Uniqueness of the RKHS

Jean-Philippe Vert

Recall the definition of an RKHS:

Definition 1. Let X be a set and $\mathcal{H} \subset \mathbb{R}^X$ be a class of functions forming a Hilbert space with inner product $\langle \cdot, \cdot \rangle_{\mathcal{H}}$. The function $K : X^2 \mapsto \mathbb{R}$ is called a reproducing kernel (r.k.) of \mathcal{H} if

1. \mathcal{H} contains all functions of the form
 $$\forall x \in X, \quad K_{x} : t \mapsto K(x, t).$$

2. For every $x \in X$ and $f \in \mathcal{H}$ the reproducing property holds:
 $$f(x) = \langle f, K_x \rangle_{\mathcal{H}}.$$

If a r.k. exists, then \mathcal{H} is called a reproducing kernel Hilbert space (RKHS).

Remember that an RKHS has the following property

Theorem 1. A Hilbert space of functions $\mathcal{H} \subset \mathbb{R}^X$ is a RKHS if and only if for any $x \in X$, the mapping $f \mapsto f(x)$ (from \mathcal{H} to \mathbb{R}) is continuous.

Suppose a sequence of function $(f_n)_{n \in \mathbb{N}}$ converges in a RKHS to a function $f \in \mathcal{H}$. Then the functions $(f_n - f)$ converges to 0 in the RKHS sense, from which we deduce that $f_n(x) - f(x)$ also converges to 0 for any $x \in X$, by continuity of the evaluations functionals. This proves that:

Corollary 1. Convergence in a RKHS implies pointwise convergence on any point, i.e., if f_n converges to $f \in \mathcal{H}$, then $f_n(x)$ converges to $f(x)$ for any $x \in X$.

We now detail the proof of the following result, due to [1], which shows that there is a one-to-one correspondence between RKHS and r.k. It allows us to talk about "the" RHKS associated to a r.k., and conversely to "the" r.k. associated to a RKHS.

Theorem 2.

1. If a r.k. exists for a Hilbert space $\mathcal{H} \subset \mathbb{R}^X$, then it is unique.

2. Conversely, if two RKHS have the same r.k., then they are equal.

Proof. To prove 1., let \mathcal{H} be a RKHS with two r.k. kernels K and K'. For any two points $x, y \in X$, we need to show that $K(x, y) = K'(x, y)$. By the first property of RKHS, we know that the functions K_x and K'_x are in \mathcal{H}, and using the second property we obtain:

$$\|K_x - K'_x\|_{\mathcal{H}}^2 = \langle K_x - K'_x, K_x - K'_x \rangle_{\mathcal{H}}$$

$$= \langle K_x - K'_x, K_x \rangle_{\mathcal{H}} - \langle K_x - K'_x, K'_x \rangle_{\mathcal{H}}$$

$$= K_x(x) - K'_x(x) - K_x(x) + K'_x(x)$$

$$= 0.$$
\mathcal{H} being a Hilbert space, only the zero function has a norm equal to 0. This shows that $K_x = K'_x$ as functions, and in particular that $K_x(y) = K'_x(y)$, i.e., $K(x, y) = K'(x, y)$.

To prove the converse, let us first consider a RKHS \mathcal{H}_1 with r.k. K. By definition of the r.k., we know that all the functions K_x for $x \in X$ are in \mathcal{H}_1, therefore their linear span

$$\mathcal{H}_0 = \left\{ \sum_{i=1}^{n} \alpha_i K_{x_i} : n \in \mathbb{N}, \alpha_1, \ldots, \alpha_n \in \mathbb{R}, x_1, \ldots, x_n \in X \right\}$$

is a subspace of \mathcal{H}_1. Now we observe that if $f \in \mathcal{H}_1$ is orthogonal to \mathcal{H}_0, then in particular it is orthogonal to K_x for any x which implies $f(x) = \langle f, K_x \rangle_{\mathcal{H}_1} = 0$, i.e., $f = 0$. In other words, \mathcal{H}_0 is dense in \mathcal{H}_1.

Moreover the \mathcal{H}_1 norm for functions in \mathcal{H}_0 only depends on the r.k. K, because it is given for a function $f = \sum_{i=1}^{n} \alpha_i K_{x_i} \in \mathcal{H}_0$ by

$$\| f \|_{\mathcal{H}_1}^2 = \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j \langle K_{x_i}, K_{x_j} \rangle_{\mathcal{H}_1} = \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j K(x_i, x_j).$$

Suppose now that \mathcal{H}_2 is also a RKHS that admits K as r.k. Then by the same argument, the space \mathcal{H}_0 is dense in \mathcal{H}_2, and the \mathcal{H}_2 norm in \mathcal{H}_0 is given by (3). In particular, for any $f \in \mathcal{H}_0$, $\| f \|_{\mathcal{H}_1} = \| f \|_{\mathcal{H}_2}$.

Let now $f \in \mathcal{H}_1$. By density of \mathcal{H}_0 in \mathcal{H}_1, there is a sequence (f_n) in \mathcal{H}_0 such that $\| f_n - f \|_{\mathcal{H}_1} \to 0$. The converging sequence (f_n) is in particular a Cauchy sequence for the \mathcal{H}_1 norm, and since this norm coincides with the \mathcal{H}_2 norm on \mathcal{H}_0, (f_n) is also a Cauchy sequence for the \mathcal{H}_2 norm and converges in \mathcal{H}_2 to a function $g \in \mathcal{H}_2$. By Corollary 1 applied to both \mathcal{H}_1 and \mathcal{H}_2, we see that, for any $x \in X$, $\lim_{n \to +\infty} f_n(x) = f(x) = g(x)$. In other words, $f = g$ and therefore $f \in \mathcal{H}_2$. This shows that $\mathcal{H}_1 \subset \mathcal{H}_2$ and, by symmetry of the argument, in fact that $\mathcal{H}_1 = \mathcal{H}_2$. We now need to check that the norms in \mathcal{H}_1 and \mathcal{H}_2 coincide, which results from:

$$\| f \|_{\mathcal{H}_1} = \lim_{n \to +\infty} \| f_n \|_{\mathcal{H}_1} = \lim_{n \to +\infty} \| f_n \|_{\mathcal{H}_2} = \| f \|_{\mathcal{H}_2}. \quad \square$$

References