MVA "Kernel methods" Homework 1

Jean-Philippe Vert

Due January 30, 2013

Exercice 1.

1. Let K_1 and K_2 be two positive definite (p.d.) kernels on a set \mathcal{X} . Show that the functions $K_1 + K_2$ and $K_1 \times K_2$ are also p.d. on \mathcal{X} . **2.** Let $(K_i)_{i \ge 1}$ a sequence of p.d. kernel on a set \mathcal{X} such that, for any $(x, y) \in \mathcal{X}^2$, the sequence $(K_i(x, y))_{i > 0}$ be convergent. Show that the pointwise limit:

$$K(x,y) = \lim_{i \to +\infty} K_i(x,y)$$

is also p.d. (assuming the limit exists for any x, y). **3.** Show that the following kernel is p.d.:

$$\forall -1 < x, y < 1 \quad K_1(x, y) = \frac{1}{1 - xy}.$$

Exercice 2.

Let Ω be a finite set of cardinality $|\Omega| = n$. Show that the following kernel defined on the set of subsets of Ω is p.d.:

$$\forall A, B \subset \Omega \quad K(A, B) = \frac{|A \cap B|}{|A \cup B|}.$$

Exercice 3.

Show that the kernel $K(x, y) = \min(x, y)$ is p.d. on $[0, 1]^2$. Describe its RKHS.

Exercice 4.

Prove that if $K : \mathcal{X} \times \mathcal{X}$ is a positive definite function, then it is the r.k. of a unique RKHS. (Hint: consider the linear space spanned by the functions $K_x : t \mapsto K(x,t)$, and use the fact that a linear subspace \mathcal{F} of a Hilbert space \mathcal{H} is dense in \mathcal{H} if and only 0 is the only vector orthgonal to all vectors in \mathcal{F})