Kernel Methods for Testing Independence and Goodness of Fit

Arthur Gretton

Gatsby Computational Neuroscience Unit, University College London

Paris, 2019

Testing goodness of fit

Before: comparing two samples

■ Given: Samples from unknown distributions P and Q.
\square Goal: do P and Q differ?

Now: statistical model criticism

$$
M M D(P, Q)=\sup _{\|f\|_{\mathcal{F}} \leq 1}\left[E_{Q} f-E_{p} f\right]
$$

Can we compute MMD with samples from Q and a model P ?
Problem: usualy can't compute $E_{p} f$ in closed form.

Stein idea

To get rid of $E_{p} f$ in

$$
\sup _{\|f\|_{\mathcal{F} \leq 1}}\left[E_{q} f-E_{p} f\right]
$$

we define the Stein operator

$$
\left[T_{p} f\right](x)=\frac{1}{p(x)} \frac{d}{d x}(f(x) p(x))
$$

Then

$$
E_{P} T_{P} f=0
$$

subject to appropriate boundary conditions. (Oates, Girolami, Chopin, 2016)

Stein idea: proof

$$
E_{p}\left[T_{p} f\right]=\int\left[\frac{1}{p(x)} \frac{d}{d x}(f(x) p(x))\right] p(x) d x
$$

Stein idea: proof

$$
E_{p}\left[T_{p} f\right]=\int\left[\frac{1}{p(x)} \frac{d}{d x}(f(x) p(x))\right] p(x) d x
$$

Stein idea: proof

$$
\begin{gathered}
E_{p}\left[T_{p} f\right]=\int\left[\frac{1}{p(x)} \frac{d}{d x}(f(x) p(x))\right] p(x) d x \\
\int\left[\frac{d}{d x}(f(x) p(x))\right] d x
\end{gathered}
$$

Stein idea: proof

$$
\begin{aligned}
E_{p}\left[T_{p} f\right] & =\int\left[\frac{1}{p(x)} \frac{d}{d x}(f(x) p(x))\right] p(x) d x \\
& \int\left[\frac{d}{d x}(f(x) p(x))\right] d x \\
& =[f(x) p(x)]_{-\infty}^{\infty}
\end{aligned}
$$

Stein idea: proof

$$
\begin{aligned}
E_{p}\left[T_{p} f\right] & =\int\left[\frac{1}{p(x)} \frac{d}{d x}(f(x) p(x))\right] p(x) d x \\
& \int\left[\frac{d}{d x}(f(x) p(x))\right] d x \\
& =[f(x) p(x)]_{-\infty}^{\infty} \\
& =0
\end{aligned}
$$

Kernel Stein Discrepancy

Stein operator

$$
T_{p} g=\frac{1}{p(x)} \frac{d}{d x}(g(x) p(x))
$$

Kernel Stein Discrepancy (KSD)

$$
K S D(p, q, \mathcal{F})=\sup _{\|g\|_{\mathcal{F} \leq 1}} E_{q} T_{p} g-E_{p} T_{p} g
$$

Kernel Stein Discrepancy

Stein operator

$$
T_{p} g=\frac{1}{p(x)} \frac{d}{d x}(g(x) p(x))
$$

Kernel Stein Discrepancy (KSD)

$$
K S D(p, q, \mathcal{F})=\sup _{\|g\|_{\mathcal{F} \leq 1}} E_{q} T_{p} g-E_{p} T_{p g}=\sup _{\|g\|_{\mathcal{F}} \leq 1} E_{q} T_{p} g
$$

Kernel Stein Discrepancy

Stein operator

$$
T_{p} g=\frac{1}{p(x)} \frac{d}{d x}(g(x) p(x))
$$

Kernel Stein Discrepancy (KSD)

$$
K S D(p, q, \mathcal{F})=\sup _{\|g\|_{\mathcal{F} \leq 1}} E_{q} T_{p} g-E_{p} T_{p g}=\sup _{\|g\|_{\mathcal{F} \leq 1} \leq} E_{q} T_{p} g
$$

Kernel Stein Discrepancy

Stein operator

$$
T_{p} g=\frac{1}{p(x)} \frac{d}{d x}(g(x) p(x))
$$

Kernel Stein Discrepancy (KSD)

$$
K S D(p, q, \mathcal{F})=\sup _{\|g\|_{\mathcal{F} \leq 1}} E_{q} T_{p} g-E_{p} T_{p g}=\sup _{\|g\|_{\mathcal{F} \leq 1}} E_{q} T_{p} g
$$

Simple expression using kernels

Re-write stein operator as:

$$
\left[T_{p} g\right](x)=\frac{1}{p(x)} \frac{d}{d x}(g(x) p(x))
$$

Can we get a dot product in feature space?

Simple expression using kernels

Re-write stein operator as:

$$
\begin{aligned}
{\left[T_{p} g\right](x) } & =\frac{1}{p(x)} \frac{d}{d x}(g(x) p(x)) \\
& =\frac{d}{d x} g(x)+g(x) \frac{1}{p(x)} \frac{d}{d x} p(x) \\
& =\frac{d}{d x} g(x)+g(x) \frac{d}{d x} \log p(x)
\end{aligned}
$$

Can we get a dot product in feature space?

Simple expression using kernels

Re-write stein operator as:

$$
\begin{aligned}
{\left[T_{p} g\right](x) } & =\frac{1}{p(x)} \frac{d}{d x}(g(x) p(x)) \\
& =\frac{d}{d x} g(x)+g(x) \frac{1}{p(x)} \frac{d}{d x} p(x) \\
& =\frac{d}{d x} g(x)+g(x) \frac{d}{d x} \log p(x)
\end{aligned}
$$

Can we get a dot product in feature space?

$$
\begin{aligned}
{\left[T_{p} g\right](x) } & =\left(\frac{d}{d x} \log p(x)\right) g(x)+\frac{d}{d x} g(x) \\
& =:\left\langle g, \xi_{x}\right\rangle_{\mathcal{F}}
\end{aligned}
$$

Simple expression using kernels

Reproducing property for derivatives: for differentiable $k\left(x-x^{\prime}\right)$,

$$
\frac{d}{d x} g(x)=\left\langle g, \frac{d}{d x} k(x, \cdot)\right\rangle_{\mathcal{F}}
$$

From previous slide, and denoting $z \sim q$,

Simple expression using kernels

Reproducing property for derivatives: for differentiable $k\left(x-x^{\prime}\right)$,

$$
\frac{d}{d x} g(x)=\left\langle g, \frac{d}{d x} k(x, \cdot)\right\rangle_{\mathcal{F}}
$$

From previous slide, and denoting $z \sim q$,

$$
\begin{aligned}
{\left[T_{p} g\right](z) } & =\left(\frac{d}{d x} \log p(z)\right) g(z)+\frac{d}{d x} g(z) \\
& =:\langle g, \underbrace{k(z, \cdot) \frac{d}{d z} \log p(z)+\frac{d}{d z} k(z, \cdot)}_{\xi_{z}}\rangle_{\mathcal{F}}
\end{aligned}
$$

Kernel stein discrepancy

The kernel Stein discrepancy:

$$
\begin{aligned}
\operatorname{KSD}(p, q, \mathcal{F}) & =\sup _{\|g\|_{\mathcal{F} \leq 1}} E_{z \sim q}\left\langle g, \xi_{z}\right\rangle_{\mathcal{F}} \\
& =\left\|E_{z \sim q} \xi_{z}\right\|_{\mathcal{F}}
\end{aligned}
$$

Closed-form expression for KSD test statistic:

$$
\left\|E_{z \sim q} \xi_{z}\right\|_{\mathcal{F}}^{2}=E_{z, z^{\prime} \sim q} h_{p}\left(z, z^{\prime}\right)
$$

where

$$
\left.\begin{array}{rl}
h_{p}(x, y) & :=\partial_{x} \log p(x) \partial_{y} \log p(y) k(x, y) \\
& +\partial_{y} \log p(y) \partial_{x} k(x, y)+\partial_{x} \log p(x) \partial_{y} k(x, y) \\
& +\partial_{x} \partial_{y} k(x, y)
\end{array}\right\}
$$

Kernel stein discrepancy

The kernel Stein discrepancy:

$$
\begin{aligned}
\operatorname{KSD}(p, q, \mathcal{F}) & =\sup _{\|g\|_{\mathcal{F} \leq 1}} E_{z \sim q}\left\langle g, \xi_{z}\right\rangle_{\mathcal{F}} \\
& =\left\|E_{z \sim q} \xi_{z}\right\|_{\mathcal{F}}
\end{aligned}
$$

Closed-form expression for KSD test statistic:

$$
\left\|E_{z \sim q} \xi_{z}\right\|_{\mathcal{F}}^{2}=E_{z, z^{\prime} \sim q} h_{p}\left(z, z^{\prime}\right)
$$

where

$$
\begin{aligned}
h_{p}(x, y) & :=\partial_{x} \log p(x) \partial_{y} \log p(y) k(x, y) \\
& +\partial_{y} \log p(y) \partial_{x} k(x, y)+\partial_{x} \log p(x) \partial_{y} k(x, y) \\
& +\partial_{x} \partial_{y} k(x, y)
\end{aligned}
$$

Do not need to normalize p, or sample from it.

Constructing threshold for a statistical test

Given samples $\left\{z_{i}\right\}_{i=1}^{n} \sim q$, empirical KSD (test statistic) is:

$$
\widehat{\mathrm{KSD}}(p, q, \mathcal{F}):=\frac{1}{n(n-1)} \sum_{i=1}^{n} \sum_{j \neq i}^{n} h_{p}\left(z_{i}, z_{j}\right)
$$

Constructing threshold for a statistical test

Given samples $\left\{z_{i}\right\}_{i=1}^{n} \sim q$, empirical KSD (test statistic) is:

$$
\widehat{\mathrm{KSD}}(p, q, \mathcal{F}):=\frac{1}{n(n-1)} \sum_{i=1}^{n} \sum_{j \neq i}^{n} h_{p}\left(z_{i}, z_{j}\right) .
$$

When $q=p$, obtain estimate of null distribution with wild bootstrap:

$$
\widetilde{K S D}(p, q, \mathcal{F}):=\frac{1}{n(n-1)} \sum_{i=1}^{n} \sum_{j \neq i}^{n} \sigma_{i} \sigma_{j} h_{p}\left(z_{i}, z_{j}\right) .
$$

where $\left\{\sigma_{i}\right\}_{i=1}^{n}$ i.i.d, $E\left(\sigma_{i}\right)=0$, and $E\left(\sigma_{i}^{2}\right)=1$
■ Consistent estimate of the null distribtion when $q=p$
■ Consistent test (Type II error goes to zero) under a rich class of alternatives (see Chwialkowski, Strathmann, G., ICML 2016 for details).

Statistical model criticism

Chicago crime data

Statistical model criticism

Chicago crime data
Model is Gaussian mixture with two components.

Statistical model criticism

Chicago crime data
Model is Gaussian mixture with two components Stein witness function

Statistical model criticism

Chicago crime data
Model is Gaussian mixture with ten components.

Statistical model criticism

Chicago crime data

Model is Gaussian mixture with ten components Stein witness function
Code: https://github.com/karlnapf/kernel goodness of fit

Kernel stein discrepancy

Further applications:
■ Evaluation of approximate MCMC methods.
(Chwialkowski, Strathmann, G., ICML 2016; Gorham, Mackey, ICML 2017)
What kernel to use?
■ The inverse multiquadric kernel,

$$
k(x, y)=\left(c+\|x-y\|_{2}^{2}\right)^{\beta}
$$

for $\beta \in(-1,0)$.

```
arXiv.org > stat > arXiv:1703.01717
    Statistics > Machine Learning
    Measuring Sample Quality with Kernels
    Jackson Gorham, Lester Mackey
    ICML 2017
    (Submitted on 6 Mar 2017 (v1), last revised 3 Aug 2017 (this version, v6))
```


Testing statistical dependence

Dependence testing

■ Given: Samples from a distribution $P_{X Y}$
■ Goal: Are X and Y independent?

A large animal who slings slobber,
exudes a distinctive houndy odor,
and wants nothing more than to
follow his nose.
:---
through life, and they're
never happier than when
following an interesting scent.

MMD as a dependence measure?

Could we use MMD?

$$
M M D(\underbrace{P_{X Y}}_{P}, \underbrace{P_{X} P_{Y}}_{Q}, \mathcal{H}_{\kappa})
$$

We don't have samples from $Q:=P_{X} P_{Y}$, only pairs

- Solution: simulate Q with pairs $\left(x_{i}, y_{j}\right)$ for $j \neq i$.

What kernel κ to use for the RKHS \mathcal{H}_{κ} ?

MMD as a dependence measure?

Could we use MMD?

$$
M M D(\underbrace{P_{X Y}}_{P}, \underbrace{P_{X} P_{Y}}_{Q}, \mathcal{H}_{\kappa})
$$

■ We don't have samples from $Q:=P_{X} P_{Y}$, only pairs $\left\{\left(x_{i}, y_{i}\right\}_{i=1}^{n} \stackrel{\text { i.i.d. }}{\sim} P_{X Y}\right.$

- Solution: simulate Q with pairs $\left(x_{i}, y_{j}\right)$ for $j \neq i$.

$$
\text { What kernel } \kappa \text { to use for the RKHS } \mathcal{H}_{\kappa} \text { ? }
$$

MMD as a dependence measure?

Could we use MMD?

$$
M M D(\underbrace{P_{X Y}}_{P}, \underbrace{P_{X} P_{Y}}_{Q}, \mathcal{H}_{\kappa})
$$

■ We don't have samples from $Q:=P_{X} P_{Y}$, only pairs $\left\{\left(x_{i}, y_{i}\right\}_{i=1}^{n} \stackrel{\text { i.i.d. }}{\sim} P_{X Y}\right.$

- Solution: simulate Q with pairs $\left(x_{i}, y_{j}\right)$ for $j \neq i$.

■ What kernel κ to use for the RKHS \mathcal{H}_{κ} ?

MMD as a dependence measure

Kernel k on images with feature space \mathcal{F},

$$
K(F, j)
$$

Kernel l on captions with feature space \mathcal{G},

MMD as a dependence measure

Kernel k on images with feature space \mathcal{F} ，

Kernel l on captions with feature space \mathcal{G} ，

Kernel κ on image－text pairs：are images and captions similar？

$$
\begin{aligned}
& =k(\%) \times l(\text { 国, } \text { 目 })
\end{aligned}
$$

MMD as a dependence measure

- Given: Samples from a distribution $P_{X Y}$
- Goal: Are X and Y independent?

$$
\begin{aligned}
& M M D^{2}\left(\widehat{P}_{X Y}, \widehat{P}_{X} \widehat{P}_{Y}, \mathcal{H}_{\kappa}\right):=\frac{1}{n^{2}} \operatorname{trace}(K L) \\
& (\mathrm{K}, \text { L column centered })
\end{aligned}
$$

MMD as a dependence measure

A large animal who slings slobber, exudes a distinctive houndy odor, ...

Their noses guide them through li and they're never happier than wh following an interesting scent.

A responsive, interactive pet, one
 that will blow in your ear and follow you everywhere.

MMD as a dependence measure

Two questions:
■ Why the product kernel? Many ways to combine kernels - why not eg a sum?

- Is there a more interpretable way of defining this dependence measure?

Illustration: dependence \neq correlation

■ Given: Samples from a distribution $P_{X Y}$

- Goal: Are X and Y dependent?

Illustration: dependence \neq correlation

■ Given: Samples from a distribution $P_{X Y}$

- Goal: Are X and Y dependent?

Correlation: 0.07

Illustration: dependence \neq correlation

- Given: Samples from a distribution $P_{X Y}$
- Goal: Are X and Y dependent?

Finding covariance with smooth transformations

Illustration: two variables with no correlation but strong dependence.

Finding covariance with smooth transformations

Illustration: two variables with no correlation but strong dependence.

Finding covariance with smooth transformations

Illustration: two variables with no correlation but strong dependence.

Define two spaces, one for each witness

Function in \mathcal{F}

$$
f(x)=\sum_{j=1}^{\infty} f_{j} \varphi_{j}(x)
$$

Feature map

$\varphi(x)=$	$\left[\varphi_{1}(x) \bigcap \bigcap\right.$
	${ }^{\varphi_{2}(x)}$ ¢
	$\varphi_{3}(x)$

Kernel for RKHS \mathcal{F} on \mathcal{X} :

$$
k\left(x, x^{\prime}\right)=\left\langle\varphi(x), \varphi\left(x^{\prime}\right)\right\rangle_{\mathcal{F}}
$$

Function in \mathcal{G}

$$
g(y)=\sum_{j=1}^{\infty} g_{j} \phi_{j}(y)
$$

Feature map

Kernel for RKHS \mathcal{G} on \mathcal{Y} :

$$
l\left(x, x^{\prime}\right)=\left\langle\phi(y), \phi\left(y^{\prime}\right)\right\rangle_{\mathcal{G}}
$$

The constrained covariance

The constrained covariance is

$$
\operatorname{COCO}\left(P_{X Y}\right)=\sup \|f\|_{\mathcal{F}} \leq 1
$$

The constrained covariance

The constrained covariance is

$$
\operatorname{COCO}\left(P_{X Y}\right)=\sup _{\substack{\|f\|_{\mathcal{F}} \leq 1 \\\|g\|_{\mathcal{G}} \leq 1}} \operatorname{cov}\left[\left(\sum_{j=1}^{\infty} f_{j} \varphi_{j}(x)\right)\left(\sum_{j=1}^{\infty} g_{j} \phi_{j}(y)\right)\right]
$$

The constrained covariance

The constrained covariance is

$$
\operatorname{COCO}\left(P_{X Y}\right)=\sup _{\substack{\|f\|_{\mathcal{F}} \leq 1 \\\|g\|_{\mathcal{G}} \leq 1}} E_{x y}\left[\left(\sum_{j=1}^{\infty} f_{j} \tilde{\varphi}_{j}(x)\right)\left(\sum_{j=1}^{\infty} g_{j} \tilde{\phi}_{j}(y)\right)\right]
$$

Feature centering: $\tilde{\varphi}(x)=\varphi(x)-E_{x} \varphi(x)$ and $\tilde{\phi}(y)=\phi(y)-E_{y} \phi(y)$.

The constrained covariance

The constrained covariance is

$$
\operatorname{COCO}\left(P_{X Y}\right)=\sup _{\substack{\|f\|_{\mathcal{F}} \leq 1 \\\|g\|_{\mathcal{G}} \leq 1}} E_{x y}\left[\left(\sum_{j=1}^{\infty} f_{j} \tilde{\varphi}_{j}(x)\right)\left(\sum_{j=1}^{\infty} g_{j} \tilde{\phi}_{j}(y)\right)\right]
$$

Feature centering: $\tilde{\varphi}(x)=\boldsymbol{\varphi}(x)-E_{x} \varphi(x)$ and $\tilde{\phi}(y)=\phi(y)-E_{y} \boldsymbol{\phi}(y)$.
Rewriting:

$$
\begin{aligned}
& E_{x y}[f(x) g(y)] \\
& =\left[\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots
\end{array}\right]^{\top} \underbrace{\mathbf{E}_{x y}\left(\left[\begin{array}{c}
\tilde{\varphi}_{1}(x) \\
\tilde{\varphi}_{2}(x) \\
\vdots
\end{array}\right]\left[\begin{array}{lll}
\tilde{\phi}_{1}(y) & \tilde{\phi}_{2}(y) & \ldots
\end{array}\right]\right)}_{C_{\tilde{\varphi}(x) \tilde{\phi}(y)}}\left[\begin{array}{c}
g_{1} \\
g_{2} \\
\vdots
\end{array}\right]
\end{aligned}
$$

The constrained covariance

The constrained covariance is

$$
\operatorname{COCO}\left(P_{X Y}\right)=\sup _{\substack{\|f\|_{\mathcal{F}} \leq 1 \\\|g\|_{\mathcal{G}} \leq 1}} E_{x y}\left[\left(\sum_{j=1}^{\infty} f_{j} \tilde{\varphi}_{j}(x)\right)\left(\sum_{j=1}^{\infty} g_{j} \tilde{\phi}_{j}(y)\right)\right]
$$

Feature centering: $\tilde{\varphi}(x)=\varphi(x)-E_{x} \varphi(x)$ and $\tilde{\phi}(y)=\phi(y)-E_{y} \phi(y)$.
Rewriting:

$$
\begin{aligned}
& E_{x y}[f(x) g(y)] \\
& =\left[\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots
\end{array}\right]^{\top} \underbrace{\mathbf{E}_{x y}\left(\left[\begin{array}{c}
\tilde{\varphi}_{1}(x) \\
\tilde{\varphi}_{2}(x) \\
\vdots
\end{array}\right]\left[\begin{array}{lll}
\tilde{\phi}_{1}(y) & \tilde{\phi}_{2}(y) & \ldots
\end{array}\right]\right)}_{C_{\tilde{\varphi}(x) \tilde{\phi}(y)}^{\top}}\left[\begin{array}{c}
g_{1} \\
g_{2} \\
\vdots
\end{array}\right]
\end{aligned}
$$

COCO: max singular value of feature covariance $\left.C_{\tilde{\varphi}(x) \tilde{\phi}(y)}\right]_{23}$

Does feature space covariance exist?

Does an uncentered covariance "matrix" (operator) in feature space exist? I.e. is there some $C_{\varphi(x) \phi(y)}: \mathcal{G} \rightarrow \mathcal{F}$ such that

$$
\left\langle f, C_{\varphi(x) \phi(y)} g\right\rangle_{\mathcal{F}}=E_{x y}[f(x) g(y)]
$$

Does "something" exist \rightarrow Riesz theorem.

Does feature space covariance exist?

Does an uncentered covariance "matrix" (operator) in feature space exist? I.e. is there some $C_{\varphi(x) \phi(y)}: \mathcal{G} \rightarrow \mathcal{F}$ such that

$$
\left\langle f, C_{\varphi(x) \phi(y)} g\right\rangle_{\mathcal{F}}=E_{x y}[f(x) g(y)]
$$

Does "something" exist \rightarrow Riesz theorem.
Reminder: Riesz representation theorem
In a Hilbert space \mathcal{H}, all bounded linear operators A (meaning $\left.|A h| \leq \lambda_{A}| | h \|_{\mathcal{H}}\right)$ can be written

$$
A h=\left\langle h(\cdot), g_{A}(\cdot)\right\rangle_{\mathcal{H}}
$$

for some $g_{A} \in \mathcal{H}$.
We used this theorem to show the mean embedding μ_{P} exists.

The Hilbert Space $\operatorname{HS}(\mathcal{G}, \mathcal{F})$

- \mathcal{F} and \mathcal{G} separable Hilbert spaces.

■ $\left(g_{j}\right)_{j \in J}$ orthonormal basis for \mathcal{G}.
$■$ Index set J either finite or countably infinite.

$$
\left\langle g_{i}, g_{j}\right\rangle_{\mathcal{G}}:= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
$$

■ Linear operators $L: \mathcal{G} \rightarrow \mathcal{F}$ and $M: \mathcal{G} \rightarrow \mathcal{F}$

- Hilbert space $\operatorname{HS}(\mathcal{G}, \mathcal{F})$

(independent of orthonormal basis)
Hilbert-Schmidt norm of the operators L:

The Hilbert Space HS $(\mathcal{G}, \mathcal{F})$

- \mathcal{F} and \mathcal{G} separable Hilbert spaces.

■ $\left(g_{j}\right)_{j \in J}$ orthonormal basis for \mathcal{G}.
■ Index set J either finite or countably infinite.

$$
\left\langle g_{i}, g_{j}\right\rangle_{\mathcal{G}}:= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
$$

■ Linear operators $L: \mathcal{G} \rightarrow \mathcal{F}$ and $M: \mathcal{G} \rightarrow \mathcal{F}$

- Hilbert space $\operatorname{HS}(\mathcal{G}, \mathcal{F})$

$$
\langle L, M\rangle_{\mathrm{HS}}=\sum_{j \in J}\left\langle L g_{j}, M g_{j}\right\rangle_{\mathcal{F}}
$$

(independent of orthonormal basis)

The Hilbert Space HS $(\mathcal{G}, \mathcal{F})$

- \mathcal{F} and \mathcal{G} separable Hilbert spaces.

■ $\left(g_{j}\right)_{j \in J}$ orthonormal basis for \mathcal{G}.
■ Index set J either finite or countably infinite.

$$
\left\langle g_{i}, g_{j}\right\rangle_{\mathcal{G}}:= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
$$

■ Linear operators $L: \mathcal{G} \rightarrow \mathcal{F}$ and $M: \mathcal{G} \rightarrow \mathcal{F}$

- Hilbert space $\operatorname{HS}(\mathcal{G}, \mathcal{F})$

$$
\langle L, M\rangle_{\mathrm{HS}}=\sum_{j \in J}\left\langle L g_{j}, M g_{j}\right\rangle_{\mathcal{F}}
$$

(independent of orthonormal basis)
■ Hilbert-Schmidt norm of the operators L :

$$
\|L\|_{\mathrm{HS}}^{2}=\sum_{j \in J}\left\|L g_{j}\right\|_{\mathcal{F}}^{2}
$$

L is Hilbert-Schmidt when this norm is finite.

The tensor product $a \otimes b$ is in $\operatorname{HS}(\mathcal{G}, \mathcal{F})$

Given $a \in \mathcal{F}$ and $b \in \mathcal{G}$, the tensor product $a \otimes b$ as a rank-one operator from \mathcal{G} to \mathcal{F} (generalize finite case $a b^{\top}$)

$$
(a \otimes b) g \mapsto\langle g, b\rangle_{\mathcal{G}} a
$$

Is $a \otimes b \in \operatorname{HS}(\mathcal{G}, \mathcal{F})$?

The tensor product $a \otimes b$ is in $\operatorname{HS}(\mathcal{G}, \mathcal{F})$

Given $a \in \mathcal{F}$ and $b \in \mathcal{G}$, the tensor product $a \otimes b$ as a rank-one operator from \mathcal{G} to \mathcal{F} (generalize finite case $a b^{\top}$)

$$
(a \otimes b) g \mapsto\langle g, b\rangle_{\mathcal{G}} a
$$

Is $a \otimes b \in \operatorname{HS}(\mathcal{G}, \mathcal{F})$?

$$
\|a \otimes b\|_{\mathrm{HS}}^{2}=\sum_{j \in J}\left\|(a \otimes b) g_{j}\right\|_{\mathcal{F}}^{2}
$$

$$
=\|a\|_{\mathcal{F}}^{2}\|b\|_{\mathcal{G}}^{2}
$$

The tensor product $a \otimes b$ is in $\operatorname{HS}(\mathcal{G}, \mathcal{F})$

Given $a \in \mathcal{F}$ and $b \in \mathcal{G}$, the tensor product $a \otimes b$ as a rank-one operator from \mathcal{G} to \mathcal{F} (generalize finite case $a b^{\top}$)

$$
(a \otimes b) g \mapsto\langle g, b\rangle_{\mathcal{G}} a
$$

Is $a \otimes b \in \operatorname{HS}(\mathcal{G}, \mathcal{F})$?

$$
\begin{aligned}
\|a \otimes b\|_{\mathrm{HS}}^{2} & =\sum_{j \in J}\left\|(a \otimes b) g_{j}\right\|_{\mathcal{F}}^{2} \\
& =\sum_{j \in J}\left\|a\left\langle b, g_{j}\right\rangle_{\mathcal{G}}\right\|_{\mathcal{F}}^{2}
\end{aligned}
$$

\square

The tensor product $a \otimes b$ is in $\operatorname{HS}(\mathcal{G}, \mathcal{F})$

Given $a \in \mathcal{F}$ and $b \in \mathcal{G}$, the tensor product $a \otimes b$ as a rank-one operator from \mathcal{G} to \mathcal{F} (generalize finite case $a b^{\top}$)

$$
(a \otimes b) g \mapsto\langle g, b\rangle_{\mathcal{G}} a
$$

Is $a \otimes b \in \operatorname{HS}(\mathcal{G}, \mathcal{F}) ?$

$$
\begin{aligned}
\|a \otimes b\|_{\mathrm{HS}}^{2} & =\sum_{j \in J}\left\|(a \otimes b) g_{j}\right\|_{\mathcal{F}}^{2} \\
& =\sum_{j \in J}\left\|a\left\langle b, g_{j}\right\rangle_{\mathcal{G}}\right\|_{\mathcal{F}}^{2} \\
& =\|a\|_{\mathcal{F}}^{2} \sum_{j \in J}\left|\left\langle b, g_{j}\right\rangle_{\mathcal{G}}\right|^{2} \\
& =\|a\|_{\mathcal{F}}^{2}\|b\|_{\mathcal{G}}^{2}
\end{aligned}
$$

where we use Parseval's identity. Thus, the operator is Hilbert-Schmidt.

Covariance operator in RKHS

Reminder: does there exist $C_{\varphi(x) \phi(y)}: \mathcal{G} \rightarrow \mathcal{F}$ in some Hilbert space $\operatorname{HS}(\mathcal{G}, \mathcal{F})$ such that

$$
\left\langle C_{\varphi(x) \phi(y)}, A\right\rangle_{\mathrm{HS}}=E_{x y}\langle\varphi(x) \otimes \phi(y), A\rangle_{\mathrm{HS}}
$$

and in particular,

$$
\left\langle C_{\varphi(x) \phi(y)}, f \otimes g\right\rangle_{\mathrm{HS}}=E_{x y}[f(x) g(y)]
$$

Proof: Use Riesz representer theorem. The operator

is bounded when $E_{x y}\left(\|\varphi(x) \otimes \phi(y)\|_{\mathrm{HS}}\right)<\infty$.

Covariance operator in RKHS

Reminder: does there exist $C_{\varphi(x) \phi(y)}: \mathcal{G} \rightarrow \mathcal{F}$ in some Hilbert space $\operatorname{HS}(\mathcal{G}, \mathcal{F})$ such that

$$
\left\langle C_{\varphi(x) \phi(y)}, A\right\rangle_{\mathrm{HS}}=E_{x y}\langle\varphi(x) \otimes \phi(y), A\rangle_{\mathrm{HS}}
$$

and in particular,

$$
\left\langle C_{\varphi(x) \phi(y)}, f \otimes g\right\rangle_{\mathrm{HS}}=E_{x y}[f(x) g(y)]
$$

Proof: Use Riesz representer theorem. The operator

$$
\begin{aligned}
C_{\varphi(x) \phi(y)}: \operatorname{HS}(\mathcal{G}, \mathcal{F}) & \rightarrow \Re \\
A & \mapsto E_{x y}\langle\phi(x) \otimes \psi(y), A\rangle_{\mathrm{HS}}
\end{aligned}
$$

is bounded when $E_{x y}\left(\|\varphi(x) \otimes \phi(y)\|_{\mathrm{HS}}\right)<\infty$.

Covariance operator in RKHS

Proof (continued): Condition comes from

$$
\begin{aligned}
\left|E_{x y}\langle\varphi(x) \otimes \phi(y), A\rangle_{\mathrm{HS}}\right| & \leq E_{x y}\left|\langle\varphi(x) \otimes \phi(y), A\rangle_{\mathrm{HS}}\right| \\
& \leq\|A\|_{\mathrm{HS}} E_{x y}(\|\varphi(x) \otimes \phi(y)\| \mathrm{HS})
\end{aligned}
$$

(first Jensen, then Cauchy-Schwarz). Thus covariance operator exists by Riesz.
Simpler condition:

$$
\begin{aligned}
E_{x y}\left(\|\varphi(x) \otimes \phi(y)\|_{\mathrm{HS}}\right) & =E_{x y}\left(\|\varphi(x)\|_{\mathcal{F}}\|\phi(y)\|_{g}\right) \\
& =E_{x y}(\sqrt{k(x, x) l(y, y)})<\infty .
\end{aligned}
$$

Covariance operator in RKHS

Proof (continued): Condition comes from

$$
\begin{aligned}
\left|E_{x y}\langle\varphi(x) \otimes \phi(y), A\rangle_{\mathrm{HS}}\right| & \leq E_{x y}\left|\langle\varphi(x) \otimes \phi(y), A\rangle_{\mathrm{HS}}\right| \\
& \leq\|A\|_{\mathrm{HS}} E_{x y}\left(\|\varphi(x) \otimes \phi(y)\|_{\mathrm{HS}}\right)
\end{aligned}
$$

(first Jensen, then Cauchy-Schwarz). Thus covariance operator exists by Riesz.
Simpler condition:

$$
\begin{aligned}
E_{x y}\left(\|\varphi(x) \otimes \phi(y)\|_{\mathrm{HS}}\right) & =E_{x y}\left(\|\varphi(x)\|_{\mathcal{F}}\|\phi(y)\|_{\mathcal{G}}\right) \\
& =E_{x y}(\sqrt{k(x, x) l(y, y)})<\infty .
\end{aligned}
$$

Covariance operator in RKHS

Does the covariance do what we want? Namely,

$$
\left\langle C_{\varphi(x) \phi(y)}, f \otimes g\right\rangle_{\mathrm{HS}}=E_{x y}[f(x) g(y)]
$$

Proof:

$$
\begin{aligned}
\left\langle f, C_{\varphi(x) \phi(y)} g\right\rangle_{\mathcal{F}} & =\left\langle C_{\varphi(x) \phi(y)}, f \otimes g\right\rangle_{\mathrm{HS}} \\
& \stackrel{(a)}{=} E_{x y}\langle\varphi(x) \otimes \phi(y), f \otimes g\rangle_{\mathrm{HS}} \\
& =E_{x y}\left[\langle f, \varphi(x)\rangle_{\mathcal{F}}\langle g, \phi(y)\rangle_{\mathcal{F}}\right] \\
& =E_{x y}[f(x) g(y)]
\end{aligned}
$$

Covariance operator in RKHS

Does the covariance do what we want? Namely,

$$
\left\langle C_{\varphi(x) \phi(y)}, f \otimes g\right\rangle_{\mathrm{HS}}=E_{x y}[f(x) g(y)]
$$

Proof:

$$
\begin{aligned}
\left\langle f, C_{\varphi(x) \phi(y)} g\right\rangle_{\mathcal{F}} & =\left\langle C_{\varphi(x) \phi(y)}, f \otimes g\right\rangle_{\mathrm{HS}} \\
& \stackrel{(a)}{=} E_{x y}\langle\varphi(x) \otimes \phi(y), f \otimes g\rangle_{\mathrm{HS}} \\
& =E_{x y}\left[\langle f, \varphi(x)\rangle_{\mathcal{F}}\langle g, \phi(y)\rangle_{\mathcal{F}}\right] \\
& =E_{x y}[f(x) g(y)]
\end{aligned}
$$

(a) by definition of the covariance operator

Covariance operator in RKHS

Does the covariance do what we want? Namely,

$$
\left\langle C_{\varphi(x) \phi(y)}, f \otimes g\right\rangle_{\mathrm{HS}}=E_{x y}[f(x) g(y)]
$$

Proof:

$$
\begin{aligned}
\left\langle f, C_{\varphi(x) \phi(y)} g\right\rangle_{\mathcal{F}} & =\left\langle C_{\varphi(x) \phi(y)}, f \otimes g\right\rangle_{\mathrm{HS}} \\
& \stackrel{(a)}{=} E_{x y}\langle\varphi(x) \otimes \phi(y), f \otimes g\rangle_{\mathrm{HS}} \\
& =E_{x y}\left[\langle f, \varphi(x)\rangle_{\mathcal{F}}\langle g, \phi(y)\rangle_{\mathcal{F}}\right]
\end{aligned}
$$

(a) by definition of the covariance operator

Covariance operator in RKHS

Does the covariance do what we want? Namely,

$$
\left\langle C_{\varphi(x) \phi(y)}, f \otimes g\right\rangle_{\mathrm{HS}}=E_{x y}[f(x) g(y)]
$$

Proof:

$$
\begin{aligned}
\left\langle f, C_{\varphi(x) \phi(y)} g\right\rangle_{\mathcal{F}} & =\left\langle C_{\varphi(x) \phi(y)}, f \otimes g\right\rangle_{\mathrm{HS}} \\
& \stackrel{(a)}{=} E_{x y}\langle\varphi(x) \otimes \phi(y), f \otimes g\rangle_{\mathrm{HS}} \\
& =E_{x y}\left[\langle f, \varphi(x)\rangle_{\mathcal{F}}\langle g, \phi(y)\rangle_{\mathcal{F}}\right] \\
& =E_{x y}[f(x) g(y)]
\end{aligned}
$$

(a) by definition of the covariance operator

Back to the constrained covariance

The constrained covariance is

$$
\operatorname{COCO}\left(P_{X Y}\right)=\sup \|f\|_{\mathcal{F}} \leq 1
$$

Computing COCO from finite data

Given sample $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \stackrel{\text { i.i.d. }}{\sim} P_{X Y}$, what is empirical $\widehat{C O C O}$?

Computing COCO from finite data

Given sample $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \stackrel{\text { i.i.d. }}{\sim} P_{X Y}$, what is empirical $\widehat{C O C O}$? $\widehat{C O C O}$ is largest eigenvalue $\gamma_{\max }$ of

$$
\begin{gathered}
{\left[\begin{array}{cc}
0 & \frac{1}{n} \widetilde{K} \widetilde{L} \\
\frac{1}{n} \widetilde{L} \widetilde{K} & 0
\end{array}\right]\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]=\gamma\left[\begin{array}{cc}
\widetilde{K} & 0 \\
0 & \widetilde{L}
\end{array}\right]\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right] .} \\
\widetilde{K}_{i j}=\left\langle\varphi\left(x_{i}\right)-\hat{\mu}_{x}, \varphi\left(x_{j}\right)-\hat{\mu}_{x}\right\rangle_{\mathcal{F}}=:\left\langle\tilde{\varphi}\left(x_{i}\right), \tilde{\varphi}\left(x_{j}\right)\right\rangle_{\mathcal{F}}
\end{gathered}
$$

[^0]
Computing COCO from finite data

Given sample $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \stackrel{\text { i.i.d. }}{\sim} P_{X Y}$, what is empirical $\widehat{C O C O}$?
$\widehat{C O C O}$ is largest eigenvalue $\gamma_{\max }$ of

$$
\begin{gathered}
{\left[\begin{array}{cc}
0 & \frac{1}{n} \widetilde{K} \widetilde{L} \\
\frac{1}{n} \tilde{L} \widetilde{K} & 0
\end{array}\right]\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]=\gamma\left[\begin{array}{cc}
\widetilde{K} & 0 \\
0 & \widetilde{L}
\end{array}\right]\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right] .} \\
\widetilde{K}_{i j}=\left\langle\varphi\left(x_{i}\right)-\hat{\mu}_{x}, \varphi\left(x_{j}\right)-\hat{\mu}_{x}\right\rangle_{\mathcal{F}}=:\left\langle\tilde{\varphi}\left(x_{i}\right), \tilde{\varphi}\left(x_{j}\right)\right\rangle_{\mathcal{F}}
\end{gathered}
$$

Witness functions:

$$
f(x) \propto \sum_{i=1}^{n} \alpha_{i}\left[k\left(x_{i}, x\right)-\frac{1}{n} \sum_{j=1}^{n} k\left(x_{j}, x\right)\right]
$$

G., Smola., Bousquet, Herbrich, Belitski, Augath, Murayama, Pauls, Schoelkopf, and Logothetis, AISTATS'05

Empirical COCO: proof

The Lagrangian is

$$
\begin{aligned}
& \mathcal{L}(f, g, \lambda, \gamma)=\underbrace{\frac{1}{n} \sum_{i=1}^{n}\left[\left(f\left(x_{i}\right)-\frac{1}{n} \sum_{j=1}^{n} f\left(x_{j}\right)\right)\left(g\left(y_{i}\right)-\frac{1}{n} \sum_{j=1}^{n} g\left(y_{j}\right)\right)\right]}_{\text {covariance }} \\
&-\underbrace{\frac{\lambda}{2}\left(\|f\|_{\mathcal{F}}^{2}-1\right)-\frac{\gamma}{2}\left(\|g\|_{\mathcal{G}}^{2}-1\right)}_{\text {smoothness constraints }} \\
& \text { with Lagrange multipliers } \lambda \geq 0 \text { and } \gamma \geq 0 .
\end{aligned}
$$

Empirical COCO: proof

The Lagrangian is

$$
\begin{aligned}
\mathcal{L}(f, g, \lambda, \gamma) & =\underbrace{\frac{1}{n} \sum_{i=1}^{n}\left[\left(f\left(x_{i}\right)-\frac{1}{n} \sum_{j=1}^{n} f\left(x_{j}\right)\right)\left(g\left(y_{i}\right)-\frac{1}{n} \sum_{j=1}^{n} g\left(y_{j}\right)\right)\right]}_{\text {covariance }} \\
& -\underbrace{\frac{\lambda}{2}\left(\|f\|_{\mathcal{F}}^{2}-1\right)-\frac{\gamma}{2}\left(\|g\|_{\mathcal{G}}^{2}-1\right)}_{\text {smoothness constraints }}
\end{aligned}
$$

with Lagrange multipliers $\lambda \geq 0$ and $\gamma \geq 0$.
Assume:

$$
f=\sum_{i=1}^{n} \alpha_{i} \tilde{\varphi}\left(x_{i}\right) \quad g=\sum_{i=1}^{n} \beta_{i} \tilde{\psi}\left(y_{i}\right)
$$

for centered $\tilde{\varphi}\left(x_{i}\right), \tilde{\phi}\left(y_{i}\right)$.

Proof (continued)

First step is smoothness constraint:

$$
\|f\|_{\mathcal{F}}^{2}-1=\left\langle\sum_{i=1}^{n} \alpha_{i} \tilde{\varphi}\left(x_{i}\right), \sum_{i=1}^{n} \alpha_{i} \tilde{\varphi}\left(x_{i}\right)\right\rangle_{\mathcal{F}}-1
$$

Proof (continued)

First step is smoothness constraint:

$$
\begin{aligned}
\|f\|_{\mathcal{F}}^{2}-1 & =\left\langle\sum_{i=1}^{n} \alpha_{i} \tilde{\varphi}\left(x_{i}\right), \sum_{i=1}^{n} \alpha_{i} \tilde{\varphi}\left(x_{i}\right)\right\rangle_{\mathcal{F}}-1 \\
& =\alpha^{\top} \widetilde{K} \alpha-1
\end{aligned}
$$

Proof (continued)

Second step is covariance:

$$
\begin{aligned}
& =\frac{1}{n} \sum_{i=1}^{n}\left\langle f, \tilde{\varphi}\left(x_{i}\right)\right\rangle_{\mathcal{F}}\left\langle g, \tilde{\phi}\left(y_{i}\right)\right\rangle_{\mathcal{G}} \\
& =\frac{1}{n} \sum_{i=1}^{n}\langle\underbrace{\left.\sum_{l=1}^{n} \alpha_{\ell} \tilde{\varphi}\left(x_{\ell}\right), \tilde{\varphi}\left(x_{i}\right)\right\rangle_{\mathcal{F}}}_{f}\left\langle g, \tilde{\phi}\left(y_{i}\right)\right\rangle_{\mathcal{G}}
\end{aligned}
$$

Proof (continued)

Second step is covariance:

$$
\begin{aligned}
& =\frac{1}{n} \sum_{i=1}^{n}\left\langle f, \tilde{\varphi}\left(x_{i}\right)\right\rangle_{\mathcal{F}}\left\langle g, \tilde{\phi}\left(y_{i}\right)\right\rangle_{\mathcal{G}} \\
& =\frac{1}{n} \sum_{i=1}^{n}\langle\underbrace{\sum_{\ell=1}^{n} \alpha_{\ell} \tilde{\varphi}\left(x_{\ell}\right)}_{f}, \tilde{\varphi}\left(x_{i}\right)\rangle_{\mathcal{F}}\left\langle g, \tilde{\phi}\left(y_{i}\right)\right\rangle_{\mathcal{G}} \\
& =\frac{1}{n} \alpha^{\top} \widetilde{K} \widetilde{L} \beta
\end{aligned}
$$

What is a large dependence with COCO?

500 Samples, smooth density

Rough density

500 samples, rough density

Density takes the form:

$$
P_{X Y} \propto 1+\sin (\omega x) \sin (\omega y)
$$

Which of these is the more "dependent"?

Finding covariance with smooth transformations

Case of $\omega=1$:

Correlation: 0.50 COCO: 0.09

Finding covariance with smooth transformations

Case of $\omega=2$:

Correlation: 0.54

Finding covariance with smooth transformations

Case of $\omega=3$:

Finding covariance with smooth transformations

Case of $\omega=4$:

Correlation: 0.25 COCO: 0.02

Finding covariance with smooth transformations

Case of $\omega=$??:

Correlation: 0.14 COCO: 0.02

Finding covariance with smooth transformations

Case of $\omega=0$: uniform noise! (shows bias)

Dependence largest when at "low" frequencies

- As dependence is encoded at higher frequencies, the smooth mappings f, g achieve lower linear dependence.
■ Even for independent variables, COCO will not be zero at finite sample sizes, since some mild linear dependence will be found by f,g (bias)
■ This bias will decrease with increasing sample size.

Can we do better than COCO?

A second example with zero correlation.
First singular value of feature covariance $C_{\varphi(x) \phi(y)}$:

Can we do better than COCO?

A second example with zero correlation.
Second singular value of feature covariance $C_{\varphi(x) \phi(y)}$:

Can we do better than COCO?

A second example with zero correlation.
Second singular value of feature covariance $C_{\varphi(x) \phi(y)}$:

The Hilbert-Schmidt Independence Criterion

Writing the i th singular value of the feature covariance $C_{\varphi(x) \phi(y)}$ as

$$
\gamma_{i}:=\operatorname{COCO}_{i}\left(P_{X Y} ; \mathcal{F}, \mathcal{G}\right)
$$

define Hilbert-Schmidt Independence Criterion (HSIC)

$$
\operatorname{HSIC}^{2}\left(P_{X Y} ; \mathcal{F}, \mathcal{G}\right)=\sum_{i=1}^{\infty} \gamma_{i}^{2}
$$

G, Bousquet , Smola., and Schoelkopf, ALT05; G.., Fukumizu, Teo., Song., Schoelkopf., and Smola, NIPS 2007,.

The Hilbert-Schmidt Independence Criterion

Writing the i th singular value of the feature covariance $C_{\varphi(x) \phi(y)}$ as

$$
\gamma_{i}:=\operatorname{COCO}_{i}\left(P_{X Y} ; \mathcal{F}, \mathcal{G}\right)
$$

define Hilbert-Schmidt Independence Criterion (HSIC)

$$
\operatorname{HSIC}^{2}\left(P_{X Y} ; \mathcal{F}, \mathcal{G}\right)=\sum_{i=1}^{\infty} \gamma_{i}^{2}
$$

G, Bousquet , Smola., and Schoelkopf, ALT05; G.., Fukumizu, Teo., Song., Schoelkopf., and Smola, NIPS 2007,.
HSIC is MMD with product kernel!

$$
H S I C^{2}\left(P_{X Y} ; \mathcal{F}, \mathcal{G}\right)=M M D^{2}\left(P_{X Y}, P_{X} P_{Y} ; \mathcal{H}_{\kappa}\right)
$$

where $\kappa\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=k\left(x, x^{\prime}\right) l\left(y, y^{\prime}\right)$.

Asymptotics of HSIC under independence

- Given sample $\left\{\left(x_{i}, y_{i}\right\}_{i=1}^{n} \stackrel{\text { i.i.d. }}{\sim} P_{X Y}\right.$, what is empirical $\widehat{H S I C}$?
- Empirical HSIC (biased)

$$
\widehat{H S I C}=\frac{1}{n^{2}} \operatorname{trace}(K L)
$$

$K_{i j}=k\left(x_{i}, x_{j}\right)$ and $L_{i j}=l\left(y_{i} y_{j}\right) \quad$ (K and L computed with empirically centered features)

- Statistical testing: given $P_{X Y}=P_{X} P_{Y}$, what is the threshold c_{α} such that $P\left(\widehat{H S I C}>c_{\alpha}\right)<\alpha$ for small α ?

where $\lambda_{l} \psi_{l}\left(z_{j}\right)=\int h_{i j q r} \psi_{l}\left(z_{i}\right) d F_{i, q, r}, \quad h_{i j q r}=\frac{1}{4!} \sum_{(t, u, v, w)}^{(i, j, q, r)} k_{t u} l_{t u}+k_{t u} l_{v w}-2 k_{t u} l_{t v}$

Asymptotics of HSIC under independence

- Given sample $\left\{\left(x_{i}, y_{i}\right\}_{i=1}^{n} \stackrel{\text { i.i.d. }}{\sim} P_{X Y}\right.$, what is empirical $\widehat{H S I C}$?
- Empirical HSIC (biased)

$$
\widehat{H S I C}=\frac{1}{n^{2}} \operatorname{trace}(K L)
$$

$K_{i j}=k\left(x_{i}, x_{j}\right)$ and $L_{i j}=l\left(y_{i} y_{j}\right) \quad(K$ and L computed with empirically centered features)
Statistical testing: given $P_{X Y}=P_{X} P_{Y}$, what is the threshold c_{α} such that $P\left(\widehat{H S I C}>c_{\alpha}\right)<\alpha$ for small α ?

where $\lambda_{l} \psi_{l}\left(z_{j}\right)=\int h_{i j q r} \psi_{l}\left(z_{i}\right) d F_{i, q, r}, \quad h_{i j q r}=\frac{1}{4!} \sum_{(t, u, v, w)}^{(i, j, q, r)} k_{t u} l_{t u}+k_{t u} l_{v w}-2 k_{t u} l_{t v}$

Asymptotics of HSIC under independence

- Given sample $\left\{\left(x_{i}, y_{i}\right\}_{i=1}^{n} \stackrel{\text { i.i.d. }}{\sim} P_{X Y}\right.$, what is empirical $\widehat{H S I C}$?
- Empirical HSIC (biased)

$$
\widehat{\text { HSIC }}=\frac{1}{n^{2}} \operatorname{trace}(K L)
$$

$K_{i j}=k\left(x_{i}, x_{j}\right)$ and $L_{i j}=l\left(y_{i} y_{j}\right) \quad(K$ and L computed with empirically centered features)

- Statistical testing: given $P_{X Y}=P_{X} P_{Y}$, what is the threshold c_{α} such that $P\left(\widehat{H S I C}>c_{\alpha}\right)<\alpha$ for small α ?

where $\lambda_{l} \psi_{l}\left(z_{j}\right)=\int h_{i j g r} \psi_{l}\left(z_{i}\right) d F_{i, q, r}, \quad h_{i j g r}=\frac{1}{4!} \sum_{(t, u, v, w)}^{(i, j, q, r)} k_{t u} l_{t u}+k_{t u} l_{v w}-2 k_{t u} l_{t v}$

Asymptotics of HSIC under independence

- Given sample $\left\{\left(x_{i}, y_{i}\right\}_{i=1}^{n} \stackrel{\text { i.i.d. }}{\sim} P_{X Y}\right.$, what is empirical $\widehat{H S I C}$?
- Empirical HSIC (biased)

$$
\widehat{H S I C}=\frac{1}{n^{2}} \operatorname{trace}(K L)
$$

$K_{i j}=k\left(x_{i}, x_{j}\right)$ and $L_{i j}=l\left(y_{i} y_{j}\right) \quad(K$ and L computed with empirically centered features)

- Statistical testing: given $P_{X Y}=P_{X} P_{Y}$, what is the threshold c_{α} such that $P\left(\widehat{H S I C}>c_{\alpha}\right)<\alpha$ for small α ?
- Asymptotics of $\widehat{H S I C}$ when $P_{X Y}=P_{X} P_{Y}$:

$$
n \widehat{H S I C} \xrightarrow{D} \sum_{l=1}^{\infty} \lambda_{l} z_{l}^{2}, \quad z_{l} \sim \mathcal{N}(0,1) \text { i.i..d. }
$$

where $\lambda_{l} \psi_{l}\left(z_{j}\right)=\int h_{i j q r} \psi_{l}\left(z_{i}\right) d F_{i, q, r}, \quad h_{i j q r}=\frac{1}{4!} \sum_{(t, u, v, w)}^{(i, j, q, r)} k_{t u} l_{t u}+k_{t u} l_{v w}-2 k_{t u} l_{t v}$

A statistical test

■ Given $P_{X Y}=P_{X} P_{Y}$, what is the threshold c_{α} such that $P\left(\widehat{H S I C}>c_{\alpha}\right)<\alpha$ for small α (prob. of false positive)?

A statistical test

■ Given $P_{X Y}=P_{X} P_{Y}$, what is the threshold c_{α} such that $P\left(\widehat{H S I C}>c_{\alpha}\right)<\alpha$ for small α (prob. of false positive)?

■ Original time series:

$$
\begin{aligned}
& X_{1} X_{2} X_{3} X_{4} X_{5} X_{6} X_{7} X_{8} X_{9} X_{10} \\
& Y_{1} Y_{2} Y_{3} Y_{4} Y_{5} \quad Y_{6} \quad Y_{7} Y_{8} Y_{9} \quad Y_{10}
\end{aligned}
$$

- Permutation:

$$
\begin{aligned}
& X_{1} X_{2} X_{3} X_{4} X_{5} X_{6} X_{7} X_{8} X_{9} X_{10} \\
& Y_{7} Y_{3} \quad Y_{9} \quad Y_{2} \quad Y_{4} \quad Y_{8} \quad Y_{5} \quad Y_{1} \quad Y_{6} \quad Y_{10}
\end{aligned}
$$

A statistical test

■ Given $P_{X Y}=P_{X} P_{Y}$, what is the threshold c_{α} such that $P\left(\widehat{H S I C}>c_{\alpha}\right)<\alpha$ for small α (prob. of false positive)?

■ Original time series:

$$
\begin{aligned}
& X_{1} X_{2} X_{3} X_{4} X_{5} X_{6} X_{7} X_{8} X_{9} X_{10} \\
& Y_{1} Y_{2} Y_{3} Y_{4} \quad Y_{5} \quad Y_{6} \quad Y_{7} \quad Y_{8} \quad Y_{9} \quad Y_{10}
\end{aligned}
$$

- Permutation:

$$
\begin{array}{lllllllllll}
X_{1} & X_{2} & X_{3} & X_{4} & X_{5} & X_{6} & X_{7} & X_{8} & X_{9} & X_{10} \\
Y_{7} & Y_{3} & Y_{9} & Y_{2} & Y_{4} & Y_{8} & Y_{5} & Y_{1} & Y_{6} & Y_{10}
\end{array}
$$

■ Null distribution via permutation

- Compute HSIC for $\left\{x_{i}, y_{\pi(i)}\right\}_{i=1}^{n}$ for random permutation π of indices $\{1, \ldots, n\}$. This gives HSIC for independent variables.
- Repeat for many different permutations, get empirical CDF
- Threshold c_{α} is $1-\alpha$ quantile of empirical CDF

Application: dependence detection across languages

Testing task: detect dependence between English and French text

Honourable senators, I have a question for the Leader of the Government in the Senate	Honorables sénateurs, ma question s'adresse au leader du gouvernement au Sénat
No doubt there is great pressure on provincial and municipal governments	Les ordres de gouvernements provinciaux et municipaux subissent de fortes pressions
In fact, we have increased federal investments for early childhood development.	Au contraire, nous avons augmenté le financement fédéral pour le développement des jeunes
	•
•	

Application: dependence detection across languages

Testing task: detect dependence between English and French text k-spectrum kernel, $k=10$, sample size $n=10$

Application:Dependence detection across languages

Results (for $\alpha=0.05$)
■ k-spectrum kernel: average Type II error 0
■ Bag of words kernel: average Type II error 0.18

Settings: Five line extracts, averaged over 300 repetitions, for "Agriculture" transcripts. Similar results for Fisheries and Immigration transcripts.

Testing higher order interactions

Detecting higher order interaction

How to detect V-structures with pairwise weak individual dependence?

Detecting higher order interaction

How to detect V-structures with pairwise weak individual dependence?

reaction

Detecting higher order interaction

How to detect V-structures with pairwise weak individual dependence?
$X \Perp Y, Y \Perp Z, X \Perp Z$

- $X, Y \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(0,1)$
- $Z \mid X, Y \sim \operatorname{sign}(X Y) \operatorname{Exp}\left(\frac{1}{\sqrt{2}}\right)$

Fine print: Faithfulness violated here!

V-structure discovery

Assume $X \Perp Y$ has been established.
V-structure can then be detected by:

■ Consistent CI test: $\mathbf{H}_{\mathbf{0}}: X \Perp Y \mid Z{ }_{\text {[Fukumizu et al. 2008, Zhang et al. 2011] }}$
$■$ Factorisation test: $\mathbf{H}_{0}:(X, Y) \Perp Z \vee(X, Z) \Perp Y \vee(Y, Z) \Perp X$ (multiple standard two-variable tests)

How well do these work?

Detecting higher order interaction

Generalise earlier example to p dimensions
$X \Perp Y, Y \Perp Z, X \Perp Z$

- $X, Y \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(0,1)$
- $Z \mid X, Y \sim \operatorname{sign}(X Y) \operatorname{Exp}\left(\frac{1}{\sqrt{2}}\right)$
- $X_{2: p}, Y_{2: p}, Z_{2: p} \stackrel{i . i . d .}{\sim} \mathcal{N}\left(0, \mathbf{I}_{p-1}\right)$

Fine print: Faithfulness violated here!

V-structure discovery

CI test for $X \Perp Y \mid Z$ from zhang et al. (2011), and a factorisation test $_{54 / 61}$ $n=500$

Lancaster interaction measure

Lancaster interaction measure of $\left(X_{1}, \ldots, X_{D}\right) \sim P$ is a signed measure ΔP that vanishes whenever P can be factorised non-trivially.

$$
D=2: \quad \Delta_{L} P=P_{X Y}-P_{X} P_{Y}
$$

Lancaster interaction measure

Lancaster interaction measure of $\left(X_{1}, \ldots, X_{D}\right) \sim P$ is a signed measure ΔP that vanishes whenever P can be factorised non-trivially.

$$
\begin{array}{ll}
D=2: & \Delta_{L} P=P_{X Y}-P_{X} P_{Y} \\
D=3: & \Delta_{L} P=P_{X Y Z}-P_{X} P_{Y Z}-P_{Y} P_{X Z}-P_{Z} P_{X Y}+2 P_{X} P_{Y} P_{Z}
\end{array}
$$

Lancaster interaction measure

Lancaster interaction measure of $\left(X_{1}, \ldots, X_{D}\right) \sim P$ is a signed measure ΔP that vanishes whenever P can be factorised non-trivially.
$D=2: \quad \Delta_{L} P=P_{X Y}-P_{X} P_{Y}$
$D=3: \quad \Delta_{L} P=P_{X Y Z}-P_{X} P_{Y Z}-P_{Y} P_{X Z}-P_{Z} P_{X Y}+2 P_{X} P_{Y} P_{Z}$

Lancaster interaction measure

Lancaster interaction measure of $\left(X_{1}, \ldots, X_{D}\right) \sim P$ is a signed measure ΔP that vanishes whenever P can be factorised non-trivially.
$D=2: \quad \Delta_{L} P=P_{X Y}-P_{X} P_{Y}$
$D=3: \quad \Delta_{L} P=P_{X Y Z}-P_{X} P_{Y Z}-P_{Y} P_{X Z}-P_{Z} P_{X Y}+2 P_{X} P_{Y} P_{Z}$

Case of $P_{X} \Perp P_{Y Z}$

Lancaster interaction measure

Lancaster interaction measure of $\left(X_{1}, \ldots, X_{D}\right) \sim P$ is a signed measure ΔP that vanishes whenever P can be factorised non-trivially.
$D=2: \quad \Delta_{L} P=P_{X Y}-P_{X} P_{Y}$
$D=3: \quad \Delta_{L} P=P_{X Y Z}-P_{X} P_{Y Z}-P_{Y} P_{X Z}-P_{Z} P_{X Y}+2 P_{X} P_{Y} P_{Z}$
$(X, Y) \Perp Z \vee(X, Z) \Perp Y \vee(Y, Z) \Perp X \Rightarrow \Delta_{L} P=0$.
...so what might be missed?

Lancaster interaction measure

Lancaster interaction measure of $\left(X_{1}, \ldots, X_{D}\right) \sim P$ is a signed measure ΔP that vanishes whenever P can be factorised non-trivially.
$D=2: \quad \Delta_{L} P=P_{X Y}-P_{X} P_{Y}$
$D=3: \quad \Delta_{L} P=P_{X Y Z}-P_{X} P_{Y Z}-P_{Y} P_{X Z}-P_{Z} P_{X Y}+2 P_{X} P_{Y} P_{Z}$

$$
\Delta_{L} P=0 \nRightarrow(X, Y) \Perp Z \vee(X, Z) \Perp Y \vee(Y, Z) \Perp X
$$

Example:

$$
\begin{array}{|l|l|l|l|}
\hline P(0,0,0)=0.2 & P(0,0,1)=0.1 & P(1,0,0)=0.1 & P(1,0,1)=0.1 \\
\hline P(0,1,0)=0.1 & P(0,1,1)=0.1 & P(1,1,0)=0.1 & P(1,1,1)=0.2 \\
\hline
\end{array}
$$

A kernel test statistic using Lancaster Measure

Construct a test by estimating $\left\|\mu_{\kappa}\left(\Delta_{L} P\right)\right\|_{\mathcal{H}_{\kappa}}^{2}$, where $\kappa=k \otimes l \otimes m$:

$$
\begin{aligned}
& \left\|\mu_{\kappa}\left(P_{X Y Z}-P_{X Y} P_{Z}-\cdots\right)\right\|_{\mathcal{H}_{\kappa}}^{2}= \\
& \left\langle\mu_{\kappa} P_{X Y Z}, \mu_{\kappa} P_{X Y Z}\right\rangle_{\mathcal{H}_{\kappa}}-2\left\langle\mu_{\kappa} P_{X Y Z}, \mu_{\kappa} P_{X Y} P_{Z}\right\rangle_{\mathcal{H}_{\kappa}} \cdots
\end{aligned}
$$

A kernel test statistic using Lancaster Measure

$\nu \backslash \nu^{\prime}$	$P_{\text {XYZ }}$	$P_{X Y Y} P_{Z}$	$P_{X Z} P_{Y}$	$P_{Y Z} P_{X}$	$P_{X} P_{Y} P_{Z}$
$P_{X Y Y Z}$	$(\mathbf{K} \circ \mathbf{L} \circ \mathbf{M})_{++}$	$((\mathrm{K} \circ \mathrm{L}) \mathrm{M})_{++}$	$((\mathrm{K} \circ \mathrm{M}) \mathrm{L})_{++}$	$((\mathrm{M} \circ \mathrm{L}) \mathrm{K})_{++}$	$\operatorname{tr}\left(\mathrm{K}_{+} \circ \mathrm{L}_{+} \circ \mathrm{M}_{+}\right)$
$P_{X Y Y} P_{Z}$		$(\mathrm{K} \circ \mathrm{L})_{++} \mathrm{M}_{++}$	$(\mathrm{MKL})_{++}$	$(\mathrm{KLM})_{++}$	$(\mathrm{KL})_{++} \mathrm{M}_{++}$
$P_{X X Z} P_{Y}$			$(\mathbf{K} \circ \mathbf{M})_{++} \mathbf{L}_{++}$	(KML) ${ }_{++}$	(KM) ${ }_{++} \mathbf{L}_{++}$
$P_{\boldsymbol{Y Z}} P_{X}$				$(\mathbf{L} \circ \mathbf{M})_{++} \mathbf{K}_{++}$	$(\mathrm{LM})_{++} \mathrm{K}_{++}$
$P_{X} P_{Y} P_{Z}$					$\mathbf{K}_{++} \mathbf{L}_{++} \mathbf{M}_{++}$

Table: V-statistic estimators of $\left\langle\mu_{\kappa} \nu, \mu_{\kappa} \nu^{\prime}\right\rangle_{\mathcal{H}_{\kappa}}$ (without terms $P_{X} P_{Y} P_{Z}$). H is centering matrix $I-n^{-1}$

A kernel test statistic using Lancaster Measure

$\nu \backslash \nu^{\prime}$	$P_{\text {XYZ }}$	$P_{X Y Y} P_{Z}$	$P_{X Z} P_{Y}$	$P_{Y Z} P_{X}$	$P_{X} P_{Y} P_{Z}$
$P_{X Y Z}$	$(\mathrm{K} \circ \mathbf{L} \circ \mathbf{M})_{++}$	$((\mathbf{K} \circ \mathbf{L}) \mathbf{M})_{++}$	$((\mathrm{K} \circ \mathrm{M}) \mathrm{L})_{++}$	$((\mathrm{M} \circ \mathrm{L}) \mathrm{K})_{++}$	$\operatorname{tr}\left(\mathrm{K}_{+} \circ \mathrm{L}_{+} \circ \mathrm{M}_{+}\right)$
$P_{X Y Y} P_{Z}$		$(\mathrm{K} \circ \mathrm{L})_{++} \mathrm{M}_{++}$	$(\mathrm{MKL})_{++}$	$(\mathrm{KLM})_{++}$	$(\mathrm{KL})_{++} \mathrm{M}_{++}$
$P_{X X Z} P_{Y}$			$(\mathrm{K} \circ \mathbf{M})_{++} \mathbf{L}_{++}$	(KML) ${ }_{++}$	(KM) ++ $^{\mathbf{L}_{++}}$
$P_{Y Z} P_{X}$				$(\mathbf{L} \circ \mathbf{M})_{++} \mathbf{K}_{++}$	(LM) ${ }_{++} \mathrm{K}_{++}$
$P_{X} P_{Y} P_{Z}$					$\mathbf{K}_{++} \mathbf{L}_{++} \mathbf{M}_{++}$

Table: V-statistic estimators of $\left\langle\mu_{\kappa} \nu, \mu_{\kappa} \nu^{\prime}\right\rangle_{\mathcal{H}_{\kappa}}$ (without terms $P_{X} P_{Y} P_{Z}$). H is centering matrix $I-n^{-1}$

Lancaster interaction statistic: Sejdinovic, G, Bergsma, NIPS13

$$
\left\|\mu_{\kappa}\left(\Delta_{L} P\right)\right\|_{\mathcal{H}_{\kappa}}^{2}=\frac{1}{n^{2}}(H \mathbf{K} H \circ H \mathbf{L} H \circ H \mathrm{M} H)_{++}
$$

Empirical joint central moment in the feature space

V-structure discovery

Lancaster test, CI test for $X \Perp Y \mid Z$ from zhang et al. (2011), and a factorisation test, $n=500$

Interaction for $D>4$

- Interaction measure valid for all D :
(Streitberg, 1990)

$$
\Delta_{S} P=\sum_{\pi}(-1)^{|\pi|-1}(|\pi|-1)!J_{\pi} P
$$

- For a partition π, J_{π} associates to the joint the corresponding factorisation,

$$
\text { e.g., } J_{13|2| 4} P=P_{X_{1} X_{3}} P_{X_{2}} P_{X_{4}} \text {. }
$$

Interaction for $D>4$

Interaction measure valid for all D :
(Streitberg, 1990)

$$
\Delta_{S} P=\sum_{\pi}(-1)^{|\pi|-1}(|\pi|-1)!J_{\pi} P
$$

- For a partition π, J_{π} associates to the joint the corresponding factorisation, e.g., $J_{13|2| 4} P=P_{X_{1} X_{3}} P_{X_{2}} P_{X_{4}}$.

Interaction for $D>4$

- Interaction measure valid for all D :
(Streitberg, 1990)

$$
\Delta_{S} P=\sum_{\pi}(-1)^{|\pi|-1}(|\pi|-1)!J_{\pi} P
$$

- For a partition π, J_{π} associates to the joint the corresponding factorisation, e.g., $J_{13|2| 4} P=P_{X_{1} X_{3}} P_{X_{2}} P_{X_{4}}$.

Co-authors

External collaborators:

■ Wicher Bergsma
■ Olivier Bousquet
■ Kenji Fukumizu
■ Bernhard Schoelkopf

- Dino Sejdinovic

■ Bharath Sriperumbudur

- Alex Smola

■ Le Song

- Zoltan Szabo

Questions?

[^0]: G., Smola., Bousquet, Herbrich, Belitski, Augath, Murayama, Pauls, Schoelkopf, and Logothetis, AISTATS'05

