Homework 3

Jean-Philippe Vert

Due March 28, 2007

$1 \quad B_{n}$-splines

The convolution between two functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ is defined by:

$$
f \star g(x)=\int_{-\infty}^{\infty} f(u) g(x-u) d u,
$$

when this integral exists.
Let now the function:

$$
I(x)= \begin{cases}1 & \text { si }-1 \leq x \leq 1 \\ 0 & \text { si } x<-1 \text { ou } x>1\end{cases}
$$

and $B_{n}=I^{\star n}$ for $n \in \mathbb{N}_{*}$ (that is, the function I convolved n times with itself: $B_{1}=I, B_{2}=I \star I, B_{3}=I \star I \star I$, etc...).

Is the function $k(x, y)=B_{n}(x-y)$ a positive definite kernel over $\mathbb{R} \times \mathbb{R}$? If yes, describe the corresponding reproducing kernel Hilbert space.

2 Kernel for events

Let (Ω, \mathcal{A}, P) be a probability space. Is the function

$$
K: \mathcal{A} \times \mathcal{A} \rightarrow \mathbb{R}
$$

defined by:

$$
\forall(A, B) \in \mathcal{A}^{2}, \quad K(A, B)=P(A \cap B)-P(A) P(B)
$$

a p.d. kernel?

3 More kernels...

Are the following functions positive definite kernels?

$$
\begin{gathered}
\forall x, y>0, \quad K_{1}(x, y)=\frac{\min (x, y)}{\max (x, y)} \\
\forall x, y \in \mathbb{R}, \quad K_{2}(x, y)=\frac{1}{2-e^{-\|x-y\|^{2}}} \\
\forall x, y \in \mathbb{R}, \quad K_{3}(x, y)=\max (0,1-|x-y|)
\end{gathered}
$$

