Exercice 1.
Let \mathcal{X} be a set and \mathcal{F} be a Hilbert space. Let $\Psi : \mathcal{X} \to \mathcal{F}$, and $K : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be:
$$\forall x, x' \in \mathcal{X}, \quad K(x, x') = \langle \Psi(x), \Psi(x') \rangle_{\mathcal{F}}.$$
Show that K is a positive definite kernel on \mathcal{X}, and describe its RKHS \mathcal{H}.
(Hint: Show that any function of the form $f_w(x) = \langle \Psi(x), w \rangle_{\mathcal{F}}$ is in \mathcal{H}, for $w \in \mathcal{F}$, and explicit its norm.)

Exercice 2.
Prove that for any p.d. kernel K on a space \mathcal{X}, a function $f : \mathcal{X} \to \mathbb{R}$ belongs to the RKHS \mathcal{H} with kernel K if and only if there exists $\lambda > 0$ such that $K(x, x') - \lambda f(x)f(x')$ is p.d.
(Hint: you can use the result of Exercice 5.1. that we discussed in the course.)