Homework 4

Jean-Philippe Vert

Due April 5, 2007

Conditionally positive definite kernels

Let \mathcal{X} be a set. A function $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is called conditionally positive definite (c.p.d.) if and only if it is symmetric and satisfies:

$$
\sum_{i, j=1}^{n} a_{i} a_{j} k\left(x_{i}, x_{j}\right) \geq 0
$$

for any $n \in \mathbb{N}, x_{1}, x_{2}, \ldots, x_{n} \in \mathcal{X}^{n}$ and $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{R}^{n}$ with $\sum_{i=1}^{n} a_{i}=0$

1. Show that a positive definite (p.d.) function is c.p.d.
2. Is a constant function p.d.? Is it c.p.d.?
3. If \mathcal{X} is a Hilbert space, then is $k(x, y)=-\|x-y\|^{2}$ p.d.? Is it c.p.d.?
4. Let \mathcal{X} be a nonempty set, and $x_{0} \in \mathcal{X}$ a point. For any function $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$, let $\tilde{k}: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ be the function defined by:

$$
\tilde{k}(x, y)=k(x, y)-k\left(x_{0}, x\right)-k\left(x_{0}, y\right)+k\left(x_{0}, x_{0}\right)
$$

Show that k is c.p.d. if and only if \tilde{k} is p.d.
5. Show that if k is c.p.d., then the function $\exp (t k(x, y))$ is p.d. for all $t \geq 0$
6. Conversely, show that if the function $\exp (t k(x, y))$ is p.d. for any $t \geq 0$, then k is c.p.d.
7. Let μ be a positive measure on \mathbb{R}^{+}, and $g: D(\mu) \rightarrow \mathbb{R}$ be the function:

$$
g(x)=\int_{0}^{\infty}\left(e^{\lambda x}-1\right) d \mu(\lambda)
$$

where $D(\mu) \subset \mathbb{R}^{+}$is the set of values x for which this integral is convergent.
7.a. If k is a c.p.d. kernel on a set \mathcal{X}, and if $k(\mathcal{X} \times \mathcal{X}) \subset D(\mu)$, show that $g \circ k$ is also c.p.d. on \mathcal{X}. (Suggestion: study first the function $g(x)=e^{\lambda x}-1$)
7.b. Show that if k is c.p.d. and if $x_{0} \in \mathcal{X}$ then the kernel:

$$
\hat{k}(x, y)=g\left(k(x, y)+k\left(x_{0}, x_{0}\right)\right)-g\left(k\left(x, x_{0}\right)+k\left(y, x_{0}\right)\right)
$$

is p.d. (if all the terms are well defined). (Suggestion: show that if k is p.d., then $e^{k}-1$ is also p.d.).
8. The Gamma function is defined for any $x>0$ by:

$$
\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} d t
$$

8.a. Show that for any $0<\alpha<1$ and $z \geq 0$,

$$
z^{\alpha}=\frac{\alpha}{\Gamma(1-\alpha)} \int_{0}^{\infty}\left(1-e^{-\lambda z}\right) \frac{d \lambda}{\lambda^{\alpha+1}} .
$$

8.b. Show that if k is c.p.d. on \mathcal{X} and $k(x, x) \leq 0$ for any $x \in \mathcal{X}$, then $-(-k)^{\alpha}$ is well defined and c.p.d. for $0 \leq \alpha \leq 1$.
9. Let k be a c.p.d. kernel on \mathcal{X} such that $k(x, x)=0$ for any $x \in \mathcal{X}$. Show that there exists a Hilbert space \mathcal{H} and a mapping $\Phi: \mathcal{X} \rightarrow \mathcal{H}$ such that, for any $x, y \in \mathcal{X}$,

$$
k(x, y)=-\|\Phi(x)-\Phi(y)\|^{2} .
$$

10. For $x, y \in \mathbb{R}$, let

$$
k(x, y)=e^{-|x-y|^{p}} .
$$

10.a. Show that if k is p.d., then $-|x-y|^{p}$ is c.p.d.
10.b. Show that if k is p.d. then $p \leq 2$.
10.c. Conversely, show that if $p \leq 2$ then k is p.d.

11 Show that the opposite of the shortest-path distance on a tree is c.p.d over the set of vertices (a tree is an undirected graph without loops. The shortest-path distance between two vertices is the number of edges of the unique path that connects them). Is the shortest-path distance over graphs c.p.d. in general?

