MVA "Kernel methods" Homework 2

Jean-Philippe Vert

Due February 6, 2013

Exercice 1.

Given two sets of real numbers $X=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ and $Y=\left(y_{1}, \ldots, y_{n}\right) \in$ \mathbb{R}^{n}, the covariance between X and Y is defined as

$$
\operatorname{cov}_{n}(X, Y)=\mathbf{E}_{n}(X Y)-\mathbf{E}_{n}(X) \mathbf{E}_{n}(Y),
$$

where $\mathbf{E}_{n}(U)=\left(\sum_{i=1}^{n} u_{i}\right) / n$. The covariance is useful to detect linear relationships between X and Y. In order to extend this measure to potential nonlinear relationships between X and Y, we consider the following criterion:

$$
C_{n}^{K}(X, Y)=\max _{f, g \in \mathcal{B}_{K}} \operatorname{cov}_{n}(f(X), g(Y)),
$$

where K is a positive definite kernel on $\mathbb{R}, \mathcal{B}_{K}$ is the unit ball of the RKHS of K, and $f(U)=\left(f\left(u_{1}\right), \ldots, f\left(u_{n}\right)\right)$ for a vector $U=\left(u_{1}, \ldots, u_{n}\right)$.

1. Express simply $C_{n}^{K}(X, Y)$ for the linear kernel $K(a, b)=a b$.
2. For a general kernel K, express $C_{n}^{K}(X, Y)$ in terms of the Gram matrices of X and Y.
