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What’s in your body

1 body = 1014 human cells (and 100x more non-human cells)
1 cell = 6× 109 ACGT coding for 20,000 genes



Sequencing revolution



A cancer cell



A cancer cell



A cancer cell



Opportunities

What is your risk of developing a cancer? (prevention)
After diagnosis and treatment, what is the risk of relapse?
(prognosis)
What specific treatment will cure your cancer? (personalized
medicine)



Cancer diagnosis

Problem 1
Given the expression levels of 20k genes in a leukemia, is it an acute
lymphocytic or myeloid leukemia (ALL or AML)?



Cancer prognosis

Problem 2
Given the expression levels of 20k genes in a tumour after surgery, is it
likely to relapse later?



Pharmacogenomics / Toxicogenomics

Problem 3
Given the genome of a person, which drug should we give?



Protein annotation

Data available
Secreted proteins:
MASKATLLLAFTLLFATCIARHQQRQQQQNQCQLQNIEA...
MARSSLFTFLCLAVFINGCLSQIEQQSPWEFQGSEVW...
MALHTVLIMLSLLPMLEAQNPEHANITIGEPITNETLGWL...
...

Non-secreted proteins:
MAPPSVFAEVPQAQPVLVFKLIADFREDPDPRKVNLGVG...
MAHTLGLTQPNSTEPHKISFTAKEIDVIEWKGDILVVG...
MSISESYAKEIKTAFRQFTDFPIEGEQFEDFLPIIGNP..
...

Problem 4
Given a newly sequenced protein, is it secreted or not?



Drug discovery

inactive

active

active

active

inactive

inactive

Problem 5
Given a new candidate molecule, is it likely to be active?



A common topic



A common topic



A common topic



A common topic



On real data...



Pattern recognition, aka supervised classification

Challenges
High dimension
Few samples
Structured data
Heterogeneous data
Prior knowledge
Fast and scalable
implementations
Interpretable models
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Linear classifier



Linear classifier



Linear classifier



Linear classifier



Linear classifier



Linear classifier



Linear classifier



Linear classifier



Which one is better?



The margin of a linear classifier
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The margin of a linear classifier



The margin of a linear classifier



Largest margin classifier (hard-margin SVM)



Support vectors



More formally

The training set is a finite set of n data/class pairs:

S =
{

(~x1, y1), . . . , (~xn, yn)
}
,

where ~xi ∈ Rp and yi ∈ {−1,1}.
We assume (for the moment) that the data are linearly separable,
i.e., that there exists (~w ,b) ∈ Rp × R such that:{

~w .~xi + b > 0 if yi = 1 ,
~w .~xi + b < 0 if yi = −1 .



How to find the largest separating hyperplane?

For a given linear classifier f (x) = ~w .~x + b consider the "tube" defined
by the values −1 and +1 of the decision function:

x2
x1

w.x+b > +1

w.x+b < −1
w

w.x+b=+1

w.x+b=−1

w.x+b=0



The margin is 2/‖ ~w ‖

Indeed, the points ~x1 and ~x2 satisfy:{
~w .~x1 + b = 0 ,
~w .~x2 + b = 1 .

By subtracting we get ~w .(~x2 − ~x1) = 1, and therefore:

γ = 2‖~x2 − ~x1 ‖ =
2
‖ ~w ‖ .



All training points should be on the correct side of the
dotted line

For positive examples (yi = 1) this means:

~w .~xi + b ≥ 1 .

For negative examples (yi = −1) this means:

~w .~xi + b ≤ −1 .

Both cases are summarized by:

∀i = 1, . . . ,n , yi
(
~w .~xi + b

)
≥ 1 .



Finding the optimal hyperplane

Find (~w ,b) which minimize:
‖ ~w ‖2

under the constraints:

∀i = 1, . . . ,n , yi
(
~w .~xi + b

)
− 1 ≥ 0 .

This is a classical quadratic program on Rp+1.



Lagrangian

In order to minimize:
1
2
‖ ~w ‖22

under the constraints:

∀i = 1, . . . ,n , yi
(
~w .~xi + b

)
− 1 ≥ 0 ,

we introduce one dual variable αi for each constraint, i.e., for each
training point. The Lagrangian is:

L
(
~w ,b, ~α

)
=

1
2
||~w ||2 −

n∑
i=1

αi
(
yi
(
~w .~xi + b

)
− 1
)
.



Lagrangian

L
(
~w ,b, ~α

)
is convex quadratic in ~w . It is minimized for:

∇~wL = ~w −
n∑

i=1

αiyi~xi = 0 =⇒ ~w =
n∑

i=1

αiyi~xi .

L
(
~w ,b, ~α

)
is affine in b. Its minimum is −∞ except if:

∇bL =
n∑

i=1

αiyi = 0 .



Dual function

We therefore obtain the Lagrange dual function:

q (~α) = inf
~w∈Rp,b∈R

L
(
~w ,b, ~α

)
=

{∑n
i=1 αi − 1

2
∑n

i=1
∑n

j=1 yiyjαiαj~xi .~xj if
∑n

i=1 αiyi = 0 ,
−∞ otherwise.

The dual problem is:

maximize q (~α)

subject to ~α ≥ 0 .



Dual problem

Find α∗ ∈ Rn which maximizes

L(~α) =
n∑

i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyj~xi .~xj ,

under the (simple) constraints αi ≥ 0 (for i = 1, . . . ,n), and

n∑
i=1

αiyi = 0.

This is a quadratic program on RN , with "box constraints". ~α∗ can be
found efficiently using dedicated optimization softwares.



Recovering the optimal hyperplane

Once ~α∗ is found, we recover (~w∗,b∗) corresponding to the optimal
hyperplane. w∗ is given by:

~w∗ =
n∑

i=1

αi~xi ,

and the decision function is therefore:

f ∗(~x) = ~w∗.~x + b∗

=
n∑

i=1

αi~xi .~x + b∗ .
(1)



Interpretation: support vectors

α>0

α=0



What if data are not linearly separable?



What if data are not linearly separable?



What if data are not linearly separable?



What if data are not linearly separable?



Soft-margin SVM

Find a trade-off between large margin and few errors.
Mathematically:

min
f

{
1

margin(f )
+ C × errors(f )

}
C is a parameter



Soft-margin SVM formulation

The margin of a labeled point (~x , y) is

margin(~x , y) = y
(
~w .~x + b

)
The error is

0 if margin(~x , y) > 1,
1−margin(~x , y) otherwise.

The soft margin SVM solves:

min
~w ,b

{
||~w ||2 + C

n∑
i=1

max
(
0,1− yi

(
~w .~xi + b

))}



Soft-margin SVM and hinge loss

min
~w ,b

{
n∑

i=1

`hinge
(
~w .xi + b, yi

)
+ λ‖ ~w ‖22

}
,

for λ = 1/C and the hinge loss function:

`hinge(u, y) = max (1− yu,0) =

{
0 if yu ≥ 1,
1− yu otherwise.

yf(x)

l(f(x),y)

1



Dual formulation of soft-margin SVM (exercice)

Maximize

L(~α) =
n∑

i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyj~xi .~xj ,

under the constraints:{
0 ≤ αi ≤ C, for i = 1, . . . ,n∑n

i=1 αiyi = 0.



Interpretation: bounded and unbounded support
vectors

C
α=0

0<α<C

α=



Primal (for large n) vs dual (for large p) optimization

1 Find (~w ,b) ∈ Rp+1 which solve:

min
~w ,b

{
n∑

i=1

`hinge
(
~w .xi + b, yi

)
+ λ‖ ~w ‖22

}
.

2 Find α∗ ∈ Rn which maximizes

L(~α) =
n∑

i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyj~xi .~xj ,

under the constraints:{
0 ≤ αi ≤ C, for i = 1, . . . ,n∑n

i=1 αiyi = 0.
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Sometimes linear methods are not interesting



Solution: nonlinear mapping to a feature space

2R

x1

x2

x1

x2

2

For x =

(
x1
x2

)
let Φ(x) =

(
x2

1
x2

2

)
. The decision function is:

f (x) = x2
1 + x2

2 − R2 =

(
1
1

)>( x2
1

x2
2

)
− R2 = β>Φ(x) + b .



Kernel = inner product in the feature space

Definition
For a given mapping

Φ : X 7→ H
from the space of objects X to some Hilbert space of features H, the
kernel between two objects x and x ′ is the inner product of their
images in the features space:

∀x , x ′ ∈ X , K (x , x ′) = Φ(x)>Φ(x ′) .

φ
X F



Example

φ
X F

Let X = H = R2 and for x =

(
x1
x2

)
let Φ(x) =

(
x2

1
x2

2

)
Then

K (x , x ′) = Φ(x)>Φ(x ′) = (x1)2(x ′1)2 + (x2)2(x ′2)2 .



The kernel tricks

φ
X F

2 tricks
1 Many linear algorithms (in particular linear SVM) can be

performed in the feature space of Φ(x) without explicitly computing
the images Φ(x), but instead by computing kernels K (x , x ′).

2 It is sometimes possible to easily compute kernels which
correspond to complex large-dimensional feature spaces: K (x , x ′)
is often much simpler to compute than Φ(x) and Φ(x ′)



Trick 1 : SVM in the original space

Train the SVM by maximizing

max
α∈Rn

n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyjx>i xj ,

under the constraints:{
0 ≤ αi ≤ C , for i = 1, . . . ,n∑n

i=1 αiyi = 0 .

Predict with the decision function

f (x) =
n∑

i=1

αiyix>i x + b∗ .



Trick 1 : SVM in the feature space

Train the SVM by maximizing

max
α∈Rn

n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyjΦ (xi)
>Φ

(
xj
)
,

under the constraints:{
0 ≤ αi ≤ C , for i = 1, . . . ,n∑n

i=1 αiyi = 0 .

Predict with the decision function

f (x) =
n∑

i=1

αiyiΦ (xi)
>Φ (x) + b∗ .



Trick 1 : SVM in the feature space with a kernel

Train the SVM by maximizing

max
α∈Rn

n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyjK
(
xi , xj

)
,

under the constraints:{
0 ≤ αi ≤ C , for i = 1, . . . ,n∑n

i=1 αiyi = 0 .

Predict with the decision function

f (x) =
n∑

i=1

αiK (xi , x) + b∗ .



Trick 2 illustration: polynomial kernel

2R

x1

x2

x1

x2

2

For x = (x1, x2)> ∈ R2, let Φ(x) = (x2
1 ,
√

2x1x2, x2
2 ) ∈ R3:

K (x , x ′) = x2
1 x ′21 + 2x1x2x ′1x ′2 + x2

2 x ′22

=
(
x1x ′1 + x2x ′2

)2

=
(

x>x ′
)2

.



Trick 2 illustration: polynomial kernel

2R

x1

x2

x1

x2

2

More generally, for x , x ′ ∈ Rp,

K (x , x ′) =
(

x>x ′ + 1
)d

is an inner product in a feature space of all monomials of degree up to
d (left as exercice.)



Combining tricks: learn a polynomial discrimination
rule with SVM

Train the SVM by maximizing

max
α∈Rn

n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyj

(
x>i xj + 1

)d
,

under the constraints:{
0 ≤ αi ≤ C , for i = 1, . . . ,n∑n

i=1 αiyi = 0 .

Predict with the decision function

f (x) =
n∑

i=1

αiyi

(
x>i x + 1

)d
+ b∗ .



Illustration: toy nonlinear problem

> plot(x,col=ifelse(y>0,1,2),pch=ifelse(y>0,1,2))
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Illustration: toy nonlinear problem, linear SVM

> library(kernlab)
> svp <- ksvm(x,y,type="C-svc",kernel=’vanilladot’)
> plot(svp,data=x)
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Illustration: toy nonlinear problem, polynomial SVM

> svp <- ksvm(x,y,type="C-svc", ...
kernel=polydot(degree=2))

> plot(svp,data=x)
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Which functions K (x , x ′) are kernels?

Definition
A function K (x , x ′) defined on a set X is a kernel if and only if there
exists a features space (Hilbert space) H and a mapping

Φ : X 7→ H ,

such that, for any x , x ′ in X :

K
(
x , x ′

)
=
〈
Φ (x) ,Φ

(
x ′
)〉
H .

φ
X F



Positive Definite (p.d.) functions

Definition
A positive definite (p.d.) function on the set X is a function
K : X × X → R symmetric:

∀
(
x,x′

)
∈ X 2, K

(
x,x′

)
= K

(
x′,x

)
,

and which satisfies, for all N ∈ N, (x1,x2, . . . ,xN) ∈ XN et
(a1,a2, . . . ,aN) ∈ RN :

N∑
i=1

N∑
j=1

aiajK
(
xi ,xj

)
≥ 0.



Kernels are p.d. functions

Theorem (Aronszajn, 1950)
K is a kernel if and only if it is a positive definite function.

φ
X F



Proof?

Kernel =⇒ p.d. function:
〈Φ (x) ,Φ (x′)〉Rd = 〈Φ (x′) ,Φ (x)Rd 〉 ,∑N

i=1
∑N

j=1 aiaj 〈Φ (xi ) ,Φ (xj )〉Rd = ‖ ∑N
i=1 ai Φ (xi ) ‖2

Rd ≥ 0 .

P.d. function =⇒ kernel: more difficult...



Kernel examples

Polynomial (on Rd ):

K (x , x ′) = (x .x ′ + 1)d

Gaussian radial basis function (RBF) (on Rd )

K (x , x ′) = exp
(
−||x − x ′||2

2σ2

)
Laplace kernel (on R)

K (x , x ′) = exp
(
−γ|x − x ′|

)
Min kernel (on R+)

K (x , x ′) = min(x , x ′)

Exercice
Exercice: for each kernel, find a Hilbert space H and a mapping
Φ : X → H such that K (x , x ′) = 〈Φ(x),Φ(x ′)〉



Example: SVM with a Gaussian kernel

Training:

min
α∈Rn

n∑
i=1

αi −
1
2

n∑
i,j=1

αiαjyiyj exp

(
−||

~xi − ~xj ||2
2σ2

)

s.t. 0 ≤ αi ≤ C, and
n∑

i=1

αiyi = 0.

Prediction

f (~x) =
n∑

i=1

αi exp
(
−||

~x − ~xi ||2
2σ2

)



Example: SVM with a Gaussian kernel

f (~x) =
n∑

i=1

αi exp
(
−||

~x − ~xi ||2
2σ2

)
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Linear vs nonlinear SVM



Regularity vs data fitting trade-off



C controls the trade-off

min
f

{
1

margin(f )
+ C × errors(f )

}



Why it is important to control the trade-off



How to choose C in practice

Split your dataset in two ("train" and "test")
Train SVM with different C on the "train" set
Compute the accuracy of the SVM on the "test" set
Choose the C which minimizes the "test" error
(you may repeat this several times = cross-validation)
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Breast cancer prognosis



Gene selection, molecular signature

The idea
We look for a limited set of genes that are sufficient for prediction.
Selected genes should inform us about the underlying biology



Lack of stability of signatures
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Ensemble−exp
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Haury et al. (2011)
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Gene networks and expression data

Motivation
Basic biological functions usually involve the coordinated action of
several proteins:

Formation of protein complexes
Activation of metabolic, signalling or regulatory pathways

Many pathways and protein-protein interactions are already known
Hypothesis: the weights of the classifier should be “coherent” with
respect to this prior knowledge



Graph based penalty

fβ(x) = β>x min
β

R(fβ) + λΩ(β)

Prior hypothesis
Genes near each other on the graph should have similar weigths.

An idea (Rapaport et al., 2007)

Ω(β) =
∑
i∼j

(βi − βj)
2 ,

min
β∈Rp

R(fβ) + λ
∑
i∼j

(βi − βj)
2 .



Graph based penalty

fβ(x) = β>x min
β

R(fβ) + λΩ(β)

Prior hypothesis
Genes near each other on the graph should have similar weigths.

An idea (Rapaport et al., 2007)

Ω(β) =
∑
i∼j

(βi − βj)
2 ,

min
β∈Rp

R(fβ) + λ
∑
i∼j

(βi − βj)
2 .



Graph Laplacian

Definition
The Laplacian of the graph is the matrix L = D − A.

1

2

3

4

5

L = D − A =


1 0 −1 0 0
0 1 −1 0 0
−1 −1 3 −1 0
0 0 −1 2 −1
0 0 0 1 1





Spectral penalty as a kernel

Theorem
The function f (x) = β>x where β is solution of

min
β∈Rp

1
n

n∑
i=1

`
(
β>xi , yi

)
+ λ

∑
i∼j

(
βi − βj

)2

is equal to g(x) = γ>Φ(x) where γ is solution of

min
γ∈Rp

1
n

n∑
i=1

`
(
γ>Φ(xi), yi

)
+ λγ>γ ,

and where
Φ(x)>Φ(x ′) = x>KGx ′

for KG = L∗, the pseudo-inverse of the graph Laplacian.

Proof: left as exercice



Example

1

2

3

4

5

L∗ =


0.88 −0.12 0.08 −0.32 −0.52
−0.12 0.88 0.08 −0.32 −0.52

0.08 0.08 0.28 −0.12 −0.32
−0.32 −0.32 −0.12 0.48 0.28
−0.52 −0.52 −0.32 0.28 1.08





Classifiers
Rapaport et al
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Fig. 4. Global connection map of KEGG with mapped coefficients of the decision function obtained by applying a customary linear SVM

(left) and using high-frequency eigenvalue attenuation (80% of high-frequency eigenvalues have been removed) (right). Spectral filtering

divided the whole network into modules having coordinated responses, with the activation of low-frequency eigen modes being determined by

microarray data. Positive coefficients are marked in red, negative coefficients are in green, and the intensity of the colour reflects the absolute

values of the coefficients. Rhombuses highlight proteins participating in the Glycolysis/Gluconeogenesis KEGG pathway. Some other parts of

the network are annotated including big highly connected clusters corresponding to protein kinases and DNA and RNA polymerase sub-units.

5 DISCUSSION

Our algorithm groups predictor variables according to highly

connected "modules" of the global gene network. We assume

that the genes within a tightly connected network module

are likely to contribute similarly to the prediction function

because of the interactions between the genes. This motivates

the filtering of gene expression profile to remove the noisy

high-frequencymodes of the network.

Such grouping of variables is a very useful feature of the

resulting classification function because the function beco-

mes meaningful for interpreting and suggesting biological

factors that cause the class separation. This allows classifi-

cations based on functions, pathways and network modules

rather than on individual genes. This can lead to a more robust

behaviour of the classifier in independent tests and to equal if

not better classification results. Our results on the dataset we

analysed shows only a slight improvement, although this may

be due to its limited size. Thereforewe are currently extending

our work to larger data sets.

An important remark to bear in mind when analyzing pictu-

res such as fig.4 and 5 is that the colors represent the weights

of the classifier, and not gene expression levels. There is

of course a relationship between the classifier weights and

the typical expression levels of genes in irradiated and non-

irradiated samples: irradiated samples tend to have expression

profiles positively correlated with the classifier, while non-

irradiated samples tend to be negatively correlated. Roughly

speaking, the classifier tries to find a smooth function that

has this property. If more samples were available, better

non-smooth classifier might be learned by the algorithm, but

constraining the smoothness of the classifier is away to reduce

the complexity of the learning problem when a limited num-

ber of samples are available. This means in particular that the

pictures provide virtually no information regarding the over-

8



Classifier
Spectral analysis of gene expression profiles using gene networks

 a)  b)
Fig. 5. Theglycolysis/gluconeogenesis pathways ofKEGGwithmapped coefficients of the decision function obtained by applying a customary

linear SVM (a) and using high-frequency eigenvalue attenuation (b). The pathways are mutually exclusive in a cell, as clearly highlighted by

our algorithm.

or under-expression of individual genes, which is the cost to

pay to obtain instead an interpretation in terms of more glo-

bal pathways. Constraining the classifier to rely on just a few

genes would have a similar effect of reducing the complexity

of the problem,butwould lead to amoredifficult interpretation

in terms of pathways.

An advantage of our approach over other pathway-based

clustering methods is that we consider the network modules

that naturally appear from spectral analysis rather than a histo-

rically defined separation of the network into pathways. Thus,

pathways cross-talking is taken into account, which is diffi-

cult to do using other approaches. It can however be noticed

that the implicit decomposition into pathways that we obtain

is biased by the very incomplete knowledge of the network

and that certain regions of the network are better understood,

leading to a higher connection concentration.

Like most approaches aiming at comparing expression data

with gene networks such as KEGG, the scope of this work

is limited by two important constraints. First the gene net-

work we use is only a convenient but rough approximation to

describe complex biochemical processes; second, the trans-

criptional analysis of a sample can not give any information

regarding post-transcriptional regulation and modifications.

Nevertheless, we believe that our basic assumptions remain

valid, in that we assume that the expression of the genes

belonging to the same metabolic pathways module are coor-

dinately regulated. Our interpretation of the results supports

this assumption.

Another important caveat is that we simplify the network

description as an undirected graph of interactions. Although

this would seem to be relevant for simplifying the descrip-

tion of metabolic networks, real gene regulation networks are

influenced by the direction, sign and importance of the interac-

tion. Although the incorporationof weights into the Laplacian

(equation 1) is straightforward and allows the extension of the

approach to weighted undirected graphs, the incorporation

of directions and signs to represent signalling or regulatory

pathways requires more work but could lead to important

advances for the interpretation of microarray data in cancer

studies, for example.
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Other penalties with kernels

Φ(x)>Φ(x ′) = x>KGx ′

with:
KG = (c + L)−1 leads to

Ω(β) = c
p∑

i=1

β2
i +

∑
i∼j

(
βi − βj

)2
.

The diffusion kernel:

KG = expM(−2tL) .

penalizes high frequencies of β in the Fourier domain.
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Supervised sequence classification

Data (training)
Secreted proteins:
MASKATLLLAFTLLFATCIARHQQRQQQQNQCQLQNIEA...
MARSSLFTFLCLAVFINGCLSQIEQQSPWEFQGSEVW...
MALHTVLIMLSLLPMLEAQNPEHANITIGEPITNETLGWL...
...

Non-secreted proteins:
MAPPSVFAEVPQAQPVLVFKLIADFREDPDPRKVNLGVG...
MAHTLGLTQPNSTEPHKISFTAKEIDVIEWKGDILVVG...
MSISESYAKEIKTAFRQFTDFPIEGEQFEDFLPIIGNP..
...

Goal
Build a classifier to predict whether new proteins are secreted or
not.



String kernels

The idea
Map each string x ∈ X to a vector Φ(x) ∈ F .
Train a classifier for vectors on the images Φ(x1), . . . ,Φ(xn) of the
training set (nearest neighbor, linear perceptron, logistic
regression, support vector machine...)

mahtlg...

φ
X F

maskat...
msises

marssl...

malhtv...
mappsv...



Example: substring indexation

The approach
Index the feature space by fixed-length strings, i.e.,

Φ (x) = (Φu (x))u∈Ak

where Φu (x) can be:
the number of occurrences of u in x (without gaps) : spectrum
kernel (Leslie et al., 2002)
the number of occurrences of u in x up to m mismatches (without
gaps) : mismatch kernel (Leslie et al., 2004)
the number of occurrences of u in x allowing gaps, with a weight
decaying exponentially with the number of gaps : substring kernel
(Lohdi et al., 2002)



Spectrum kernel (1/2)

Kernel definition
The 3-spectrum of

x = CGGSLIAMMWFGV

is:
(CGG,GGS,GSL,SLI,LIA,IAM,AMM,MMW,MWF,WFG,FGV) .

Let Φu (x) denote the number of occurrences of u in x. The
k -spectrum kernel is:

K
(
x,x′

)
:=

∑
u∈Ak

Φu (x) Φu
(
x′
)
.



Spectrum kernel (2/2)

Implementation

The computation of the kernel is formally a sum over |A|k terms,
but at most |x | − k + 1 terms are non-zero in Φ (x) =⇒
Computation in O (|x |+ |x′ |) with pre-indexation of the strings.
Fast classification of a sequence x in O (|x |):

f (x) = w · Φ (x) =
∑

u

wuΦu (x) =

| x |−k+1∑
i=1

wxi ...xi+k−1 .

Remarks
Work with any string (natural language, time series...)
Fast and scalable, a good default method for string classification.
Variants allow matching of k -mers up to m mismatches.



Local alignmnent kernel (Saigo et al., 2004)

CGGSLIAMM----WFGV
|...|||||....||||
C---LIVMMNRLMWFGV

sS,g(π) = S(C,C) + S(L,L) + S(I, I) + S(A,V ) + 2S(M,M)

+ S(W ,W ) + S(F ,F ) + S(G,G) + S(V ,V )− g(3)− g(4)

SWS,g(x , y) := max
π∈Π(x ,y)

sS,g(π) is not a kernel

K (β)
LA (x , y) =

∑
π∈Π(x ,y)

exp
(
βsS,g (x , y , π)

)
is a kernel



LA kernel is p.d.: proof (1/2)

Definition: Convolution kernel (Haussler, 1999)
Let K1 and K2 be two p.d. kernels for strings. The convolution of K1
and K2, denoted K1 ? K2, is defined for any x,x′ ∈ X by:

K1 ? K2(x,y) :=
∑

x1x2=x,y1y2=y

K1(x1,y1)K2(x2,y2).

Lemma
If K1 and K2 are p.d. then K1 ? K2 is p.d..



LA kernel is p.d.: proof (2/2)

K (β)
LA =

∞∑
n=0

K0 ?
(

K (β)
a ? K (β)

g

)(n−1)
? K (β)

a ? K0 ,

with
The constant kernel:

K0 (x,y) := 1 .

A kernel for letters:

K (β)
a (x,y) :=

{
0 if |x | 6= 1 where |y | 6= 1 ,
exp (βS(x,y)) otherwise .

A kernel for gaps:

K (β)
g (x,y) = exp [β (g (|x |) + g (|x |))] .



The choice of kernel matters
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Virtual screening for drug discovery

inactive

active

active

active

inactive

inactive

NCI AIDS screen results (from http://cactus.nci.nih.gov).



Image retrieval and classification

From Harchaoui and Bach (2007).



Graph kernels

1 Represent each graph x by a vector Φ(x) ∈ H, either explicitly or
implicitly through the kernel

K (x , x ′) = Φ(x)>Φ(x ′) .

2 Use a linear method for classification in H.

X



Graph kernels
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φ
HX



Graph kernels

1 Represent each graph x by a vector Φ(x) ∈ H, either explicitly or
implicitly through the kernel

K (x , x ′) = Φ(x)>Φ(x ′) .

2 Use a linear method for classification in H.
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Indexing by all subgraphs?

Theorem
Computing all subgraph occurrences is NP-hard.

Proof.
The linear graph of size n is a subgraph of a graph X with n
vertices iff X has an Hamiltonian path
The decision problem whether a graph has a Hamiltonian path is
NP-complete.
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Indexing by all subgraphs?

Theorem
Computing all subgraph occurrences is NP-hard.

Proof.
The linear graph of size n is a subgraph of a graph X with n
vertices iff X has an Hamiltonian path
The decision problem whether a graph has a Hamiltonian path is
NP-complete.



Indexing by specific subgraphs

Substructure selection
We can imagine more limited sets of substuctures that lead to more
computationnally efficient indexing (non-exhaustive list)

substructures selected by domain knowledge (MDL fingerprint)
all path up to length k (Openeye fingerprint, Nicholls 2005)
all shortest paths (Borgwardt and Kriegel, 2005)
all subgraphs up to k vertices (graphlet kernel, Sherashidze et al.,
2009)
all frequent subgraphs in the database (Helma et al., 2004)



Example : Indexing by all shortest paths

(0,...,0,2,0,...,0,1,0,...)

B

A
B

A
A A A B

A B A B

A A

A

A

Properties (Borgwardt and Kriegel, 2005)

There are O(n2) shortest paths.
The vector of counts can be computed in O(n4) with the
Floyd-Warshall algorithm.
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Floyd-Warshall algorithm.



Example : Indexing by all subgraphs up to k vertices

Properties (Shervashidze et al., 2009)

Naive enumeration scales as O(nk ).
Enumeration of connected graphlets in O(ndk−1) for graphs with
degree ≤ d and k ≤ 5.
Randomly sample subgraphs if enumeration is infeasible.



Example : Indexing by all subgraphs up to k vertices

Properties (Shervashidze et al., 2009)

Naive enumeration scales as O(nk ).
Enumeration of connected graphlets in O(ndk−1) for graphs with
degree ≤ d and k ≤ 5.
Randomly sample subgraphs if enumeration is infeasible.



Walks

Definition
A walk of a graph (V ,E) is sequence of v1, . . . , vn ∈ V such that
(vi , vi+1) ∈ E for i = 1, . . . ,n − 1.
We noteWn(G) the set of walks with n vertices of the graph G,
andW(G) the set of all walks.

etc...



Walks 6= paths



Walk kernel

Definition
Let Sn denote the set of all possible label sequences of walks of
length n (including vertices and edges labels), and S = ∪n≥1Sn.
For any graph X let a weight λG(w) be associated to each walk
w ∈ W(G).
Let the feature vector Φ(G) = (Φs(G))s∈S be defined by:

Φs(G) =
∑

w∈W(G)

λG(w)1 (s is the label sequence of w) .

A walk kernel is a graph kernel defined by:

Kwalk (G1,G2) =
∑
s∈S

Φs(G1)Φs(G2) .
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Walk kernel examples

The nth-order walk kernel is the walk kernel with λG(w) = 1 if the
length of w is n, 0 otherwise. It compares two graphs through their
common walks of length n.
The random walk kernel is obtained with λG(w) = PG(w), where
PG is a Markov random walk on G. In that case we have:

K (G1,G2) = P(label(W1) = label(W2)) ,

where W1 and W2 are two independant random walks on G1 and
G2, respectively (Kashima et al., 2003).
The geometric walk kernel is obtained (when it converges) with
λG(w) = β length(w), for β > 0. In that case the feature space is of
infinite dimension (Gärtner et al., 2003).
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Computation of walk kernels

Proposition
These three kernels (nth-order, random and geometric walk kernels)
can be computed efficiently in polynomial time.



Product graph

Definition
Let G1 = (V1,E1) and G2 = (V2,E2) be two graphs with labeled
vertices. The product graph G = G1 ×G2 is the graph G = (V ,E) with:

1 V = {(v1, v2) ∈ V1 × V2 : v1 and v2 have the same label} ,
2 E ={(

(v1, v2), (v ′1, v
′
2)
)
∈ V × V : (v1, v ′1) ∈ E1 and (v2, v ′2) ∈ E2

}
.

G1 x G2

c

d e43

2

1 1b 2a 1d

1a 2b

3c

4c

2d

3e

4e

G1 G2

a b



Walk kernel and product graph

Lemma
There is a bijection between:

1 The pairs of walks w1 ∈ Wn(G1) and w2 ∈ Wn(G2) with the same
label sequences,

2 The walks on the product graph w ∈ Wn(G1 ×G2).

Corollary

Kwalk (G1,G2) =
∑
s∈S

Φs(G1)Φs(G2)

=
∑

(w1,w2)∈W(G1)×W(G1)

λG1(w1)λG2(w2)1(l(w1) = l(w2))

=
∑

w∈W(G1×G2)

λG1×G2(w) .
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Computation of the nth-order walk kernel

For the nth-order walk kernel we have λG1×G2(w) = 1 if the length
of w is n, 0 otherwise.
Therefore:

Knth−order (G1,G2) =
∑

w∈Wn(G1×G2)

1 .

Let A be the adjacency matrix of G1 ×G2. Then we get:

Knth−order (G1,G2) =
∑
i,j

[An]i,j = 1>An1 .

Computation in O(n|G1||G2|d1d2), where di is the maximum
degree of Gi .



Computation of random and geometric walk kernels

In both cases λG(w) for a walk w = v1 . . . vn can be decomposed
as:

λG(v1 . . . vn) = λi(v1)
n∏

i=2

λt (vi−1, vi) .

Let Λi be the vector of λi(v) and Λt be the matrix of λt (v , v ′):

Kwalk (G1,G2) =
∞∑

n=1

∑
w∈Wn(G1×G2)

λi(v1)
n∏

i=2

λt (vi−1, vi)

=
∞∑

n=0

ΛiΛ
n
t 1

= Λi (I − Λt )
−1 1

Computation in O(|G1|3|G2|3)



Extension: branching walks (Ramon and Gärtner,
2003; Mahé and Vert, 2009)
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2D Subtree vs walk kernels
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Motivation

Assume we observe M types of data and would like to learn a joint
model (e.g., predict susceptibility from SNP and expression data).
We saw in the previous part how to make kernels K1, . . . ,KM for
each type of data, and learn with each kernel individually
Can we combine them to learn jointly from heterogeneous data?



Sum kernel

Definition
Let K1, . . . ,KM be M kernels on X . The sum kernel KS is the kernel on
X defined as

∀x , x ′ ∈ X , KS(x , x ′) =
M∑

i=1

Ki(x , x ′) .



Sum kernel and vector concatenation

Theorem
For i = 1, . . . ,M, let Φi : X → Hi be a feature map such that

Ki(x , x ′) =
〈
Φi (x) ,Φi

(
x ′
)〉
Hi
.

Then KS =
∑M

i=1 Ki can be written as:

KS(x , x ′) =
〈
ΦS (x) ,ΦS

(
x ′
)〉
HS

,

where ΦS : X → HS = H1 ⊕ . . .⊕HM is the concatenation of the
feature maps Φi :

ΦS (x) = (Φ1 (x) , . . . ,ΦM (x))> .

Therefore, summing kernels amounts to concatenating their feature
space representations, which is a quite natural way to integrate
different features.



Proof

For ΦS (x) = (Φ1 (x) , . . . ,ΦM (x))>, we easily compute:

〈
ΦS (x) ,ΦS

(
x ′
)〉
Hs

=
M∑

i=1

〈
Φi (x) ,Φi

(
x ′
)〉
Hi

=
M∑

i=1

Ki(x , x ′)

= KS(x , x ′) .



Example: data integration with the sum kernel
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ABSTRACT
Motivation:An increasing number of observations support the
hypothesis that most biological functions involve the interac-
tions between many proteins, and that the complexity of living
systems arises as a result of such interactions. In this context,
the problem of inferring a global protein network for a given
organism, using all available genomic data about the organ-
ism, is quickly becoming one of the main challenges in current
computational biology.
Results: This paper presents a new method to infer protein
networks from multiple types of genomic data. Based on a
variant of kernel canonical correlation analysis, its originality
is in the formalization of the protein network inference problem
as a supervised learning problem, and in the integration of het-
erogeneous genomic data within this framework. We present
promising results on the prediction of the protein network for
the yeast Saccharomyces cerevisiae from four types of widely
available data: gene expressions, protein interactions meas-
ured by yeast two-hybrid systems, protein localizations in the
cell and protein phylogenetic profiles. The method is shown
to outperform other unsupervised protein network inference
methods. We finally conduct a comprehensive prediction of
the protein network for all proteins of the yeast, which enables
us to propose protein candidates for missing enzymes in a
biosynthesis pathway.
Availability: Softwares are available upon request.
Contact yoshi@kuicr.kyoto-u.ac.jp

INTRODUCTION
An increasing number of observations support the hypothesis
thatmost biological functions involve the interactions between
manyproteins, and that the complexity of living systems arises
as a result of such interactions. In this context, the problem
of inferring a global protein network for a given organism,
using all available genomic data about the organism, is quickly
becoming one of the main challenges addressed in current

∗To whom correspondence should be addressed.

computational biology. By protein network we mean, in this
paper, a graph with proteins as vertices and edges that corres-
pond to various binary relationships between proteins. More
precisely, we consider below the protein network with edges
between two proteins if (i) the proteins interact physically,
or (ii) the proteins are enzymes that catalyze two successive
chemical reactions in a pathway or (iii) one of the proteins
regulates the expression of the other. This definition of pro-
tein network involves various forms of interactions between
proteins, which should be taken into account for the study of
the behavior of biological systems.
Unfortunately, the experimental determination of this pro-

tein network remains very challenging nowadays, even for
the most basic organisms. The lack of reliable informa-
tion contrasts with the wealth of genomic data generated by
high-throughput technologies such as gene expression data
(Eisen et al., 1998), physical protein interactions (Ito et al.,
2001), protein localization (Huh et al., 2003), phylogen-
etic profiles (Pellegrini et al., 1999) or pathway knowledge
(Kanehisa et al., 2004). There is therefore an incentive
to develop methods to predict the protein network from
such data.
A variety of computational methods for this problem have

been investigated so far. Some methods perform the protein
network inference from a single type of genomic data, such
as Bayesian networks (Friedman et al., 2000) and Boolean
networks (Akutsu et al., 2000), which aim at inferring gene
regulation networks from gene expression data, or the mirror
tree method (Pazos et al., 2001), which predicts protein inter-
actions from evolutionary similarities. Other methods com-
bine different sources of data to infer the network: this is for
example, the case in the joint graph method (Marcotte et al.,
1999), where graphs representing similarities with respect to
various types of genomic information are overlapped in order
to detect strong associations between proteins.
These methods share the particularity of being unsuper-

vised, in the sense that the whole protein network is inferred
from the data. Inference typically relies on the assumption
that proteins sharing similarity according to a dataset (e.g.
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Equation (2) with decreasing eigenvalue ρ. This problem is
usually called kernel canonical correlation analysis (CCA)
(Akaho, 2001). If one now focuses on the first L solutions
α

(1)
1 , . . . ,α

(L)
1 of Equation (2) (sorted by decreasing value of

ρ), then they define L features of interest by f (l) = K1α
(l)
1 ,

for l = 1, . . . ,L. These features are built from the genomic
dataset kernel K1 only, and are expected to fit the ideal fea-
tures on the gold standard set of proteins. These features
can now be generalized to any protein x by the following
equation:

f (l) (x) =
n∑

k=1
α

(l)
1 (xk) K (xk , x) . (3)

This is the set of features we propose to map the proteins to
before inferring protein interactions.
In both the spectral method and this supervised

method, each protein x is mapped to a feature space
as an L-dimensional vector u = (u1, . . . , uL)! =
[f (1)(x), . . . , f (L)(x)]!. To assess the similarity of protein x
and protein y in this feature space, we simply follow the spirit
of the direct approach and quantify the similarity between
points u = (u1, . . . , uL)! and v = (v1, . . . , vL)! by their
correlation:

ĉorr (u, v) = ĉov(u, v)
√
v̂ar(u)

√
v̂ar(v)

= (1/L)
∑L

l=1 (ul − ū) (vl − v̄)
√

(1/L)
∑L

l=1(ul − ū)2
√

(1/L)
∑L

l=1(vl − v̄)2
,

(4)

where ū and v̄ are the averages of u and v.

RESULTS
All genomic datasets are transformed into kernels as fol-
lows. The gold standard protein network and the noisy protein
interaction datasets are represented by a diffusion kernel
with parameter β = 1, and respectively denoted Kgold and
Kppi. For the gene expression data, we used the Gaussian
RBF kernel with σ = 5, and denote the resulting kernel
Kexp. For both localization data and the phylogenetic pro-
files, a simple linear kernel, is denoted respectively Kloc
and Kphy. All kernels are then normalized to 1 on the diag-
onal and centered in the feature space (Schölkopf and Smola,
2002).
We tested the direct and spectral approaches either on single

types of genomic datasets, or on the integrated kernel repres-
enting all datasets. For the spectral approach, we arbitrarily
kept the first L = 50 principal components to define the fea-
ture space. The accuracy of both methods is assessed on the
gold standard dataset, by their capacity to recover the pro-
tein network. Starting from isolated nodes, each method can

Table 1. List of experiments of direct approach, spectral approach based on
kernel PCA, and supervised approach based on kernel CCA

Approach Kernel (Predictor) Kernel (Target)

Direct Kexp (Expression)
Kppi (Protein interaction)
Kloc (Localization)
Kphy (Phylogenetic profile)
Kexp + Kppi + Kloc + Kphy
(Integration)

Spectral Kexp (Expression)
Kppi (Protein interaction)
Kloc (Localization)
Kphy (Phylogenetic profile)
Kexp + Kppi + Kloc + Kphy
(Integration)

Supervised Kexp (Expression) Kgold (Protein network)
Kppi (Protein interaction) Kgold (Protein network)
Kloc (Localization) Kgold (Protein network)
Kphy (Phylogenetic profile) Kgold (Protein network)
Kexp + Kppi + Kloc + Kphy Kgold (Protein network)
(Integration)

be used to build progressively a network by adding edges
between pairs of proteins sorted by decreasing similarity. At
each addition, we recorded the number of true positives (pre-
dicted edges that indeed are present in the gold standard) and
false positives (predicted edges that are absent from the gold
standard). Figures 3 and 4 show the ROC curves representing
the numbers of true positives as a function of the number of
false positives for the two methods. In both cases, the over-
all accuracy of the inference method is very limited. Little
information seems to be caught by the direct approach, while
the spectral approach gives slightly better results, in particular,
when used in combination with the kernel that integrates all
genomic datasets, but remains useless in practice due to the
large rate of false positives at any rate of true positives. These
negative results, in particular for the direct approach, confirm
that the problem of protein network reconstruction is far from
trivial.
We then tested the supervised approach. The parameters λ1

and λ2 were set to 0.1, and again we kept L = 50 features
to define the feature space. We tested various combinations
of dataset kernels to be fitted to the gold standard kernel, as
described in Table 1. In order to assess the accuracy of the
method, we carried out a 10-fold cross-validation experiment
as follows. In each out of 10 iterations, the set of 769 proteins
in the gold standard is split into a training set and a test set in
the proportion 9/1. The feature space is trained on the train-
ing set, and the inference of interaction is performed on the
possible interactions involving the proteins in the test set (the
gray part in Fig. 1). Once again a graph is built progressively
and we record the number of true positive interactions as a
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Fig. 5. ROC curves: supervised approach.

enables us to make new biological inferences for unknown
protein–protein interactions.
This method is a supervised approach, while most meth-

ods which have been proposed so far are unsupervised. The
motivation to use a supervised approach is to explicitly learn
the correlation between known networks and genomic data in
the algorithm. It should be pointed out that in this supervised
framework, different networks can be inferred from the same
data, by changing the partial network used in the learning step.
Another strength of this method is the possibility to naturally
integrate heterogeneous data. Experimental results confirmed
that this integration is beneficial for the prediction accuracy
of the method. Moreover, other sorts of genomic data can
be integrated, as long as kernels can be derived from them.
As the list of kernels for genomic data keeps increasing fast
(Schölkopf et al., 2004), new opportunities might be worth
investigating.
A drawback of our method is that in its current form, it is

limited to the prediction of undirected interactions between
proteins, which might be insufficient for example in the case
of gene regulatory networks. The incorporation of directional
information is a topic we are currently investigating, through
which we expect to bring about more biologically interesting
findings.
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Learning the kernel

Motivation
If we know how to weight each kernel, then we can learn with the
weighted kernel

Kη =
M∑

i=1

ηiKi

However, usually we don’t know...
Perhaps we can optimize the weights ηi during learning?



An objective function for K

Theorem
For any p.d. kernel K on X , let

J(K ) = min
f∈HK

{
R(f n) + λ‖β ‖2HK

}
.

The function K 7→ J(K ) is convex.

This suggests a principled way to "learn" a kernel: define a convex set
of candidate kernels, and minimize J(K ) by convex optimization.



Proof

We can show by strong duality that

J(K ) = max
γ∈Rn

{
−R∗(−2λγ)− λγ>Kγ

}
.

For each γ fixed, this is an affine function of K , hence convex
A supremum of convex functions is convex. �



MKL (Lanckriet et al., 2004)

We consider the set of convex combinations

Kη =
M∑

i=1

ηiKi with η ∈ ΣM =

{
ηi ≥ 0 ,

M∑
i=1

ηi = 1

}

We optimize both η and f ∗ by solving:

min
η∈ΣM

J (Kη) = min
η∈ΣM

min
f∈HKη

{
R(f n) + λ‖β ‖2HKη

}
The problem is jointly convex in (η,α) and can be solved efficiently
The output is both a set of weights η, and a predictor
corresponding to the kernel method trained with kernel Kη.
This method is usually called Multiple Kernel Learning (MKL).



Example: protein annotation
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ABSTRACT
Motivation: During the past decade, the new focus on
genomics has highlighted a particular challenge: to integrate
the different views of the genome that are provided by various
types of experimental data.
Results: This paper describes a computational framework
for integrating and drawing inferences from a collection of
genome-wide measurements. Each dataset is represented via
a kernel function, which defines generalized similarity relation-
ships between pairs of entities, such as genes or proteins.The
kernel representation is both flexible and efficient, and can be
applied to many different types of data. Furthermore, kernel
functions derived from different types of data can be combined
in a straightforward fashion. Recent advances in the theory
of kernel methods have provided efficient algorithms to per-
form such combinations in a way that minimizes a statistical
loss function. These methods exploit semidefinite program-
ming techniques to reduce the problem of finding optimiz-
ing kernel combinations to a convex optimization problem.
Computational experiments performed using yeast genome-
wide datasets, including amino acid sequences, hydropathy
profiles, gene expression data and known protein–protein
interactions, demonstrate the utility of this approach. A stat-
istical learning algorithm trained from all of these data to
recognize particular classes of proteins—membrane proteins
and ribosomal proteins—performs significantly better than the
same algorithm trained on any single type of data.
Availability:Supplementary data at http://noble.gs.washington.
edu/proj/sdp-svm
Contact: noble@gs.washington.edu

INTRODUCTION
The recent availability of multiple types of genome-wide data
provides biologistswith complementary views of a single gen-
omeandhighlights the need for algorithms capable of unifying

∗To whom correspondence should be addressed at: Health Sciences Center,
Box 357730, 1705 NE Pacific Street, Seattle, WA 98195, USA.

these views. In yeast, for example for a given gene we typ-
ically know the protein it encodes, that protein’s similarity to
other proteins, its hydrophobicity profile, the mRNA expres-
sion levels associated with the given gene under hundreds of
experimental conditions, the occurrences of known or inferred
transcription factor binding sites in the upstream region of
that gene and the identities ofmany of the proteins that interact
with the given gene’s protein product. Each of these distinct
data types provides one view of the molecular machinery of
the cell. In the near future, research in bioinformatics will
focus more and more heavily on methods of data fusion.
Different data sources are likely to contain different and

thus partly independent information about the task at hand.
Combining those complementary pieces of information can be
expected to enhance the total information about the problem at
hand. One problem with this approach, however, is that gen-
omic data come in a wide variety of data formats: expression
data are expressed as vectors or time series; protein sequence
data as strings from a 20-symbol alphabet; gene sequences are
strings from a different (4-symbol) alphabet; protein–protein
interactions are best expressed as graphs and so on.
This paper presents a computational and statistical frame-

work for integrating heterogeneous descriptions of the same
set of genes. The approach relies on the use of kernel-based
statistical learningmethods that have already proven to be very
useful tools in bioinformatics (Noble, 2004). These methods
represent the data bymeans of a kernel function, which defines
similarities between pairs of genes, proteins and so on. Such
similarities can be quite complex relations, implicitly cap-
turing aspects of the underlying biological machinery. One
reason for the success of kernel methods is that the kernel
function takes relationships that are implicit in the data and
makes them explicit, so that it is easier to detect patterns. Each
kernel function thus extracts a specific type of information
from a given dataset, thereby providing a partial description
or view of the data. Our goal is to find a kernel that best
represents all the information available for a given statistical
learning task. Given many partial descriptions of the data, we
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Table 1. Kernel functions

Kernel Data Similarity measure

KSW protein sequences Smith-Waterman
KB protein sequences BLAST
KPfam protein sequences Pfam HMM
KFFT hydropathy profile FFT
KLI protein interactions linear kernel
KD protein interactions diffusion kernel
KE gene expression radial basis kernel
KRND random numbers linear kernel

The table lists the seven kernels used to compare proteins, the data on which they are
defined, and the method for computing similarities. The final kernel, KRND, is included
as a control. All kernel matrices, along with the data from which they were generated,
are available at noble.gs.washington.edu/proj/sdp-svm.

the membrane, and similarly for the ribosome. Therefore,
we define three kernel matrices based upon standard homo-
logy detection methods. The first two sequence-based kernel
matrices (KSW and KB) are generated using the BLAST
(Altschul et al., 1990) and Smith–Waterman (SW) (Smith and
Waterman, 1981) pairwise sequence comparison algorithms,
as described previously (Liao and Noble, 2002). Both
algorithms use gap opening and extension penalties of 11 and
1, and the BLOSUM 62 matrix. As matrices of BLAST or
Smith–Waterman scores are not necessarily positive semidef-
inite, we represent each protein as a vector of scores against all
other proteins. Defining the similarity between proteins as the
inner product between the score vectors (the so-called empir-
ical kernel map, Tsuda 1999) leads to valid kernel matrices,
one for the BLAST score and one for the SW score. Note that
including in the comparison set proteins with unknown labels
allows the kernel to exploit this unlabeled data. The third ker-
nel matrix (KPfam) is a generalization of the previous pairwise
comparison-based matrices in which the pairwise comparison
scores are replaced by expectation values derived from hidden
Markov models (HMMs) in the Pfam database (Sonnhammer
et al., 1997).

Fast Fourier Transform (FFT) kernel The fourth sequence-
based kernelmatrix (KFFT) is specific to themembrane protein
recognition task. This kernel directly incorporates information
about hydrophobicity patterns, which are known to be useful
in identifying membrane proteins. Generally, each mem-
brane protein passes through themembrane several times. The
transmembrane regions of the amino acid sequence are typ-
ically hydrophobic, whereas the non-membrane portions are
hydrophilic. This specific hydrophobicity profile of the pro-
tein allows it to anchor itself in the cell membrane. Because
the hydrophobicity profile of a membrane protein is critical
to its function, this profile is better conserved in evolution
than the specific amino acid sequence. Therefore, classical
methods for determining whether a protein pi (consisting of
|pi | amino acids) spans a membrane (Chen and Rost, 2002),

depend upon its hydropathy profile h(pi ) ∈ R|pi |: a vector
containing the hydrophobicities of the amino acids along the
protein (Engleman et al., 1986; Black andMould, 1991; Hopp
and Woods, 1981). The FFT kernel uses hydropathy profiles
generated from the Kyte–Doolittle index (Kyte and Doolittle,
1982). This kernel compares the frequency content of the
hydropathy profiles of the two proteins. First, the hydropathy
profiles are pre-filtered with a low-pass filter to reduce noise:

hf (pi ) = f ⊗ h(pi ),

where f = 1
4 (1 2 1) is the impulse response of the filter

and ⊗ denotes convolution with that filter. After pre-filtering
the hydropathy profiles (and if necessary appending zeros to
make them equal in length—a commonly used technique not
altering the frequency content), their frequency contents are
computed with the FFT algorithm:

Hf (pi ) = FFT[hf (pi )].

The FFT kernel between proteinspi andpj is then obtained by
applying a Gaussian kernel function to the frequency contents
of their hydropathy profiles:

KFFT(pi ,pj ) = exp[−‖Hf (pi ) − Hf (pj )‖2/2σ ]

with width σ = 10. This kernel detects periodicities in the
hydropathy profile, a feature that is relevant to the identifica-
tionofmembraneproteins and complementary to the previous,
homology-based kernels.

Protein interactions: linear and diffusion kernels For the
recognition of ribosomal proteins, protein–protein interac-
tions are clearly informative, since all ribosomal proteins
interact with other ribosomal proteins. For membrane pro-
tein recognition, we expect information about protein–protein
interactions to be informative for two reasons. First, hydro-
phobic molecules or regions of molecules are probably more
likely to interact with each other than with hydrophilic
molecules or regions. Second, transmembrane proteins are
often involved in signaling pathways, and therefore, differ-
ent membrane proteins are likely to interact with a similar
class of molecules upstream and downstream in these path-
ways (e.g. hormones upstream or kinases downstream). The
two protein interaction kernels are generated using medium-
and high-confidence interactions from a database of known
interactions (von Mering et al., 2002). These interactions can
be represented as an interaction matrix, in which rows and
columns correspond to proteins, and binary entries indicate
whether the two proteins interact.
The first interaction kernel matrix (KLI) is comprised of

linear interactions, i.e. inner products of rows and columns
from the centered, binary interactionmatrix. Themore similar
the interaction pattern (corresponding to a rowor column from
the interaction matrix) for a pair of proteins, the larger the
inner product will be.
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Fig. 1. Combining datasets yields better classification performance. The height of the bars in the upper two plots are proportional to the ROC
score (top) and the percentage of true positives at one percent false positives (middle), for the SDP/SVM method using the given kernel. Error
bars indicate standard error across 30 random train/test splits. In the lower plots, the heights of the colored bars indicate the relative weights
of the different kernel matrices in the optimal linear combination. These results in tabular form, along with percent accuracy measurements,
are given in the online supplement.

hydrophobicity, normalized by the length of the protein. We
will compare the classification performance of our statistical
learning algorithm with this metric.

However, clearly, f1 is too simplistic. For example, protein
regions that are not transmembrane only induce noise in f1.
Therefore, an alternative metric filters the hydrophobicity plot
with a low-pass filter and then computes the number, the height
and the width of those peaks above a certain threshold (Chen
and Rost, 2002). The filter is intended to smooth out periodic
effects. We implement two such filters, choosing values for the
filter order and the threshold based on Chen and Rost (2002).
In particular, we define f2 as the area under the 7th-order
low-pass filtered Kyte–Doolittle plot and above a threshold
value 2, normalized by the length of the protein. Similarly,
f3 is the corresponding area using a 20th-order filter and a
threshold of 1.6.

Finally, the transmembrane HMM (TMHMM) Web server
(www.cbs.dtu.dk/services/TMHMM) is used to make predic-
tions for each protein. In Krogh et al. (2001), transmembrane
proteins are identified by TMHMM using three different met-
rics: the expected number of amino acids in transmembrane
helices, the number of transmembrane helices predicted by
the N -best algorithm, and the expected number of transmem-
brane helices. Only the first two of these metrics are provided
in the TMHMM output. Accordingly, we produce two lists
of proteins, ranked by the number of predicted transmem-
brane helices (TPH) and by the expected number of residues
in transmembrane helices (TENR).

Each algorithm’s performance is measured by randomly
splitting the data (without stratifying) into a training and
test set in a ratio of 80/20. We report the receiver operating

characteristic (ROC) score, which is the area under a curve that
plots true positive rate as a function of false positive rate for
differing classification thresholds (Hanley and McNeil, 1982;
Gribskov and Robinson, 1996). The ROC score measures the
overall quality of the ranking induced by the classifier, rather
than the quality of a single point in that ranking. An ROC
score of 0.5 corresponds to random guessing, and an ROC
score of 1.0 implies that the algorithm succeeded in putting
all of the positive examples before all of the negatives. In
addition, we select the point on the ROC curve that yields a
1% false positive rate, and we report the rate of true positives
at this point (TP1FP). Each experiment is repeated 30 times
with different random splits in order to estimate the variance
of the performance values.

RESULTS
We performed computational experiments that study the per-
formance of the SDP/SVM approach as a function of the
number of data sources, compare the approach to a simpler
approach using an unweighted combination of kernels, study
the robustness of the method to the presence of noise, and for
membrane protein classification, compare the performance of
the method to classical biological methods and state-of-the-art
techniques for membrane protein classification.

Ribosomal protein classification
Figure 1A shows the results of training an SVM to recognize
the cytoplasmic ribosomal proteins, using various kernel func-
tions. Very good recognition performance can be achieved
using several types of data individually: the Smith–Waterman
kernel yields an ROC of 0.9903 and a TP1FP of 86.23%,
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Example: Image classification (Harchaoui and Bach,
2007)

COREL14 dataset
1400 natural images in 14 classes
Compare kernel between histograms (H), walk kernel (W), subtree
kernel (TW), weighted subtree kernel (wTW), and a combination
by MKL (M).
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Sum kernel vs MKL (Bach et al., 2004)

Learning with the sum kernel (uniform combination) solves

min
f1,...,fM

{
R

(
M∑

i=1

f n
i

)
+ λ

M∑
i=1

‖βi ‖2HKi

}
.

Learning with MKL (best convex combination) solves

min
f1,...,fM

R

(
M∑

i=1

f n
i

)
+ λ

(
M∑

i=1

‖βi ‖HKi

)2
 .

Although MKL can be thought of as optimizing a convex
combination of kernels, it is more correct to think of it as a
penalized risk minimization estimator with the group lasso penalty:

Ω(f ) = min
f1+...+fM =f

M∑
i=1

‖βi ‖HKi
.



Example: ridge vs LASSO regression

Take X = Rd , and for x = (x1, . . . , xd )> consider the rank-1
kernels:

∀i = 1, . . . ,d , Ki
(
x , x ′

)
= xix ′i .

The sum kernel is KS (x , x ′) =
∑d

i=1 xix ′i = x>x
Learning with the sum kernel solves a ridge regression problem:

min
β∈Rd

{
R(Xβ) + λ

d∑
i=1

β2
i

}
.

Learning with MKL solves a LASSO regression problem:

min
β∈Rd

R(Xβ) + λ

(
d∑

i=1

|βi |
)2
 .



Example: Graph lasso (Jacob et al., 2009)

Graph G = (V ,E), X = RV

For each edge e = (i , j), define the kernel

Ke(x , x ′) = x>e x ′e = xix ′i + xjx ′j

MKL (aka latent group lasso) with the set {Ke : e ∈ E} leads to a
sparse linear model with connected non-zero components.



Application: breast cancer prognosis



Lasso signature (accuracy 0.61)



Graph Lasso signature (accuracy 0.64)



Outline

1 Motivations

2 Linear SVM

3 Nonlinear SVM and kernels

4 Learning molecular classifiers with network information

5 Kernels for strings and graphs

6 Data integration with kernels

7 Conclusion



SVM summary

Large margin classifier
Control of the regularization / data fitting trade-off with C
Linear or nonlinear (with the kernel trick)
Extension to strings, graphs... and many other
Data integration
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