MVA "Kernel methods" Homework 1

Jean-Philippe Vert

Due January 18, 2012

Exercice 1.

- **1.** Let K_1 and K_2 be two positive definite (p.d.) kernels on a set \mathcal{X} . Show that the functions $K_1 + K_2$ and $K_1 \times K_2$ are also p.d. on \mathcal{X} .
- **2.** Let $(K_i)_{i\geq 1}$ a sequence of p.d. kernel on a set \mathcal{X} such that, for any $(x,y)\in\mathcal{X}^2$, the sequence $(K_i(x,y))_{i\geq 0}$ be convergent. Show that the pointwise limit:

$$K(x,y) = \lim_{i \to +\infty} K_i(x,y)$$

is also p.d. (assuming the limit exists for any x, y).

3. Are the following functions p.d.?

$$\forall -1 < x, y < 1 \quad K_1(x, y) = \frac{1}{1 - xy}$$

$$\forall x, y > 0 \quad K_4(x, y) = \frac{\min(x, y)}{\max(x, y)}$$

$$\forall x, y \in \mathbb{R} \quad K_5(x, y) = \cos(x + y)$$

$$\forall x, y \in \mathbb{R} \quad K_6(x, y) = \cos(x - y)$$

4. Let (Ω, \mathcal{A}, P) be a probability space. Is the function

$$K: \mathcal{A} \times \mathcal{A} \to \mathbb{R}$$

defined by:

$$\forall (A, B) \in \mathcal{A}^2, \quad K(A, B) = P(A \cap B) - P(A)P(B)$$

a p.d. kernel?

Exercice 2.

Prove that for any p.d. kernel K on a space \mathcal{X} , a function $f: \mathcal{X} \to \mathbb{R}$ belongs to the RKHS \mathcal{H} with kernel K if and only if there exists $\lambda > 0$ such that $K(\mathbf{x}, \mathbf{x}') - \lambda f(\mathbf{x}) f(\mathbf{x}')$ is p.d.

Exercice 3.

Prove that if $K: \mathcal{X} \times \mathcal{X}$ is a positive definite function, then it is the r.k. of a unique RKHS. (Hint: consider the linear space spanned by the functions $K_x: t \mapsto K(x,t)$, and use the fact that a linear subspace \mathcal{F} of a Hilbert space \mathcal{H} is dense in \mathcal{H} if and only 0 is the only vector orthogonal to all vectors in \mathcal{F})