MVA "Kernel methods in machine learning" Homework 1

Julien Mairal and Jean-Philippe Vert

Upload your answers (in PDF) to: https://goo.gl/XtQqdo before March 13, 2019, 1pm (Paris time).

Exercice 1. Kernels

Show that the following kernels are positive definite:

- 1. On $\mathcal{X} = \mathbb{R}$: $\forall x, y \in \mathbb{R}, \quad K(x, y) = \cos(x - y).$
- 2. On $\mathcal{X} = \{x \in \mathbb{R}^p : ||x||_2 < 1\}$:

$$\forall x, y \in \mathcal{X}, \quad K(x, y) = 1/(1 - x^{\top} y).$$

3. Given a probability space (Ω, \mathcal{A}, P) , on $\mathcal{X} = \mathbb{R}$:

$$\forall A, B \in \mathcal{A}, \quad K(A, B) = P(A \cap B) - P(A)P(B).$$

4. Let \mathcal{X} be a set and $f, g: \mathcal{X} \to \mathbb{R}_+$ two non-negative functions:

$$\forall x, y \in \mathcal{X} \quad K_4(x, y) = \min(f(x)g(y), f(y)g(x))$$

5. Given a non-empty finite set E, on $\mathcal{X} = \mathcal{P}(E) = \{A : A \subset E\}$:

$$\forall A, B \subset E, \quad K(A, B) = \frac{|A \cap B|}{|A \cup B|},$$

where |F| denotes the cardinality of F, and with the convention $\frac{0}{0} = 0$.

Exercice 2. RKHS

- 1. Let K_1 and K_2 be two positive definite kernels on a set \mathcal{X} , and α, β two positive scalars. Show that $\alpha K_1 + \beta K_2$ is positive definite, and describe its RKHS.
- 2. Let \mathcal{X} be a set and \mathcal{F} be a Hilbert space. Let $\Psi : \mathcal{X} \to \mathcal{F}$, and $K : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be:

$$\forall x, x' \in \mathcal{X}, \quad K(x, x') = \langle \Psi(x), \Psi(x') \rangle_{\mathcal{H}}$$

Show that K is a positive definite kernel on \mathcal{X} , and describe its RKHS.

Exercice 3. Sobolev spaces

1. Let

 $\mathcal{H} = \left\{ f: [0,1] \to \mathbb{R}, \text{ absolutely continuous}, f' \in L^2([0,1]), f(0) = 0 \right\},\$

endowed with the bilinear form

$$\forall f, g \in \mathcal{H}, \quad \langle f, g \rangle_{\mathcal{H}} = \int_0^1 f'(u)g'(u)du$$

Show that \mathcal{H} is an RKHS, and compute its reproducing kernel.

2. Same question when

 $\mathcal{H} = \left\{ f: [0,1] \to \mathbb{R} \,, \text{ absolutely continuous}, f' \in L^2([0,1]), f(0) = f(1) = 0 \right\} \,,$

3. Same question, when \mathcal{H} is endowed with the bilinear form:

$$\forall f, g \in \mathcal{H}, \quad \langle f, g \rangle_{\mathcal{H}} = \int_0^1 \left(f(u)g(u) + f'(u)g'(u) \right) du.$$

Exercice 4. Duality

Let $(x_1, y_1), \ldots, (x_n, y_n)$ a training set of examples where $x_i \in \mathcal{X}$, a space endowed with a positive definite kernel K, and $y_i \in \{-1, 1\}$, for $i = 1, \ldots, n$. \mathcal{H}_K denotes the RKHS of the kernel K. We want to learn a function f : $\mathcal{X} \mapsto \mathbb{R}$ by solving the following optimization problem:

$$\min_{f \in \mathcal{H}_K} \frac{1}{n} \sum_{i=1}^n \ell_{y_i} \left(f(x_i) \right) \quad \text{such that} \quad \| f \|_{\mathcal{H}_K} \le B \,, \tag{1}$$

where ℓ_y is a convex loss functions (for $y \in \{-1, 1\}$) and B > 0 is a parameter. **a.** Show that there exists $\lambda \ge 0$ such that the solution to problem (1) can be found be solving the following problem:

$$\min_{\alpha \in \mathbb{R}^n} R(K\alpha) + \lambda \alpha^\top K\alpha \,, \tag{2}$$

where K is the $n \times n$ Gram matrix and $R : \mathbb{R}^n \to \mathbb{R}$ should be explicited. **b.** Compute the Fenchel-Legendre transform¹ R^* of R in terms of the Fenchel-Legendre transform ℓ_y^* of ℓ_y .

c. Adding the slack variable $u = K\alpha$, the problem (1) can be rewritten as a constrained optimization problem:

$$\min_{\alpha \in \mathbb{R}^n, u \in \mathbb{R}^n} R(u) + \lambda \alpha^\top K \alpha \quad \text{such that} \quad u = K \alpha \,. \tag{3}$$

Express the dual problem of (3) in terms of R^* , and explain how a solution to (3) can be found from a solution to the dual problem.

d. Explicit the dual problem for the logistic and squared hinge losses:

$$\ell_y(u) = \log(1 + e^{-yu}).$$

 $\ell_y(u) = \max(0, 1 - yu)^2.$

$$f^*(u) = \sup_{x \in \mathbb{R}^N} x^\top u - f(x) \,.$$

¹For any function $f : \mathbb{R}^N \to \mathbb{R}$, the *Fenchel-Legendre transform* (or *convex conjugate*) of f is the function $f^* : \mathbb{R}^N \to \mathbb{R}$ defined by