GANs,” including KID score, ICLR 2018:
https://github.com/mbinkowski/MMD-GAN

“On gradient regularizers for MMD GANs”, NeurIPS 2018:
https://github.com/MichaelArbel/Scaled-MMD-GAN
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Questions?
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