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Upload your answers (in PDF) to:
https://goo.gl/XtQqdo

before March 13, 2019, 1pm (Paris time).

Exercice 1. Kernels
Show that the following kernels are positive definite:

1. On X = R:
∀x, y ∈ R , K(x, y) = cos(x− y) .

2. On X = {x ∈ Rp : ‖x‖2 < 1}:

∀x, y ∈ X , K(x, y) = 1/(1− x>y) .

3. Given a probability space (Ω,A, P ), on X = R:

∀A,B ∈ A , K (A,B) = P (A ∩B)− P (A)P (B) .

4. Let X be a set and f, g : X → R+ two non-negative functions:

∀x, y ∈ X K4(x, y) = min(f(x)g(y), f(y)g(x))

5. Given a non-empty finite set E, on X = P(E) = {A : A ⊂ E}:

∀A,B ⊂ E , K (A,B) =
|A ∩B |
|A ∪B |

,

where |F | denotes the cardinality of F , and with the convention 0
0

= 0.
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Exercice 2. RKHS

1. Let K1 and K2 be two positive definite kernels on a set X , and α, β
two positive scalars. Show that αK1 + βK2 is positive definite, and
describe its RKHS.

2. Let X be a set and F be a Hilbert space. Let Ψ : X → F , and
K : X × X → R be:

∀x, x′ ∈ X , K(x, x′) = 〈Ψ(x),Ψ(x′)〉H .

Show that K is a positive definite kernel on X , and describe its RKHS.

Exercice 3. Sobolev spaces

1. Let

H =
{
f : [0, 1]→ R , absolutely continuous, f ′ ∈ L2([0, 1]), f(0) = 0

}
,

endowed with the bilinear form

∀f, g ∈ H , 〈f, g〉H =

∫ 1

0

f ′(u)g′(u)du .

Show that H is an RKHS, and compute its reproducing kernel.

2. Same question when

H =
{
f : [0, 1]→ R , absolutely continuous, f ′ ∈ L2([0, 1]), f(0) = f(1) = 0

}
,

3. Same question, when H is endowed with the bilinear form:

∀f, g ∈ H , 〈f, g〉H =

∫ 1

0

(f(u)g(u) + f ′(u)g′(u)) du .
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Exercice 4. Duality
Let (x1, y1), . . . , (xn, yn) a training set of examples where xi ∈ X , a space
endowed with a positive definite kernel K, and yi ∈ {−1, 1}, for i = 1, . . . , n.
HK denotes the RKHS of the kernel K. We want to learn a function f :
X 7→ R by solving the following optimization problem:

min
f∈HK

1

n

n∑
i=1

`yi (f(xi)) such that ‖ f ‖HK
≤ B , (1)

where `y is a convex loss functions (for y ∈ {−1, 1}) andB > 0 is a parameter.
a. Show that there exists λ ≥ 0 such that the solution to problem (1) can
be found be solving the following problem:

min
α∈Rn

R(Kα) + λα>Kα , (2)

where K is the n× n Gram matrix and R : Rn 7→ R should be explicited.
b. Compute the Fenchel-Legendre transform1 R∗ of R in terms of the
Fenchel-Legendre transform `∗y of `y.
c. Adding the slack variable u = Kα, the problem (1) can be rewritten as a
constrained optimization problem:

min
α∈Rn,u∈Rn

R(u) + λα>Kα such that u = Kα . (3)

Express the dual problem of (3) in terms of R∗, and explain how a solution
to (3) can be found from a solution to the dual problem.
d. Explicit the dual problem for the logistic and squared hinge losses:

`y(u) = log(1 + e−yu) .

`y(u) = max(0, 1− yu)2 .

1For any function f : RN 7→ R, the Fenchel-Legendre transform (or convex conjugate)
of f is the function f∗ : RN 7→ R defined by

f∗(u) = sup
x∈RN

x>u− f(x) .
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