1 Combining kernels

1. Let K_1 and K_2 be two positive definite kernels on a set \mathcal{X}. Show that the functions $K_1 + K_2$ and $K_1 \times K_2$ are also p.d. on \mathcal{X}.

2. Let $(K_i)_{i \geq 1}$ a sequence of p.d. kernel on a set \mathcal{X} such that, for any $(x, y) \in \mathcal{X}^2$, the sequence $(K_i(x, y))_{i \geq 0}$ be convergent. Show that the pointwise limit:

$$K(x, y) = \lim_{i \to +\infty} K_i(x, y)$$

is also p.d.

2 Some kernels

Are the following functions positive definite?

$$\forall -1 < x, y < 1 \quad K_1(x, y) = \frac{1}{1 - xy}$$
$$\forall x, y \geq 0 \quad K_2(x, y) = \min(x, y)$$
$$\forall x, y \geq 0 \quad K_3(x, y) = \max(x, y)$$
$$\forall x, y > 0 \quad K_4(x, y) = \frac{\min(x, y)}{\max(x, y)}$$
$$\forall x, y \in \mathbb{R} \quad K_5(x, y) = \cos(x + y)$$
$$\forall x, y \in \mathbb{R} \quad K_6(x, y) = \cos(x - y)$$
3 Completeness of the RKHS

We want to finish the construction of the RKHS associated to a positive definite kernel K given in the course. Remember we have defined the set of functions:

$$\mathcal{H}_0 = \left\{ \sum_{i=1}^{n} \alpha_i K_{x_i} : n \in \mathbb{N}, \alpha_1, \ldots, \alpha_n \in \mathbb{R}, x_1, \ldots, x_n \in \mathcal{X} \right\}$$

and for any two functions $f, g \in \mathcal{H}_0$, given by:

$$f = \sum_{i=1}^{m} a_i K_{x_i}, \quad g = \sum_{j=1}^{n} b_j K_{y_j},$$

we have defined the operation:

$$\langle f, g \rangle_{\mathcal{H}_0} := \sum_{i,j} a_i b_j K(x_i, y_j).$$

In the course we have shown that \mathcal{H}_0 endowed with this inner product is a pre-Hilbert space. Let us now show how to finish the construction of the RKHS from \mathcal{H}_0.

1. Show that any Cauchy sequence (f_n) in \mathcal{H}_0 converges pointwisely to a function $f : \mathcal{X} \to \mathbb{R}$ defined by $f(x) = \lim_{n \to +\infty} f_n(x)$.

2. Show that any Cauchy sequence $(f_n)_{n \in \mathbb{N}}$ in \mathcal{H}_0 which converges pointwise to 0 satisfies:

$$\lim_{n \to +\infty} \| f_n \|_{\mathcal{H}_0} = 0.$$

3. Let $\mathcal{H} \subset \mathbb{R}^{\mathcal{X}}$ be the set of functions $f : \mathcal{X} \to \mathbb{R}$ which are pointwise limits of Cauchy sequences in \mathcal{H}_0, i.e., if (f_n) is a Cauchy sequence in \mathcal{H}_0, then $f(x) = \lim_{n \to +\infty} f_n(x)$. Show that $\mathcal{H}_0 \subset \mathcal{H}$.

4. If (f_n) and (g_n) are two Cauchy sequences in \mathcal{H}_0, which converge pointwisely to two functions f and $g \in \mathcal{H}$, show that the inner product $\langle f_n, g_n \rangle_{\mathcal{H}_0}$ converges to a number which only depends on f and g. This allows us to define formally the operation:

$$\langle f, g \rangle_{\mathcal{H}} = \lim_{n \to +\infty} \langle f_n, g_n \rangle_{\mathcal{H}_0}.$$

5. Show that $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ is an inner product on \mathcal{H}.

6. Show that \mathcal{H}_0 is dense in \mathcal{H} (with respect to the metric defined by the inner product $\langle \cdot, \cdot \rangle_{\mathcal{H}}$).

7. Show that \mathcal{H} is complete.

8. Show that \mathcal{H} is a RKHS whose reproducing kernel is K.
