Homework 6

Jean-Philippe Vert

Due March 30, 2009

We wish to construct positive definite kernels for finite sets of points in the interval $[0,1]$. Let $X=\left(x_{1}, \ldots, x_{n}\right)$ and $Y=\left(y_{1}, \ldots, y_{n}\right)$ be two such sets of length n and m.

1. Show that the following kernel is positive definite for any $\sigma>0$:

$$
K_{1}(X, Y)=\sum_{x \in X} \sum_{y \in Y} \exp \left(-\frac{(x-y)^{2}}{2 \sigma^{2}}\right) .
$$

2. To any finite set X of length n we associate the function $g_{X}: \mathbb{R} \rightarrow \mathbb{R}$ defined by:

$$
g_{X}(t)=\frac{1}{n} \sum_{x \in X} \exp \left(-\frac{(x-t)^{2}}{2 \sigma^{2}}\right) .
$$

Show that the following kernel is positive definite for any $\sigma>0$:

$$
K_{2}(X, Y)=\int_{\mathbb{R}} g_{X}(t) g_{Y}(t) d t
$$

Is there a simple relation between $K_{1}(X, Y)$ and $K_{2}(X, Y)$?
3. Let \mathcal{P} be a partition of $[0,1]$. For any bin $p \in \mathcal{P}$, let $n_{p}(X)$ be the number of points of X which are in p. Show that the following kernels are positive definite:

$$
\begin{aligned}
& K_{3}(X, Y)=\sum_{p \in \mathcal{P}} \min \left(n_{p}(X), n_{p}(Y)\right), \\
& K_{4}(X, Y)=\prod_{p \in \mathcal{P}} \min \left(n_{p}(X), n_{p}(Y)\right) .
\end{aligned}
$$

4. Let T_{D} be a complete binary tree of depth D, that is, a directed graph such that, starting from the root, each node has two children, until the nodes in the D-th generation which have no children (nodes with no children are called leaves). The nodes of T_{D} are denoted $s \in T_{D}$. How many nodes are there in T_{D} ?
5. We denote by $S\left(T_{D}\right)$ the set of connected subgraphs of T_{D} which contain the root and such that all their nodes have either 0 or 2 children. What is the size of $S\left(T_{D}\right)$ for $D=10$?
6. For $0<p<1$, we consider the following rule to generate randomly a tree in $S\left(T_{D}\right)$. We start at the root, and give it two children with probability p, and no child with probability $1-p$. If it has no child, then the process stops and the tree generated is the root only. Otherwise, the same rule is applied independently to both children, which have themselves 0 or 2 children with probability $1-p$ and p. The process is repeated iteratively to all new children, until no more child is generated, or until we reach the D-th generation where nodes have no children with probability 1 . For any $T \in S\left(T_{D}\right)$ we denote by $\pi(T)$ the probability of generating T by this process. For any real-valued function h defined over the set of nodes $s \in T_{D}$, propose a factorization to compute the following sum efficiently:

$$
\sum_{T \in S\left(T_{D}\right)} \pi(T) \prod_{s \in \text { leaves }(T)} h(s) .
$$

7. Suppose that each leaf $s \in \operatorname{leaves}\left(T_{D}\right)$ is associated to a interval $p(s)$ of $[0,1]$ which together form a partition. For any node $s \in T_{D}$ we denote by $D(s)$ the set of leaves of T_{D} which are descendant of s, and we associate to s the subset $p(s) \subset[0,1]$ defined by:

$$
p(s)=\bigcup_{l \in D(s)} p(l)
$$

For any $T \in S\left(T_{D}\right)$, show that the following function is a positive definite kernel:

$$
K_{T}(X, Y)=\prod_{s \in \text { leaves }(T)} \min \left(n_{p(s)}(X), n_{p(s)}(Y)\right)
$$

8. Show that the following function is a positive definite kernel and propose an efficient implementation to compute it

$$
K_{5}(X, Y)=\sum_{T \in S\left(T_{D}\right)} \pi(T) K_{T}(X, Y)
$$

