Exercice 1. Kernel examples
Are the following kernels positive definite?

1. \(\forall x, y \in \mathbb{R} \quad K_1(x, y) = 10^{xy} , \quad K_2(x, y) = 10^{x+y} . \)

2. \(\forall x, y \in [0, 1) \quad K_3(x, y) = -\log(1 - xy) . \)

3. Let \(\mathcal{X} \) be a set and \(f, g : \mathcal{X} \to \mathbb{R}_+ \) two non-negative functions:

\[\forall x, y \in \mathcal{X} \quad K_4(x, y) = \min(f(x)g(y), f(y)g(x)) \]

Exercice 2. Combining kernels

1. For \(x, y \in \mathbb{R} \), let

\[K_1(x, y) = (xy + 1)^2 \quad \text{and} \quad K_2(x, y) = (xy - 1)^2 . \]

What is the RKHS of \(K_1 \)? Of \(K_2 \)? Of \(K_1 + K_2 \)?

2. Let \(K_1 \) and \(K_2 \) be two positive definite kernels on a set \(\mathcal{X} \), and \(\alpha, \beta \) two positive scalars. Show that \(\alpha K_1 + \beta K_2 \) is positive definite, and describe its RKHS.
Exercice 3. Uniqueness of the RKHS
Prove that if $K : \mathcal{X} \times \mathcal{X}$ is a positive definite function, then it is the r.k. of a unique RKHS. To prove it, you can consider two possible RKHS \mathcal{H} and \mathcal{H}', and show that (i) they contain the same elements and (ii) their inner products are the same. (Hint: consider the linear space spanned by the functions $K_x : t \mapsto K(x, t)$, and use the fact that a linear subspace \mathcal{F} of a Hilbert space \mathcal{H} is dense in \mathcal{H} if and only 0 is the only vector orthogonal to all vectors in \mathcal{F})