The Maximum Mean Discrepancy for Training Generative Adversarial Networks

Arthur Gretton

Gatsby Computational Neuroscience Unit, University College London

Paris, 2019

A motivation: comparing two samples

Given: Samples from unknown distributions P and Q.
Goal: do P and Q differ?

A real-life example: two-sample tests

- Have: Two collections of samples X, Y from unknown distributions P and Q.
- Goal: do P and Q differ?

MNIST samples Samples from a GAN Significant difference in GAN and MNIST?

T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, Xi Chen, NIPS 2016 Sutherland, Tung, Strathmann, De, Ramdas, Smola, G., ICLR 2017.

Training generative models

An image of Edmond de Belamy, created by a computer, has just been sold at Christie's. But no algorithm can capture our complex human consciousness

10000000

A Portrait of Edmond Bellamy at Christie's in New York. Photograph: Timothy A Clary/AFP/Getty Images

Training generative models

Have: One collection of samples X from unknown distribution P.
Goal: generate samples Q that look like P

LSUN bedroom samples *P* Generated *Q*, MMD GAN Using MMD to train a GAN

(Binkowski, Sutherland, Arbel, G., ICLR 2018), (Arbel, Sutherland, Binkowski, G., arXiv 2018)

Part 2: testing goodness of fit

Given: A model P and samples and Q.
Goal: is P a good fit for Q?

Chicago crime data

Model is Gaussian mixture with two components.

Part 2: testing independence

Given: Samples from a distribution P_{XY} **Goal:** Are X and Y independent?

X	Y
	A large animal who slings slobber, exudes a distinctive houndy odor, and wants nothing more than to follow his nose.
	Their noses guide them through life, and they're never happier than when following an interesting scent.
Mr.	A responsive, interactive pet, one that will blow in your ear and follow you everywhere.
Text from dogtime.com and petfinder.com	

Outline

■ Maximum Mean Discrepancy (MMD)...

- ...as a difference in feature means
- ...as an integral probability metric (not just a technicality!)

A statistical test based on the MMD

Training generative adversarial networks with MMD

- Gradient regularisation and data adaptivity
- Evaluating GAN performance? Problems with Inception and FID.

Maximum Mean Discrepancy

Simple example: 2 Gaussians with different meansAnswer: t-test

- Two Gaussians with same means, different variance
- Idea: look at difference in means of features of the RVs
- In Gaussian case: second order features of form $\varphi(x) = x^2$

- Two Gaussians with same means, different variance
- Idea: look at difference in means of features of the RVs
- In Gaussian case: second order features of form $arphi(x)=x^2$

- Gaussian and Laplace distributions
- Same mean *and* same variance
- Difference in means using higher order features...RKHS

Infinitely many features using kernels

Kernels: dot products of features

Feature map $\varphi(x) \in \mathcal{F}$,

$$\varphi(x) = [\ldots \varphi_i(x) \ldots] \in \ell_2$$

For positive definite k,

$$k(x,x')=\langle arphi(x),arphi(x')
angle_{\mathcal{F}}$$

Infinitely many features $\varphi(x)$, dot product in closed form!

Infinitely many features using kernels

Kernels: dot products of features

Feature map $\varphi(x) \in \mathcal{F}$,

$$\varphi(x) = [\ldots \varphi_i(x) \ldots] \in \ell_2$$

For positive definite k,

$$k(x,x')=\langle arphi(x),arphi(x')
angle_{\mathcal{F}}$$

Infinitely many features $\varphi(x)$, dot product in closed form!

Exponentiated quadratic kernel

$$k(x,x') = \exp\left(-\gamma \left|\left|x-x'\right|\right|^2
ight)$$

Features: Gaussian Processes for Machine learning, Rasmussen and Williams, Ch. 4. 13/75

Feature space construction: details

Consider (truncated) Gaussian density on $\mathcal{X} \subset \mathbb{R},$ $p(x) \propto \exp\left(-x^2
ight) \mathbb{I}_{\mathcal{X}}(x)$

Define the eigenexpansion of k(x, x') wrt this density:

$$\lambda_\ell e_\ell(x) = \int_\mathcal{X} k(x,x') e_\ell(x') p(x') dx' \qquad \int_\mathcal{X} e_i(x) e_j(x) p(x) dx = egin{cases} 1 & i=j \ 0 & i
eq j. \end{cases}$$

We can write

$$k(x,x') = \sum_{\ell=1}^{\infty} \lambda_{\ell} e_{\ell}(x) e_{\ell}(x') = \sum_{\ell=1}^{\infty} \underbrace{\left(\sqrt{\lambda_{\ell}} e_{\ell}(x)\right)}_{\varphi_{\ell}(x)} \underbrace{\left(\sqrt{\lambda_{\ell}} e_{\ell}(x')\right)}_{\varphi_{\ell}(x')}$$

which converges in $L_2(p)$.

Warning: for RKHS, need absolute and uniform convregence, eg via Mercer's theorem for compact \mathcal{X} .

Feature space construction: details

Consider (truncated) Gaussian density on $\mathcal{X} \subset \mathbb{R},$ $p(x) \propto \exp\left(-x^2
ight) \mathbb{I}_{\mathcal{X}}(x)$

Define the eigenexpansion of k(x, x') wrt this density:

$$\lambda_{\ell} e_{\ell}(x) = \int_{\mathcal{X}} k(x,x') e_{\ell}(x') p(x') dx' \qquad \int_{\mathcal{X}} e_i(x) e_j(x) p(x) dx = egin{cases} 1 & i=j \ 0 & i
eq j. \end{cases}$$

We can write

$$k(x,x') = \sum_{\ell=1}^{\infty} \lambda_{\ell} e_{\ell}(x) e_{\ell}(x') = \sum_{\ell=1}^{\infty} \underbrace{\left(\sqrt{\lambda_{\ell}} e_{\ell}(x)\right)}_{\varphi_{\ell}(x)} \underbrace{\left(\sqrt{\lambda_{\ell}} e_{\ell}(x')\right)}_{\varphi_{\ell}(x')}$$

which converges in $L_2(p)$.

Warning: for RKHS, need absolute and uniform convregence, eg via Mercer's theorem for compact \mathcal{X} .

Infinitely many features of *distributions*

Given P a Borel probability measure on \mathcal{X} , define feature map of probability P,

 $\mu_P = [\dots \mathbf{E}_P [\varphi_i(\boldsymbol{x})] \dots]$

For positive definite k(x, x'),

$$\langle \mu_P, \mu_Q
angle_{\mathcal{F}} = \mathrm{E}_{P,Q} k(x,y)$$

for $x \sim P$ and $y \sim Q$.

Fine print: is this allowed for infinite feature spaces?

Infinitely many features of *distributions*

Given P a Borel probability measure on \mathcal{X} , define feature map of probability P,

$$\mu_P = [\dots \mathbf{E}_P [\varphi_i(x)] \dots]$$

For positive definite k(x, x'),

$$\langle \mu_P, \mu_Q \rangle_F = \mathbf{E}_{P,Q} k(x, y)$$

for $x \sim P$ and $y \sim Q$.

Fine print: is this allowed for infinite feature spaces?

Does there exist an element $\mu_P \in \mathcal{F}$ such that

$$\mathbf{E}_{P}f(x) = \langle f, \mu_{P}
angle_{\mathcal{F}} \qquad orall f \in \mathcal{F}$$

We recall the concept of a bounded operator: a linear operator $A : \mathcal{F} \to \mathbb{R}$ is bounded when

$$|Af| \leq \lambda_A ||f||_{\mathcal{F}} \quad \forall f \in \mathcal{F}.$$

Riesz representation theorem: In a Hilbert space \mathcal{F} , all bounded linear operators A can be written $\langle \cdot, g_A \rangle_{\mathcal{F}}$, for some $g_A \in \mathcal{F}$,

 $Af = \langle f(\cdot), g_A(\cdot)
angle_{\mathcal{F}}$

Does there exist an element $\mu_P \in \mathcal{F}$ such that

$$\mathbf{E}_{P}f(x) = \langle f, \mu_{P}
angle_{\mathcal{F}} \qquad orall f \in \mathcal{F}$$

We recall the concept of a bounded operator: a linear operator $A : \mathcal{F} \to \mathbb{R}$ is bounded when

$$|Af| \leq \lambda_A ||f||_{\mathcal{F}} \quad orall f \in \mathcal{F}.$$

Riesz representation theorem: In a Hilbert space \mathcal{F} , all bounded linear operators A can be written $\langle \cdot, g_A \rangle_{\mathcal{F}}$, for some $g_A \in \mathcal{F}$,

 $Af = \langle f(\cdot), g_A(\cdot) \rangle_{\mathcal{F}}$

Does there exist an element $\mu_P \in \mathcal{F}$ such that

$$\mathbf{E}_{P}f(x) = \langle f, \mu_{P}
angle_{\mathcal{F}} \qquad orall f \in \mathcal{F}$$

We recall the concept of a bounded operator: a linear operator $A : \mathcal{F} \to \mathbb{R}$ is bounded when

$$|Af| \leq \lambda_A ||f||_{\mathcal{F}} \quad \forall f \in \mathcal{F}.$$

Riesz representation theorem: In a Hilbert space \mathcal{F} , all bounded linear operators A can be written $\langle \cdot, g_A \rangle_{\mathcal{F}}$, for some $g_A \in \mathcal{F}$,

$$Af = \langle f(\cdot), g_A(\cdot) \rangle_{\mathcal{F}}$$

Existence of mean embedding: If $\mathbf{E}_P \sqrt{k(x,x)} = \mathbf{E}_P \|\varphi(x)\|_{\mathcal{F}} < \infty$ then $\exists \mu_P \in \mathcal{F}$.

Proof:

The linear operator $T_P f := \mathrm{E}_P f(x)$ for all $f \in \mathcal{F}$ is bounded under the assumption, since

$$egin{aligned} & E_P f(x) | \, . \ & \leq \mathbf{E}_P \left| f(x)
ight| \ & = \mathbf{E}_P \left| \langle f, arphi(x)
angle \ & \leq \mathbf{E}_P \left| \langle f, arphi(x)
angle_{\mathcal{F}}
ight| \ & \leq \mathbf{E}_P \left(\sqrt{k(x,x)} \left| \left| f
ight|
ight|_{\mathcal{F}}
ight) \end{aligned}$$

Existence of mean embedding: If $\mathbf{E}_P \sqrt{k(x,x)} = \mathbf{E}_P \|\varphi(x)\|_{\mathcal{F}} < \infty$ then $\exists \mu_P \in \mathcal{F}$.

Proof:

The linear operator $T_P f := \mathbf{E}_P f(x)$ for all $f \in \mathcal{F}$ is bounded under the assumption, since

$$egin{aligned} |T_P f| &= |\mathbf{E}_P f(x)| \, . \ &\leq \mathbf{E}_P \left| f(x)
ight| \ &= \mathbf{E}_P \left| \langle f, arphi(x)
angle_{\mathcal{F}}
ight| \ &\leq \mathbf{E}_P \left(\sqrt{k(x,x)} \left| \left| f
ight|
ight|_{\mathcal{F}}
ight) \end{aligned}$$

Existence of mean embedding: If $\mathbf{E}_P \sqrt{k(x,x)} = \mathbf{E}_P \|\varphi(x)\|_{\mathcal{F}} < \infty$ then $\exists \mu_P \in \mathcal{F}$.

Proof:

The linear operator $T_P f := \mathbf{E}_P f(x)$ for all $f \in \mathcal{F}$ is bounded under the assumption, since

$$egin{aligned} T_P f &| = \left| \mathbf{E}_P f(x)
ight|. \ &\leq \mathbf{E}_P \left| f(x)
ight| \ &= \mathbf{E}_P \left| \langle f, arphi(x)
angle_{\mathcal{F}}
ight| \ &\leq \mathbf{E}_P \left(\sqrt{k(x,x)} \left| \left| f
ight|
ight|_{\mathcal{F}}
ight) \end{aligned}$$

Existence of mean embedding: If $\mathbf{E}_P \sqrt{k(x,x)} = \mathbf{E}_P \|\varphi(x)\|_{\mathcal{F}} < \infty$ then $\exists \mu_P \in \mathcal{F}$.

Proof:

The linear operator $T_P f := \mathbf{E}_P f(x)$ for all $f \in \mathcal{F}$ is bounded under the assumption, since

$$egin{aligned} |T_P f| &= |\mathbf{E}_P f(x)|\,.\ &\leq \mathbf{E}_P \left|f(x)
ight|\ &= \mathbf{E}_P \left|\langle f, arphi(x)
ight
angle_{\mathcal{F}}
ight|\ &\leq \mathbf{E}_P \left(\sqrt{k(x,x)} \left||f||_{\mathcal{F}}
ight) \end{aligned}$$

Existence of mean embedding: If $\mathbf{E}_P \sqrt{k(x,x)} = \mathbf{E}_P \|\varphi(x)\|_{\mathcal{F}} < \infty$ then $\exists \mu_P \in \mathcal{F}$.

Proof:

The linear operator $T_P f := \mathbf{E}_P f(x)$ for all $f \in \mathcal{F}$ is bounded under the assumption, since

$$egin{aligned} |T_P f| &= |\mathbf{E}_P f(x)|\,.\ &\leq \mathbf{E}_P \left| f(x)
ight| \ &= \mathbf{E}_P \left| \langle f, arphi(x)
angle_{\mathcal{F}}
ight| \ &\leq \mathbf{E}_P \left(\sqrt{k(x,x)} \left| |f|
ight|_{\mathcal{F}}
ight) \end{aligned}$$

The maximum mean discrepancy is the distance between **feature** means:

$$MMD^{2}(P,Q) = ||\mu_{P} - \mu_{Q}||_{\mathcal{F}}^{2}$$

= $\langle \mu_{P}, \mu_{P} \rangle_{\mathcal{F}} + \langle \mu_{Q}, \mu_{Q} \rangle_{\mathcal{F}} - 2 \langle \mu_{P}, \mu_{Q} \rangle_{\mathcal{F}}$
= $\underbrace{\mathbf{E}_{P}k(X, X')}_{(a)} + \underbrace{\mathbf{E}_{Q}k(Y, Y')}_{(a)} - 2\underbrace{\mathbf{E}_{P,Q}k(X, Y)}_{(b)}$

The maximum mean discrepancy is the distance between **feature** means:

$$MMD^{2}(P,Q) = ||\mu_{P} - \mu_{Q}||_{\mathcal{F}}^{2}$$

= $\langle \mu_{P}, \mu_{P} \rangle_{\mathcal{F}} + \langle \mu_{Q}, \mu_{Q} \rangle_{\mathcal{F}} - 2 \langle \mu_{P}, \mu_{Q} \rangle_{\mathcal{F}}$
= $\underbrace{\mathbf{E}_{P}k(X, X')}_{(a)} + \underbrace{\mathbf{E}_{Q}k(Y, Y')}_{(a)} - 2\underbrace{\mathbf{E}_{P,Q}k(X, Y)}_{(b)}$

The maximum mean discrepancy is the distance between **feature** means:

$$MMD^{2}(P, Q) = ||\mu_{P} - \mu_{Q}||_{\mathcal{F}}^{2}$$

= $\langle \mu_{P}, \mu_{P} \rangle_{\mathcal{F}} + \langle \mu_{Q}, \mu_{Q} \rangle_{\mathcal{F}} - 2 \langle \mu_{P}, \mu_{Q} \rangle_{\mathcal{F}}$
= $\underbrace{\mathbf{E}_{P}k(X, X')}_{(a)} + \underbrace{\mathbf{E}_{Q}k(Y, Y')}_{(a)} - 2\underbrace{\mathbf{E}_{P,Q}k(X, Y)}_{(b)}$

(a)= within distrib. similarity, (b)= cross-distrib. similarity.

Illustration of MMD

Dogs (= P) and fish (= Q) example revisited
Each entry is one of k(dog_i, dog_j), k(dog_i, fish_j), or k(fish_i, fish_j)

Illustration of MMD

The maximum mean discrepancy:

$$\widehat{MMD}^{2} = \frac{1}{n(n-1)} \sum_{i \neq j} k(\log_{i}, \log_{j}) + \frac{1}{n(n-1)} \sum_{i \neq j} k(\operatorname{fish}_{i}, \operatorname{fish}_{j})$$
$$- \frac{2}{n^{2}} \sum_{i,j} k(\log_{i}, \operatorname{fish}_{j})$$
$$k(\log_{i}, \log_{j}) \quad k(\log_{i}, \operatorname{fish}_{j})$$
$$k(\operatorname{fish}_{j}, \operatorname{dog}_{i}) \quad k(\operatorname{fish}_{i}, \operatorname{fish}_{j})$$

Are P and Q different?

Are P and Q different?

Integral probability metric:

Find a "well behaved function" f(x) to maximize

$\mathrm{E}_P f(X) - \mathrm{E}_Q f(Y)$

Integral probability metric:

Find a "well behaved function" f(x) to maximize

$\mathrm{E}_{P}f(X)-\mathrm{E}_{Q}f(Y)$

What if the function is not smooth?

 $\mathbf{E}_P f(X) - \mathbf{E}_Q f(Y)$

What if the function is not smooth?

 $\mathbf{E}_{P}f(X) - \mathbf{E}_{Q}f(Y)$

Maximum mean discrepancy: smooth function for P vs Q

$$egin{aligned} MMD(P, oldsymbol{Q}; F) &:= \sup_{||f|| \leq 1} \left[\operatorname{E}_P f(X) - \operatorname{E}_{oldsymbol{Q}} f(Y)
ight] \ (F &= \operatorname{unit} ext{ ball in RKHS } \mathcal{F}) \end{aligned}$$

Maximum mean discrepancy: smooth function for P vs Q

$$egin{aligned} MMD(P,oldsymbol{Q};F) &:= \sup_{||f||\leq 1} \left[\operatorname{E}_P f(X) - \operatorname{E}_{oldsymbol{Q}} f(oldsymbol{Y})
ight] \ (F &= ext{unit ball in RKHS } \mathcal{F}) \end{aligned}$$

Functions are linear combinations of features:

$$f(x) = \langle f, \varphi(x) \rangle_{\mathcal{F}} = \sum_{\ell=1}^{\infty} f_{\ell} \varphi_{\ell}(x) = \begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ \vdots \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} \varphi_1(x) & \uparrow & \uparrow \\ \varphi_2(x) & \uparrow & \downarrow \\ \varphi_3(x) & \uparrow & \downarrow \\ \varphi_3(x) & \uparrow & \downarrow \\ \vdots & \vdots \end{bmatrix}$$
$$||f||_{\mathcal{F}}^2 := \sum_{i=1}^{\infty} f_i^2 \le 1$$

Maximum mean discrepancy: smooth function for P vs Q

$$MMD(P, \mathbf{Q}; F) := \sup_{||f|| \leq 1} [\mathbf{E}_P f(X) - \mathbf{E}_{\mathbf{Q}} f(\mathbf{Y})]$$
 $(F = ext{unit ball in RKHS } \mathcal{F})$

27/75

Maximum mean discrepancy: smooth function for P vs Q

$$MMD(P, \mathbf{Q}; F) := \sup_{\|f\| \le 1} [\mathbf{E}_P f(X) - \mathbf{E}_{\mathbf{Q}} f(Y)]$$

 $(F = ext{unit ball in RKHS } \mathcal{F})$

For characteristic RKHS \mathcal{F} , MMD(P, Q; F) = 0 iff P = Q

Other choices for witness function class:

Bounded continuous [Dudley, 2002]

Bounded varation 1 (Kolmogorov metric) [Müller, 1997]

Bounded Lipschitz (Wasserstein distances) [Dudley, 2002]

Maximum mean discrepancy: smooth function for P vs Q

$$MMD(P, \mathbf{Q}; F) := \sup_{||f|| \leq 1} [\mathbf{E}_P f(X) - \mathbf{E}_{\mathbf{Q}} f(\mathbf{Y})]$$
 $(F = ext{unit ball in RKHS } \mathcal{F})$

Reminder for next slide: expectations of functions are linear combinations of expected features

$$\mathbf{E}_{P}(f(X)) = \langle f, \boldsymbol{\mu}_{P} \rangle_{\mathcal{F}}$$

(always true if kernel is bounded)

The MMD:

$$egin{aligned} MMD(P, oldsymbol{Q}; F) \ &= \sup_{f \in F} [\mathbf{E}_P f(X) - \mathbf{E}_{oldsymbol{Q}} f(Y)] \end{aligned}$$

The MMD:

use

MMD(P, Q; F)

- $= \sup_{f \in F} [\mathbf{E}_P f(X) \mathbf{E}_Q f(Y)]$
- $= \sup_{f\in F} \langle f, \mu_P \mu_Q
 angle_{\mathcal{F}}$

 $\mathbf{E}_{P}f(X) = \langle \mu_{P}, f \rangle_{\mathcal{F}}$

The MMD:

 $MMD(P, Q; F) = \sup_{f \in F} [\mathbf{E}_P f(X) - \mathbf{E}_Q f(Y)]$

$$=\sup_{f\in F}\langle f,\mu_P-\mu_Q
angle_{\mathcal{F}}$$

The MMD:

 $MMD(P, Q; F) = \sup_{f \in F} [\mathbf{E}_P f(X) - \mathbf{E}_Q f(Y)]$

$$=\sup_{f\in F}\langle f,\mu_P-\mu_Q\rangle_{\mathcal{F}}$$

The MMD:

 $MMD(P, Q; F) = \sup_{f \in F} [\mathbf{E}_P f(X) - \mathbf{E}_Q f(Y)]$

$$=\sup_{f\in F}\langle f,\mu_P-\mu_Q
angle_{\mathcal{F}}$$

The MMD:

$$egin{aligned} & MMD(P, oldsymbol{Q}; F) \ &= \sup_{f \in F} \left[\mathrm{E}_P f(X) - \mathrm{E}_{oldsymbol{Q}} f(Y)
ight] \ &= \sup_{f \in F} \left\langle f, \mu_P - \mu_Q
ight
angle_{\mathcal{F}} \end{aligned}$$

$$= ||\boldsymbol{\mu}_P - \boldsymbol{\mu}_Q||$$

Function view and feature view equivalent

Recall the witness function expression

 $f^* \propto \mu_P - \mu_Q$

Recall the witness function expression

 $f^* \propto \mu_P - \mu_Q$

The empirical feature mean for P

$$\widehat{\mu}_P := rac{1}{n}\sum_{i=1}^n arphi(x_i)$$

Recall the witness function expression

 $f^* \propto \mu_P - \mu_Q$

The empirical feature mean for P

$$\widehat{\mu}_P := rac{1}{n}\sum_{i=1}^n arphi(x_i)$$

The empirical witness function at v

$$f^*(v) = \langle f^*, arphi(v)
angle_{\mathcal{F}}$$

Recall the witness function expression

 $f^* \propto \mu_P - \mu_Q$

The empirical feature mean for P

$$\widehat{\mu}_P := rac{1}{n}\sum_{i=1}^n arphi(x_i)$$

The empirical witness function at v

$$egin{aligned} f^*(v) &= \langle f^*, arphi(v)
angle_{\mathcal{F}} \ &\propto \langle \widehat{\mu}_P - \widehat{\mu}_{\mathcal{Q}}, arphi(v)
angle_{\mathcal{F}} \end{aligned}$$

Recall the witness function expression

 $f^* \propto \mu_P - \mu_Q$

The empirical feature mean for P

$$\widehat{\mu}_P := rac{1}{n}\sum_{i=1}^n arphi(x_i)$$

The empirical witness function at v

$$egin{aligned} f^{*}(v) &= \langle f^{*}, arphi(v)
angle_{\mathcal{F}} \ &\propto \langle \widehat{\mu}_{P} - \widehat{\mu}_{Q}, arphi(v)
angle_{\mathcal{F}} \ &= rac{1}{n} \sum_{i=1}^{n} k(x_{i}, v) - rac{1}{n} \sum_{i=1}^{n} k(\mathbf{y}_{i}, v) \end{aligned}$$

Don't need explicit feature coefficients $f^* := \begin{bmatrix} f_1^* & f_2^* & \dots \end{bmatrix}$

30/75

Interlude: divergence measures

Sriperumbudur, Fukumizu, G, Schoelkopf, Lanckriet (EJS, 2012, Theorem A.1)

Two-Sample Testing with MMD

A statistical test using MMD

The empirical MMD:

$$\begin{split} \widehat{MMD}^2 = & \frac{1}{n(n-1)} \sum_{i \neq j} k(\mathbf{x}_i, \mathbf{x}_j) + \frac{1}{n(n-1)} \sum_{i \neq j} k(\mathbf{y}_i, \mathbf{y}_j) \\ & - \frac{2}{n^2} \sum_{i,j} k(\mathbf{x}_i, \mathbf{y}_j) \end{split}$$

How does this help decide whether P = Q?

A statistical test using MMD

The empirical MMD:

$$\begin{split} \widehat{MMD}^2 = & \frac{1}{n(n-1)} \sum_{i \neq j} k(\boldsymbol{x}_i, \boldsymbol{x}_j) + \frac{1}{n(n-1)} \sum_{i \neq j} k(\boldsymbol{y}_i, \boldsymbol{y}_j) \\ & - \frac{2}{n^2} \sum_{i,j} k(\boldsymbol{x}_i, \boldsymbol{y}_j) \end{split}$$

Perspective from statistical hypothesis testing:

Null hypothesis H₀ when P = Q
should see MMD² "close to zero".
Alternative hypothesis H₁ when P ≠ Q
should see MMD² "far from zero"

A statistical test using MMD

The empirical MMD:

$$\widehat{MMD}^2 = \frac{1}{n(n-1)} \sum_{i \neq j} k(\mathbf{x}_i, \mathbf{x}_j) + \frac{1}{n(n-1)} \sum_{i \neq j} k(\mathbf{y}_i, \mathbf{y}_j) \\ - \frac{2}{n^2} \sum_{i,j} k(\mathbf{x}_i, \mathbf{y}_j)$$

Perspective from statistical hypothesis testing:

Null hypothesis H₀ when P = Q
should see MMD² "close to zero".
Alternative hypothesis H₁ when P ≠ Q
should see MMD² "far from zero"

Want Threshold c_{α} for \widehat{MMD}^2 to get false positive rate α

Behaviour of \widehat{MMD}^2 when $P \neq Q$

Draw n = 200 i.i.d samples from P and Q

• Laplace with different y-variance.

 $\sqrt{n} \times \widehat{MMD}^2 = 1.2$

• Laplace with different y-variance. • $\sqrt{n} \times \widehat{MMD}^2 = 1.2$

• Laplace with different y-variance. • $\sqrt{n} \times \widehat{MMD}^2 = 1.5$

Repeat this 150 times ...

42/75

Repeat this 300 times ...

Repeat this 3000 times ...

Asymptotics of \widehat{MMD}^2 when $P \neq Q$

When $P \neq Q$, statistic is asymptotically normal, $\frac{\widehat{\mathrm{MMD}}^2 - \mathrm{MMD}^2(P, Q)}{\sqrt{V_n(P, Q)}} \xrightarrow{D} \mathcal{N}(0, 1),$

where variance $V_n(P, Q) = O(n^{-1})$.

• Case of $P = Q = \mathcal{N}(0, 1)$

• Case of $P = Q = \mathcal{N}(0, 1)$

Number of MMDs: 20

• Case of $P = Q = \mathcal{N}(0, 1)$

Number of MMDs: 50

• Case of $P = Q = \mathcal{N}(0, 1)$

Number of MMDs: 100

• Case of $P = Q = \mathcal{N}(0, 1)$

Asymptotics of \widehat{MMD}^2 when P = Q

Where P = Q, statistic has asymptotic distribution

$$n\widehat{\mathrm{MMD}}^2 \sim \sum_{l=1}^{\infty} \lambda_l \left[z_l^2 - 2 \right]$$

where

$$\lambda_i\psi_i(x')=\int_{\mathcal{X}} \underbrace{ ilde{k}(x,x')}_{ ext{centred}} \psi_i(x) dP(x)$$

$$z_l \sim \mathcal{N}(0,2)$$
 i.i.d.

A summary of the asymptotics:

A statistical test

Test construction: (G., Borgwardt, Rasch, Schoelkopf, and Smola, JMLR 2012)

How do we get test threshold c_{α} ?

Original empirical MMD for dogs and fish:

$$X = \begin{bmatrix} & & & \\ & & & \\$$

$$\begin{split} \widehat{MMD}^2 = & \frac{1}{n(n-1)} \sum_{i \neq j} k(\boldsymbol{x}_i, \boldsymbol{x}_j) \\ &+ \frac{1}{n(n-1)} \sum_{i \neq j} k(\boldsymbol{y}_i, \boldsymbol{y}_j) \\ &- \frac{2}{n^2} \sum_{i,j} k(\boldsymbol{x}_i, \boldsymbol{y}_j) \end{split}$$

How do we get test threshold c_{α} ?

Permuted dog and fish samples (merdogs):

How do we get test threshold c_{α} ?

Permuted dog and fish samples (merdogs):

$$\widetilde{X} = \llbracket \bigotimes \bigotimes \bigotimes \bigotimes \ldots \rrbracket$$
$$\widetilde{Y} = \llbracket \bigotimes \bigotimes \bigotimes \bigotimes \bigotimes \bigotimes \ldots \rrbracket$$

Permutation simulates P = Q

How to choose the best kernel: optimising the kernel parameters

Graphical illustration

Maximising test power same as minimizing false negatives

The power of our test (Pr₁ denotes probability under $P \neq Q$):

$$\Pr_1\left(n\widehat{\mathrm{MMD}}^2 > \hat{c}_{\boldsymbol{lpha}}\right)$$

The power of our test (Pr₁ denotes probability under $P \neq Q$):

$$\Pr_1\left(n\widehat{\mathrm{MMD}}^2 > \hat{c}_{oldsymbol{lpha}}
ight) \ o \Phi\left(rac{\mathrm{MMD}^2(P,Q)}{\sqrt{V_n(P,Q)}} - rac{c_{oldsymbol{lpha}}}{n\sqrt{V_n(P,Q)}}
ight)$$

where

- Φ is the CDF of the standard normal distribution.
- \hat{c}_{α} is an estimate of c_{α} test threshold.

The power of our test (Pr₁ denotes probability under $P \neq Q$):

$$\Pr_{1}\left(n\widehat{\mathrm{MMD}}^{2} > \hat{c}_{\alpha}\right)$$

$$\rightarrow \Phi\left(\underbrace{\frac{\mathrm{MMD}^{2}(P,Q)}{\sqrt{V_{n}(P,Q)}}}_{\mathcal{O}(n^{1/2})} - \underbrace{\frac{c_{\alpha}}{n\sqrt{V_{n}(P,Q)}}}_{\mathcal{O}(n^{-1/2})}\right)$$

Variance under \mathcal{H}_1 decreases as $\sqrt{V_n(P,Q)} \sim O(n^{-1/2})$ For large *n*, second term negligible!

The power of our test (Pr₁ denotes probability under $P \neq Q$):

$$egin{aligned} & \Pr_1\left(n\widehat{ ext{MMD}}^2 > \hat{c}_{oldsymbollpha}
ight) \ & o \Phi\left(rac{ ext{MMD}^2(P,Q)}{\sqrt{V_n(P,Q)}} - rac{c_{oldsymbollpha}}{n\sqrt{V_n(P,Q)}}
ight) \end{aligned}$$

To maximize test power, maximize

$$\frac{\mathrm{MMD}^2(P,Q)}{\sqrt{V_n(P,Q)}}$$

(Sutherland, Tung, Strathmann, De, Ramdas, Smola, G., ICLR 2017) Code: github.com/dougalsutherland/opt-mmd

Troubleshooting for generative adversarial networks

MNIST samples

Samples from a GAN

Troubleshooting for generative adversarial networks

MNIST samples

ARD map

Samples from a GAN

Power for optimzed ARD kernel: 1.00 at α = 0.01

• Power for optimized RBF kernel: 0.57 at $\alpha = 0.01$

Troubleshooting generative adversarial networks

Training GANs with MMD

• Generator (student)

• Task: critic must teach generator to draw images (here dogs)

• Critic (teacher)

Why is classification not enough?

Classification **not** enough! Need to compare **sets**

(otherwise student can just produce the same dog over and over)

MMD for GAN critic

Can you use MMD as a critic to train GANs? From ICML 2015:

Generative Moment Matching Networks

Yujia Li¹ Kevin Swersky¹ KSWERSKY@CS.TORONTO.EDU Richard Zemel^{1,2} ¹Department of Computer Science, University of Toronto, Toronto, ON, CANADA ²Canadian Institute for Advanced Research, Toronto, ON, CANADA

From UAI 2015:

Training generative neural networks via Maximum Mean Discrepancy optimization

Gintare Karolina Dziugaite University of Cambridge

Daniel M. Roy University of Toronto

Zoubin Ghahramani University of Cambridge

YUJIALI@CS.TORONTO.EDU

ZEMEL @CS TORONTO EDU

MMD for GAN critic

Can you use MMD as a critic to train GANs?

Need better image features.

How to improve the critic witness

- Add convolutional features!
- The critic (teacher) also needs to be trained.
- How to regularise?

MMD GAN Li et al., [NIPS 2017] Coulomb GAN Unterthiner et al., [ICLR 2018]

Wasserstein GAN Arjovsky et al. [ICML 2017] WGAN-GP Gukrajani et al. [NeurIPS 2017]

Wasserstein GAN Arjovsky et al. [ICML 2017] WGAN-GP Gukrajani et al. [NeurIPS 2017]

Final Given a generator G_{θ} with parameters θ to be trained. Samples $Y \sim G_{\theta}(Z)$ where $Z \sim R$

Given critic features h_{ψ} with parameters ψ to be trained. f_{ψ} a linear function of h_{ψ} .

Wasserstein GAN Arjovsky et al. [ICML 2017] WGAN-GP Gukrajani et al. [NeurIPS 2017]

For \mathcal{A} Given a generator G_{θ} with parameters θ to be trained. Samples $Y \sim G_{\theta}(Z)$ where $Z \sim R$

WGAN-GP gradient penalty:

$$\max_{\boldsymbol{\psi}} \mathrm{E}_{X \sim P} f_{\boldsymbol{\psi}}(X) - \mathrm{E}_{Z \sim \boldsymbol{\mathcal{R}}} f_{\boldsymbol{\psi}}(G_{\boldsymbol{\theta}}(\boldsymbol{Z})) + \lambda \mathrm{E}_{\widetilde{X}} \left(\left\| \nabla_{\widetilde{X}} f_{\boldsymbol{\psi}}(\widetilde{X}) \right\| - 1 \right)^2$$

where

$$egin{aligned} \widetilde{X} &= \gamma x_i + (1-\gamma) G_{ heta}(z_j) \ \gamma &\sim \mathcal{U}([0,1]) \quad x_i \in \{x_\ell\}_{\ell=1}^m \quad z_j \in \{z_\ell\}_{\ell=1}^n \end{aligned}$$

The (W)MMD

Train MMD critic features with the witness function gradient penalty Binkowski, Sutherland, Arbel, G. [ICLR 2018], Bellemare et al. [2017] for energy distance:

$$\max_{\psi} \frac{MMD^{2}(h_{\psi}(X), h_{\psi}(G_{\theta}(Z))) + \lambda \mathbf{E}_{\widetilde{X}}\left(\left\|\nabla_{\widetilde{X}} f_{\psi}(\widetilde{X})\right\| - 1\right)^{2}$$

where

$$f_{\psi}(\cdot) = \frac{1}{m} \sum_{i=1}^{m} \frac{k(h_{\psi}(x_i), \cdot) - \frac{1}{n} \sum_{j=1}^{n} \frac{k(h_{\psi}(G_{\theta}(z_j)), \cdot)}{New}$$

$$\widetilde{X} = \gamma x_i + (1 - \gamma) G_{\theta}(z_j)$$

$$\gamma \sim \mathcal{U}([0, 1]) \quad x_i \in \{x_\ell\}_{\ell=1}^m \quad z_j \in \{z_\ell\}_{\ell=1}^n$$

Remark by Bottou et al. (2017): gradient penalty modifies the function class. So cri60/75 not an MMD in RKHS \mathcal{F} .

MMD for GAN critic: revisited

From ICLR 2018:

DEMYSTIFYING MMD GANS

Mikołaj Bińkowski* Department of Mathematics Imperial College London mikbinkowski@gmail.com

Dougal J. Sutherland, Michael Arbel & Arthur Gretton

Gatsby Computational Neuroscience Unit University College London {dougal,michael.n.arbel,arthur.gretton}@gmail.com

MMD for GAN critic: revisited

Samples are better!

MMD for GAN critic: revisited

Samples are better!

Can we do better still?

Convergence issues for WGAN-GP penalty

WGAN-GP style gradient penalty may not converge near solution

Nagarajan and Kolter [NeurIPS 2017], Mescheder et al. [ICML 2018], Balduzzi et al. [ICML 2018]

The Dirac-GAN

$$P = \delta_0 \qquad Q = \delta_\theta \qquad f_\psi(x) = \psi \cdot x$$

Figure from Mescheder et al. [ICML 2018]

Convergence issues for WGAN-GP penalty

WGAN-GP style gradient penalty may not converge near solution

Nagarajan and Kolter [NeurIPS 2017], Mescheder et al. [ICML 2018], Balduzzi et al. [ICML 2018]

The Dirac-GAN

$$P=\delta_0 \qquad Q=\delta_ heta \qquad f_\psi(x)=\psi\cdot x \ ,$$

Figure from Mescheder et al. [ICML 2018]

■ New MMD GAN witness regulariser (NeurIPS 2018)

Arbel, Sutherland, Binkowski, G. [NeurIPS 2018]

Based on semi-supervised learning regulariser Bousquet et al. [NeurIPS 2004]

Related to Sobolev GAN Mroueh et al. [ICLR 2018]

arXiv.org > stat > arXiv:1805.11565

Statistics > Machine Learning

On gradient regularizers for MMD GANs

Michael Arbel, Dougal J. Sutherland, <u>Mikołaj Bińkowski</u>, Arthur Gretton (Submitted on 29 May 2018)

New MMD GAN witness regulariser (NeurIPS 2018)

Arbel, Sutherland, Binkowski, G. [NeurIPS 2018]

- Based on semi-supervised learning regulariser Bousquet et al. [NeurIPS 2004]
- Related to Sobolev GAN Mroueh et al. [ICLR 2018]

■ New MMD GAN witness regulariser (NeurIPS 2018)

Arbel, Sutherland, Binkowski, G. [NeurIPS 2018]

- Based on semi-supervised learning regulariser Bousquet et al. [NeurIPS 2004]
- Related to Sobolev GAN Mrouch et al. [ICLR 2018]

Modified witness function:

$$\widetilde{MMD} := \sup_{\|f\|_{S} \leq 1} [\mathbb{E}_{P}f(X) - \mathbb{E}_{Q}f(Y)]$$

where

■ New MMD GAN witness regulariser (NeurIPS 2018)

Arbel, Sutherland, Binkowski, G. [NeurIPS 2018]

- Based on semi-supervised learning regulariser Bousquet et al. [NeurIPS 2004]
- Related to Sobolev GAN Mrouch et al. [ICLR 2018]

Modified witness function:

$$\widetilde{MMD} := \sup_{\|f\|_{S} \leq 1} [\mathbb{E}_{P}f(X) - \mathbb{E}_{Q}f(Y)]$$

where

$$\|f\|_{S}^{2} = \|f\|_{L_{2}(P)}^{2} + \|\nabla f\|_{L_{2}(P)}^{2} + \lambda \|f\|_{k}^{2}$$

$$L_{2} \text{ norm } Gradient \\ control Gradient \\ smoothness$$

Problem: not computationally feasible: $O(n^3)$ per iteration.

■ New MMD GAN witness regulariser (NeurIPS 2018)

Arbel, Sutherland, Binkowski, G. [NeurIPS 2018]

- Based on semi-supervised learning regulariser Bousquet et al. [NeurIPS 2004]
- Related to Sobolev GAN Mroueh et al. [ICLR 2018]

The scaled MMD:

$$SMMD = \sigma_{k,P,\lambda} MMD$$

where

$$\sigma_{k,P,\lambda} \; = \left(\;\; \lambda + \int k(x,x) \, dP(x) + \sum_{i=1}^d \int \partial_i \partial_{i+d} k(x,x) \; \, dP(x) \;
ight)^{-1/2}$$

Replace expensive constraint with cheap upper bound:

$$||f||_{S}^{2} \leq \sigma_{k,P,\lambda}^{-1} ||f||_{k}^{2}$$

- 1-

■ New MMD GAN witness regulariser (NeurIPS 2018)

Arbel, Sutherland, Binkowski, G. [NeurIPS 2018]

- Based on semi-supervised learning regulariser Bousquet et al. [NeurIPS 2004]
- Related to Sobolev GAN Mrouch et al. [ICLR 2018]

The scaled MMD:

$$SMMD = \sigma_{k,P,\lambda} MMD$$

where

$$\sigma_{k,P,\lambda} = \left(\begin{array}{c} \lambda + \int k(x,x) dP(x) + \sum\limits_{i=1}^d \int \partial_i \partial_{i+d} k(x,x) \ dP(x) \end{array}
ight)^{-1/2}$$

Replace expensive constraint with cheap upper bound:

$$||f||_{S}^{2} \leq \sigma_{k,P,\lambda}^{-1} ||f||_{k}^{2}$$

Idea: rather than regularise the critic or witness function, regularise features directly 63/75

Evaluation and experiments

The inception score? Salimans et al. [NeurIPS 2016]

Based on the classification output p(y|x) of the inception model Szegedy et al. [ICLR 2014],

```
E_X \exp KL(P(y|X)||P(y)).
```

High when:

- predictive label distribution P(y|x) has low entropy (good quality images)
- label entropy P(y) is high (good variety).

The inception score? Salimans et al. [NeurIPS 2016]

Based on the classification output p(y|x) of the inception model szegedy et al. [ICLR 2014],

```
E_X \exp KL(P(y|X)||P(y)).
```

High when:

- predictive label distribution P(y|x) has low entropy (good quality images)
- label entropy P(y) is high (good variety).

Problem: relies on a trained classifier! Can't be used on new categories (celeb, bedroom...)

The Frechet inception distance? Heusel et al. [NeurIPS 2017]

Fits Gaussians to features in the inception architecture (pool3 layer):

$$FID(P, Q) = ||\mu_P - \mu_Q||^2 + \operatorname{tr}(\Sigma_P) + \operatorname{tr}(\Sigma_Q) - 2\operatorname{tr}\left((\Sigma_P \Sigma_Q)^{\frac{1}{2}}\right)$$

where μ_P and Σ_P are the feature mean and covariance of P

The Frechet inception distance? Heusel et al. [NeurIPS 2017]

Fits Gaussians to features in the inception architecture (pool3 layer):

$$FID(P, Q) = ||\mu_P - \mu_Q||^2 + \operatorname{tr}(\Sigma_P) + \operatorname{tr}(\Sigma_Q) - 2\operatorname{tr}\left((\Sigma_P \Sigma_Q)^{\frac{1}{2}}\right)$$

where μ_P and Σ_P are the feature mean and covariance of P

Problem: bias. For finite samples can consistently give incorrect answer.

 Bias demo, CIFAR-10 train vs test

The FID can give the wrong answer in practice.

Let d = 2048, and define

 $P_1 = \operatorname{relu}(\mathcal{N}(0, I_d))$ $P_2 = \operatorname{relu}(\mathcal{N}(1, .8\Sigma + .2I_d))$ $Q = \operatorname{relu}(\mathcal{N}(1, I_d))$ where $\Sigma = \frac{4}{d} CC^T$, with $C = d \times d$ matrix with iid standard normal entries.

For a random draw of C:

 $FID(P_1, Q) \approx 1123.0 > 1114.8 \approx FID(P_2, Q)$ With $m = 50\,000$ samples, $FID(\widehat{P_1}, Q) \approx 1133.7 < 1136.2 \approx FID(\widehat{P_2}, Q)$

The FID can give the wrong answer in practice. Let d = 2048, and define

 $P_1 = \operatorname{relu}(\mathcal{N}(0, I_d))$ $P_2 = \operatorname{relu}(\mathcal{N}(1, .8\Sigma + .2I_d))$ $Q = \operatorname{relu}(\mathcal{N}(1, I_d))$ where $\Sigma = \frac{4}{d} C C^T$, with C a $d \times d$ matrix with iid standard normal entries.

For a random draw of C:

 $FID(P_1, Q) \approx 1123.0 > 1114.8 \approx FID(P_2, Q)$ With $m = 50\,000$ samples, $FID(\widehat{P_1}, Q) \approx 1133.7 < 1136.2 \approx FID(\widehat{P_2}, Q)$

The FID can give the wrong answer in practice. Let d = 2048, and define

 $P_1 = \operatorname{relu}(\mathcal{N}(0, I_d))$ $P_2 = \operatorname{relu}(\mathcal{N}(1, .8\Sigma + .2I_d))$ $Q = \operatorname{relu}(\mathcal{N}(1, I_d))$ where $\Sigma = \frac{4}{d} C C^T$, with C a $d \times d$ matrix with iid standard normal entries.

For a random draw of C:

 $FID(P_1, Q) \approx 1123.0 > 1114.8 \approx FID(P_2, Q)$ With $m = 50\,000$ samples, $FID(\widehat{P_1}, Q) \approx 1133.7 < 1136.2 \approx FID(\widehat{P_2}, Q)$

The FID can give the wrong answer in practice. Let d = 2048, and define

 $P_1 = \operatorname{relu}(\mathcal{N}(0, I_d))$ $P_2 = \operatorname{relu}(\mathcal{N}(1, .8\Sigma + .2I_d))$ $Q = \operatorname{relu}(\mathcal{N}(1, I_d))$ where $\Sigma = \frac{4}{d} C C^T$, with C a $d \times d$ matrix with iid standard normal entries.

For a random draw of C:

 $FID(P_1, Q) \approx 1123.0 > 1114.8 \approx FID(P_2, Q)$ With $m = 50\,000$ samples, $FID(\widehat{P_1}, Q) \approx 1133.7 < 1136.2 \approx FID(\widehat{P_2}, Q)$

The Kernel inception distance Binkowski, Sutherland, Arbel, G. [ICLR 2018] Measures similarity of the samples' representations in the inception architecture (pool3 layer) MMD with kernel

 $k(x,y) = \left(rac{1}{d}x^ op y + 1
ight)^3.$

- Checks match for feature means, variances, skewness
- Unbiased : eg CIFAR-10 train/test

.

The Kernel inception distance Binkowski, Sutherland, Arbel, G. [ICLR 2018] Measures similarity of the samples' representations in the inception architecture (pool3 layer)

MMD with kernel

$$k(x,y) = \left(rac{1}{d}x^ op y + 1
ight)^3$$

 Checks match for feature means, variances, skewness

Unbiased : eg CIFAR-10 train/test

..."but isn't KID is computationally costly?"

The Kernel inception distance Binkowski, Sutherland, Arbel, G. [ICLR 2018] Measures similarity of the samples' representations in the inception architecture (pool3 layer) MMD with kernel

$$k(x,y) = \left(rac{1}{d}x^ op y + 1
ight)^3.$$

 Checks match for feature means, variances, skewness
 Unbiased : eg CIFAR-10 train/test

..."but isn't KID is computationally costly?"

"Block" KID implementation is cheaper than FID: see paper (or use Tensorflow implementation)!

The Kernel inception distance Binkowski, Sutherland, Arbel, G. [ICLR 2018] Measures similarity of the samples' representations in the inception architecture (pool3 layer) MMD with kernel

$$k(x,y) = \left(rac{1}{d}x^ op y + 1
ight)^3.$$

 Checks match for feature means, variances, skewness
 Unbiased : eg CIFAR-10 train/test

Also used for automatic learning rate adjustment: if $KID(\hat{P}_{t+1}, Q)$ not significantly better than $KID(\hat{P}_t, Q)$ then reduce learning rate. [Bounliphone et al. ICLR 2016]

Related: "An empirical study on evaluation metrics of generative adversarial networks", Xu et al. [afxiv June 2018]

Benchmarks for comparison (all from ICLR 2018)

SPECTRAL NORMALIZATION FOR GENERATIVE ADVERSARIAL NETWORKS

Takeru Miyato¹, Toshiki Kataoka¹, Masanori Koyama², Yuichi Yoshida³

{miyato, kataoka}@preferred.jp oyama masanori@gmail.com i.ac.jp works, Inc. 2 Ritsumeikan University 3 National Institute of Informatics

MMD DEMYSTIFYING MMD GANS

Mikołaj Bińkowski*

Ne

combine with scaled

Department of Mathematics Imperial College London mikbinkowski@gmail.com

Dougal J. Sutherland, Michael Arbel & Arthur Gretton

Gatsby Computational Neuroscience Unit College London ,michael.n.arbel,arthur.gretton)@gmail.com

SOBOLEV GAN

Youssef Mroueh[†], Chun-Liang Li^{o,*}, Tom Sercu^{†,*}, Anant Raj^{0,*} & Yu Cheng[†] † IBM Research AI o Carnegie Mellon University O Max Planck Institute for Intelligent Systems * denotes Equal Contribution {mrouch, chengyu}@us.ibm.com, chunlial@cs.cmu.edu, tom.sercul@ibm.com,anant.raj@tuebingen.mpg.de

BOUNDARY-SEEKING GENERATIVE ADVERSARIAL NETWORKS

R Devon Hielm* MILA, University of Montréal, IVADO erroneus@gmail.com

Tong Che MILA, University of Montréal tong.che@umontreal.ca

Kyunghyun Cho New York University, CIFAR Azrieli Global Scholar kyunghyun.cho@nyu.edu Athul Paul Jacob* MILA, MSR, University of Waterloo apjacob@edu.uwaterloo.ca

Adam Trischler MCD adam.trischler@microsoft.com

Yoshua Bengio MILA, University of Montréal, CIFAR, IVADO voshua.bengio@umontreal.ca

Results: what does MMD buy you?

Critic features from DCGAN: an *f*-filter critic has *f*, 2*f*, 4*f* and 8*f* convolutional filters in layers 1-4. LSUN 64 × 64.

MMD GAN samples, f = 64, KID=3

WGAN samples, f = 64, KID=4 ^{70/75}

Results: what does MMD buy you?

Critic features from DCGAN: an *f*-filter critic has *f*, 2*f*, 4*f* and 8*f* convolutional filters in layers 1-4. LSUN 64 × 64.

MMD GAN samples, f = 16, KID=9 WGAN samples, f = 16, f = 64, KID=37 ^{70/75}

Results: celebrity faces 160×160

KID scores:

- Sobolev GAN: 14
- SN-GAN:
 18
- Old MMD GAN: 13
- SMMD GAN:

6

202 599 face images, resized and cropped to 160 \times 160

Results: unconditional imagenet 64×64

KID scores:

BGAN:

47

SN-GAN: 44

SMMD GAN: 35

ILSVRC2012 (ImageNet) dataset, 1 281 167 images, resized to 64×64 . Around 20 000 classes.

Results: unconditional imagenet 64×64

KID scores:

BGAN:

47

 SN-GAN: 44

SMMD GAN: 35

ILSVRC2012 (ImageNet) dataset, 1 281 167 images, resized to 64×64 . Around 20 000 classes.

Results: unconditional imagenet 64×64

KID scores:

BGAN:

47

SN-GAN:

44

SMMD GAN: 35

ILSVRC2012 (ImageNet) dataset, 1 281 167 images, resized to 64×64 . Around 20 000 classes.

Summary

- MMD critic gives state-of-the-art performance for GAN training (FID and KID)
 - use convolutional input features
 - train with new gradient regulariser
- Faster training, simpler critic network
- Reasons for good performance:
 - Unlike WGAN-GP, MMD loss still a valid critic when features not optimal
 - Kernel features do some of the "work", so simpler h_{ψ} features possible.
 - Better gradient/feature regulariser gives better critic

"Generative Models and Model Criticism via Optimized Maximum Mean Discrepancy," ICLR 2017 https://github.com/dougalsutherland/opt-mmd "Demystifying MMD GANs," including KID score, ICLR 2018: https://github.com/mbinkowski/MMD-GAN "On gradient regularizers for MMD GANs", NeurIPS 2018: https://github.com/MichaelArbel/Scaled-MMD-GAN

From Gatsby:

- Michael Arbel
- Mikolaj Binkowski
- Heiko Strathmann
- Dougal Sutherland

External collaborators:

- Soumyajit De
- Aaditya Ramdas
- Alex Smola
- Hsiao-Yu Tung

Questions?

