MVA "Kernel methods" Homework 4

Jean-Philippe Vert

Due February 20, 2013

For any function $f : \mathbb{R}^N \mapsto \mathbb{R}$, the *Fenchel-Legendre transform* (or *convex conjugate* of f is the function $f^* : \mathbb{R}^N \mapsto \mathbb{R}$ defined by

$$f^*(u) = \sup_{x \in \mathbb{R}^N} < x, u > -f(x) \,.$$

Exercice 1.

Compute the Fenchel-Legendre transforms of the following functions defined for $u \in \mathbb{R}$ and indexed by a parameter $y \in \{-1, +1\}$

• Hinge loss:

$$\ell_y(u) = \max(0, 1 - yu) \,.$$

• Squared hinge loss:

$$\ell_y(u) = \max(0, 1 - yu)^2.$$

• Logistic loss:

$$\ell_y(u) = \log\left(1 + e^{-yu}\right) \,.$$

• Exponential loss:

$$\ell_y(u) = e^{-yu} \,.$$

Exercice 2.

Let $(x_1, y_1), \ldots, (x_n, y_n)$ a training set of examples where $x_i \in \mathcal{X}$, a space endowed with a positive definite kernel K, and $y_i \in \{-1, 1\}$, for $i = 1, \ldots, n$. \mathcal{H}_K

denotes the RKHS of the kernel K. We want to learn a function $f : \mathcal{X} \mapsto \mathbb{R}$ by solving the following optimization problem:

$$\min_{f \in \mathcal{H}_K} \frac{1}{n} \sum_{i=1}^n \ell_{y_i} \left(f(x_i) \right) + \lambda \| f \|_{\mathcal{H}_K}^2 , \qquad (1)$$

where ℓ_y is one of the loss functions defined in Exercice 1 and $\lambda > 0$ is a regularization parameter.

a.Show that the solution to problem (1) can be found be solving the following problem:

$$\min_{\alpha \in \mathbb{R}^n} R(K\alpha) + \lambda \alpha^\top K\alpha , \qquad (2)$$

where K is the $n \times n$ Gram matrix and $R : \mathbb{R}^n \mapsto \mathbb{R}$ should be explicited. **b.** Compute the Fenchel-Legendre transform R^* of R in terms of Fenchel-Legendre transform ℓ_y^* of ℓ_y .

c. Adding the slack variable $u = K\alpha$, the problem (1) can be rewritten as a constrained optimization problem:

$$\min_{\alpha \in \mathbb{R}^n, u \in \mathbb{R}^n} R(u) + \lambda \alpha^\top K \alpha \quad \text{such that} \quad u = K \alpha \,. \tag{3}$$

Compute the dual problem of (3) in terms of R^* , and explain how a solution to (3) can be found from a solution to the dual problem. **c.** Explicit the dual problem for the different loss functions defined in Exercice 1. For the hinge loss, how does it related to the formulation we saw during the course?