Homework 2

Jean-Philippe Vert

Due February 2, 2009

1 Rademacher complexity

A Rademacher variable is a random variables σ that can take two possible values, -1 and +1 , with equal probability $1 / 2$.

1. Let $\left(u_{1}, u_{2}, \ldots, u_{N}\right)$ be N vectors in a Hilbert space endowed with an inner product $\langle,$.$\rangle , and let \sigma_{1}, \sigma_{2}, \ldots, \sigma_{N}$ be N independent Rademacher variables. Show that:

$$
\mathbb{E}\left(\sum_{i=1}^{N} \sum_{j=1}^{N} \sigma_{i} \sigma_{j}<u_{i}, u_{j}>\right)=\sum_{i=1}^{N}\left\|u_{i}\right\|^{2} .
$$

2. Let K be a positive definite kernel on a space $\mathcal{X}, \mathcal{H}_{K}$ denote the associated reproducing kernel Hilbert space, and $B_{R}=\left\{f \in \mathcal{H}_{K},\|f\|_{\mathcal{H}_{K}} \leq R\right\}$. Let a set of points $\mathcal{S}=\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}\right)$ with $\mathbf{x}_{i} \in \mathcal{X}(i=1, \ldots, N)$, and let $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{N}$ be N independent Rademacher variables. Show that:

$$
\mathbb{E} \sup _{f \in B_{R}}\left|\sum_{i=1}^{N} \sigma_{i} f\left(\mathbf{x}_{i}\right)\right| \leq R \sqrt{\sum_{i=1}^{N} K\left(\mathbf{x}_{i}, \mathbf{x}_{i}\right)} .
$$

2 Conditionally positive definite kernels

Let \mathcal{X} be a set. A function $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is called conditionally positive definite (c.p.d.) if and only if it is symmetric and satisfies:

$$
\sum_{i, j=1}^{n} a_{i} a_{j} k\left(x_{i}, x_{j}\right) \geq 0
$$

for any $n \in \mathbb{N}, x_{1}, x_{2}, \ldots, x_{n} \in \mathcal{X}^{n}$ and $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{R}^{n}$ with $\sum_{i=1}^{n} a_{i}=0$

1. Show that a positive definite (p.d.) function is c.p.d.
2. Is a constant function p.d.? Is it c.p.d.?
3. If \mathcal{X} is a Hilbert space, then is $k(x, y)=-\|x-y\|^{2}$ p.d.? Is it c.p.d.?
4. Let \mathcal{X} be a nonempty set, and $x_{0} \in \mathcal{X}$ a point. For any function $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$, let $\tilde{k}: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ be the function defined by:

$$
\tilde{k}(x, y)=k(x, y)-k\left(x_{0}, x\right)-k\left(x_{0}, y\right)+k\left(x_{0}, x_{0}\right) .
$$

Show that k is c.p.d. if and only if \tilde{k} is p.d.
5. Let k be a c.p.d. kernel on \mathcal{X} such that $k(x, x)=0$ for any $x \in \mathcal{X}$. Show that there exists a Hilbert space \mathcal{H} and a mapping $\Phi: \mathcal{X} \rightarrow \mathcal{H}$ such that, for any $x, y \in \mathcal{X}$,

$$
k(x, y)=-\|\Phi(x)-\Phi(y)\|^{2} .
$$

6. Show that if k is c.p.d., then the function $\exp (t k(x, y))$ is p.d. for all $t \geq 0$
7. Conversely, show that if the function $\exp (t k(x, y))$ is p.d. for any $t \geq 0$, then k is c.p.d.
8. (BONUS) Show that the opposite of the shortest-path distance on a tree is c.p.d over the set of vertices (a tree is an undirected graph without loops. The shortest-path distance between two vertices is the number of edges of the unique path that connects them). Is it also c.p.d. over general graphs?
