MVA "Kernel methods in machine learning" Homework 1

Julien Mairal and Jean-Philippe Vert

> Upload your answers (in PDF) to: https://goo.gl/XtQqdo before March 13, 2019, 1pm (Paris time).

Exercice 1. Kernels

Show that the following kernels are positive definite:

1. On $\mathcal{X}=\mathbb{R}$:

$$
\forall x, y \in \mathbb{R}, \quad K(x, y)=\cos (x-y)
$$

2. On $\mathcal{X}=\left\{x \in \mathbb{R}^{p}:\|x\|_{2}<1\right\}$:

$$
\forall x, y \in \mathcal{X}, \quad K(x, y)=1 /\left(1-x^{\top} y\right)
$$

3. Given a probability space (Ω, \mathcal{A}, P), on $\mathcal{X}=\mathbb{R}$:

$$
\forall A, B \in \mathcal{A}, \quad K(A, B)=P(A \cap B)-P(A) P(B)
$$

4. Let \mathcal{X} be a set and $f, g: \mathcal{X} \rightarrow \mathbb{R}_{+}$two non-negative functions:

$$
\forall x, y \in \mathcal{X} \quad K_{4}(x, y)=\min (f(x) g(y), f(y) g(x))
$$

5. Given a non-empty finite set E, on $\mathcal{X}=\mathcal{P}(E)=\{A: A \subset E\}$:

$$
\forall A, B \subset E, \quad K(A, B)=\frac{|A \cap B|}{|A \cup B|}
$$

where $|F|$ denotes the cardinality of F, and with the convention $\frac{0}{0}=0$.

Exercice 2. RKHS

1. Let K_{1} and K_{2} be two positive definite kernels on a set \mathcal{X}, and α, β two positive scalars. Show that $\alpha K_{1}+\beta K_{2}$ is positive definite, and describe its RKHS.
2. Let \mathcal{X} be a set and \mathcal{F} be a Hilbert space. Let $\Psi: \mathcal{X} \rightarrow \mathcal{F}$, and $K: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ be:

$$
\forall x, x^{\prime} \in \mathcal{X}, \quad K\left(x, x^{\prime}\right)=\left\langle\Psi(x), \Psi\left(x^{\prime}\right)\right\rangle_{\mathcal{H}} .
$$

Show that K is a positive definite kernel on \mathcal{X}, and describe its RKHS.

Exercice 3. Sobolev spaces

1. Let
$\mathcal{H}=\left\{f:[0,1] \rightarrow \mathbb{R}\right.$, absolutely continuous, $\left.f^{\prime} \in L^{2}([0,1]), f(0)=0\right\}$, endowed with the bilinear form

$$
\forall f, g \in \mathcal{H}, \quad\langle f, g\rangle_{\mathcal{H}}=\int_{0}^{1} f^{\prime}(u) g^{\prime}(u) d u
$$

Show that \mathcal{H} is an RKHS, and compute its reproducing kernel.
2. Same question when
$\mathcal{H}=\left\{f:[0,1] \rightarrow \mathbb{R}\right.$, absolutely continuous, $\left.f^{\prime} \in L^{2}([0,1]), f(0)=f(1)=0\right\}$,
3. Same question, when \mathcal{H} is endowed with the bilinear form:

$$
\forall f, g \in \mathcal{H}, \quad\langle f, g\rangle_{\mathcal{H}}=\int_{0}^{1}\left(f(u) g(u)+f^{\prime}(u) g^{\prime}(u)\right) d u
$$

Exercice 4. Duality

Let $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ a training set of examples where $x_{i} \in \mathcal{X}$, a space endowed with a positive definite kernel K, and $y_{i} \in\{-1,1\}$, for $i=1, \ldots, n$. \mathcal{H}_{K} denotes the RKHS of the kernel K. We want to learn a function f : $\mathcal{X} \mapsto \mathbb{R}$ by solving the following optimization problem:

$$
\begin{equation*}
\min _{f \in \mathcal{H}_{K}} \frac{1}{n} \sum_{i=1}^{n} \ell_{y_{i}}\left(f\left(x_{i}\right)\right) \quad \text { such that } \quad\|f\|_{\mathcal{H}_{K}} \leq B \tag{1}
\end{equation*}
$$

where ℓ_{y} is a convex loss functions (for $y \in\{-1,1\}$) and $B>0$ is a parameter. a. Show that there exists $\lambda \geq 0$ such that the solution to problem (1) can be found be solving the following problem:

$$
\begin{equation*}
\min _{\alpha \in \mathbb{R}^{n}} R(K \alpha)+\lambda \alpha^{\top} K \alpha \tag{2}
\end{equation*}
$$

where K is the $n \times n$ Gram matrix and $R: \mathbb{R}^{n} \mapsto \mathbb{R}$ should be explicited.
b. Compute the Fenchel-Legendre transform ${ }^{1} R^{*}$ of R in terms of the Fenchel-Legendre transform ℓ_{y}^{*} of ℓ_{y}.
c. Adding the slack variable $u=K \alpha$, the problem (1) can be rewritten as a constrained optimization problem:

$$
\begin{equation*}
\min _{\alpha \in \mathbb{R}^{n}, u \in \mathbb{R}^{n}} R(u)+\lambda \alpha^{\top} K \alpha \quad \text { such that } \quad u=K \alpha \tag{3}
\end{equation*}
$$

Express the dual problem of (3) in terms of R^{*}, and explain how a solution to (3) can be found from a solution to the dual problem.
d. Explicit the dual problem for the logistic and squared hinge losses:

$$
\begin{gathered}
\ell_{y}(u)=\log \left(1+e^{-y u}\right) \\
\ell_{y}(u)=\max (0,1-y u)^{2} .
\end{gathered}
$$

[^0]
[^0]: ${ }^{1}$ For any function $f: \mathbb{R}^{N} \mapsto \mathbb{R}$, the Fenchel-Legendre transform (or convex conjugate) of f is the function $f^{*}: \mathbb{R}^{N} \mapsto \mathbb{R}$ defined by

 $$
 f^{*}(u)=\sup _{x \in \mathbb{R}^{N}} x^{\top} u-f(x) .
 $$

