Large-Scale Machine Learning I. Scalability issues

Jean-Philippe Vert

jean-philippe.vert@\{mines-paristech, curie,ens\}.fr

RESEARCH UNIVERSITY PARIS

Outline

(1) Introduction
(2) Standard machine learning

- Dimension reduction: PCA
- Clustering: k-means
- Regression: ridge regression
- Classification: kNN, logistic regression and SVM
- Nonlinear models: kernel methods
(3) Scalability issues

Acknowledgement

In the preparation of these slides I got inspiration and copied several slides from several sources:

- Sanjiv Kumar's "Large-scale machine learning" course: http://www.sanjivk.com/EECS6898/lectures.html
- Ala Al-Fuqaha's "Data mining" course: https://cs.wmich.edu/alfuqaha/summer14/cs6530/ lectures/SimilarityAnalysis.pdf
- Léon Bottou's "Large-scale machine learning revisited" conference https://bigdata2013.sciencesconf.org/conference/ bigdata2013/pages/bottou.pdf

Outline

(1) Introduction
(2) Standard machine learning

- Dimension reduction: PCA
- Clustering: k-means
- Regression: ridge regression
- Classification: kNN, logistic regression and SVM
- Nonlinear models: kernel methods
(3) Scalability issues

2017 is the year of Machine Learning. Here's why

■ GAURAV SANGWANI	甲 0	JAN 13, 2017, 12.51PM

Machine learning is maybe the most sweltering thing in Silicon Valley at this moment. Particularly deep learning. The reason why it is so hot is on the grounds that it can assume control of numerous repetitive, thoughtless tasks. It'll improve doctors, and make lawyers better lawyers. What's more, it makes cars drive themselves.

Perception

Communication

Mobility

Health

Personalized CancerTherapy

https://pct.mdanderson.org

Reasoning

A common process: learning from data

Data

100100011101000000101000110111010110 100100111101110000001111100110100100 100001101101111101010011100001101001 111111010000110111001010111100001011 110011111101111111100100001110110110 010000110100110110000110000100010000 010101110011001111011001110100010111 001000010101100101000001000010011110 011101001111110010111010101010111100 100010000101100010101101010111000101 010010000100101011110011100001010000 010110000010011101010010101110110001 011011111010111100010100010100010000 011010011011011010001000101111001101 000101000001100110001100100010010110 100101010100010011100101010101111101

https://www.linkedin.com/pulse/supervised-machine-learning-pega-decisioning-solution-nizam-muhammad

- Given examples (training data), make a machine learn how to predict on new samples, or discover patterns in data
- Statistics + optimization + computer science
- Gets better with more training examples and bigger computers

Large-scale ML?

d dimensions

t tasks

- Iris dataset: $n=150, d=4, t=1$
- Cancer drug sensitivity: $n=1 k, d=1 M, t=100$
- Imagenet: $n=14 M, d=60 k+, t=22 k$
- Shopping, e-marketing $n=O(M), d=O(B), t=O(100 M)$
- Astronomy, GAFA, web... $n=O(B), d=O(B), t=O(B)$

Today's goals

(1) Review a few standard ML techniques

(2) Introduce a few ideas and techniques to scale them to modern, big datasets

Outline

(1) Introduction
(2) Standard machine learning

- Dimension reduction: PCA
- Clustering: k-means
- Regression: ridge regression
- Classification: kNN, logistic regression and SVM
- Nonlinear models: kernel methods
(3) Scalability issues

Main ML paradigms

- Unsupervised learning
- Dimension reduction
- Clustering
- Density estimation
- Feature learning
- Supervised learning
- Regression
- Classification
- Structured output classification
- Semi-supervised learning
- Reinforcement learning

Main ML paradigms

- Unsupervised learning
- Dimension reduction: PCA
- Clustering: k-means
- Density estimation
- Feature learning
- Supervised learning
- Regression: OLS, ridge regression
- Classification: kNN, logistic regression, SVM
- Structured output classification
- Semi-supervised learning
- Reinforcement learning

Outline

(1) Introduction

(2) Standard machine learning

- Dimension reduction: PCA
- Clustering: k-means
- Regression: ridge regression
- Classification: kNN, logistic regression and SVM
- Nonlinear models: kernel methods

(3) Scalability issues

Motivation

- Dimension reduction
- Preprocessing (remove noise, keep signal)
- Visualization ($k=2,3$)
- Discover structure

PCA definition

- Training set $\mathcal{S}=\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathbb{R}^{d}$
- For $i=1, \ldots, k \leq d, P C_{i}$ is the linear projection onto the direction that captures the largest amount of variance and is orthogonal to the previous ones:

$$
u_{i} \in \underset{\|u\|=1, u \perp\left\{u_{1}, \ldots, u_{i-1}\right\}}{\operatorname{argmax}} \sum_{i=1}^{n}\left(x_{i}^{\top} u-\frac{1}{n} \sum_{j=1}^{n} x_{j}^{\top} u\right)^{2}
$$

PCA solution

- Let \tilde{X} be the centered $n \times d$ data matrix
- PCA solves, for $i=1, \ldots, k \leq d$:

$$
u_{i} \in \underset{\|u\|=1, u \perp\left\{u_{1}, \ldots, u_{i-1}\right\}}{\operatorname{argmax}} u^{\top} \tilde{X}^{\top} \tilde{X} u
$$

- Solution: u_{i} is the i-th eigenvector of $C=\tilde{X}^{\top} \tilde{X}$, the empirical covariance matrix

PCA example

Iris dataset

> data(iris)
> head(iris, 3)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1	5.1	3.5	1.4	0.2	setosa
2	4.9	3.0	1.4	0.2	setosa
3	4.7	3.2	1.3	0.2	setosa
$>$ m <- princomp(log(iris[,1:4]))					

PCA complexity

- Memory: store X and $C: O\left(\max \left(n d, d^{2}\right)\right)$
- Compute C: $O\left(n d^{2}\right)$
- Compute k eigenvectors of C (power method): $O\left(k d^{2}\right)$

Computing C is more expensive than computing its eigenvectors $(n>k)$!
$n=1 B, d=100 M$
Store C: 40, 000TB
Compute C: 2×10^{25} FLOPS $=20$ yottaFLOPS (about 300 years of the most powerful supercomputer in 2016)

Outline

(1) Introduction

(2) Standard machine learning

- Dimension reduction: PCA
- Clustering: k-means
- Regression: ridge regression
- Classification: kNN, logistic regression and SVM
- Nonlinear models: kernel methods
(3) Scalability issues

Motivation

Iris dataset

- Unsupervised learning
- Discover groups
- Reduce dimension

Motivation

Iris k-means, $k=5$

- Unsupervised learning
- Discover groups
- Reduce dimension

k-means definition

- Training set $\mathcal{S}=\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathbb{R}^{d}$
- Given k, find $C=\left(C_{1}, \ldots, C_{n}\right) \in\{1, k\}^{n}$ that solves

$$
\min _{C} \sum_{i=1}^{n}\left\|x_{i}-\mu_{C_{i}}\right\|^{2}
$$

where is the barycentre of data in class i.

- This is an NP-hard problem. k-means finds an approximate solution by iterating
(1) Assignment step: fix μ, optimize C

$$
\forall i=1, \ldots, n, \quad C_{i} \leftarrow \arg \min _{c \in\{1, \ldots, k\}}\left\|x_{i}-\mu_{c}\right\|
$$

(2) Update step

$$
\forall i=1, \ldots, k, \quad \mu_{i} \leftarrow \frac{1}{\left|C_{i}\right|} \sum_{j: C_{j}=i} x_{j}
$$

k-means example

Iris dataset

> irisCluster <- kmeans(log(iris[, 1:4]), 3, nstart = 20)
> table(irisCluster\$cluster, iris\$Species)

	setosa	versicolor	virginica
1	0	48	4
2	50	0	0
3	0	2	46

k-means example

Iris \mathbf{k}-means, $\mathbf{k}=\mathbf{2}$

> irisCluster <- kmeans(log(iris[, 1:4]), 3, nstart = 20)
> table(irisCluster\$cluster, iris\$Species)

	setosa	versicolor	virginica
1	0	48	4
2	50	0	0
3	0	2	46

k-means example

Iris \mathbf{k}-means, $\mathbf{k}=\mathbf{3}$

> irisCluster <- kmeans(log(iris[, 1:4]), 3, nstart = 20)
> table(irisCluster\$cluster, iris\$Species)

	setosa	versicolor	virginica
1	0	48	4
2	50	0	0
3	0	2	46

k-means example

Iris \mathbf{k}-means, $\mathrm{k}=4$

> irisCluster <- kmeans(log(iris[, 1:4]), 3, nstart = 20)
> table(irisCluster\$cluster, iris\$Species)

	setosa	versicolor	virginica
1	0	48	4
2	50	0	0
3	0	2	46

k-means example

Iris k-means, $k=5$

> irisCluster <- kmeans(log(iris[, 1:4]), 3, nstart = 20)
> table(irisCluster\$cluster, iris\$Species)

	setosa	versicolor	virginica
1	0	48	4
2	50	0	0
3	0	2	46

k-means complexity

- Each update step: $O(n d)$
- Each assignment step: $O(n d k)$

Outline

(1) Introduction

(2) Standard machine learning

- Dimension reduction: PCA
- Clustering: k-means
- Regression: ridge regression
- Classification: kNN, logistic regression and SVM
- Nonlinear models: kernel methods

(3) Scalability issues

Motivation

- Predict a continuous output $Y \in \mathbb{R}$ from an input $X \in \mathbb{R}^{d}$

Motivation

- Predict a continuous output $Y \in \mathbb{R}$ from an input $X \in \mathbb{R}^{d}$

Ridge regression (Hoerl and Kennard, 1970)

- Training set $\mathcal{S}=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\} \subset \mathbb{R}^{d} \times \mathbb{R}$
- Fit a linear function:

$$
f_{\beta}(x)=\beta^{\top} x
$$

- Goodness of fit measured by residual sum of squares:

$$
R S S(\beta)=\sum_{i=1}^{n}\left(y_{i}-f_{\beta}\left(x_{i}\right)\right)^{2}
$$

- Ridge regression minimizes the regularized RSS:

$$
\min _{\beta} R S S(\beta)+\lambda \sum_{i=1}^{d} \beta_{i}^{2}
$$

Solution

- Let $X=\left(x_{1}, \ldots, x_{n}\right)$ the $n \times p$ data matrix, and $Y=\left(y_{1}, \ldots, y_{n}\right)^{\top} \in \mathbb{R}^{p}$ the response vector.

Solution

- Let $X=\left(x_{1}, \ldots, x_{n}\right)$ the $n \times p$ data matrix, and $Y=\left(y_{1}, \ldots, y_{n}\right)^{\top} \in \mathbb{R}^{p}$ the response vector.
- The penalized risk can be written in matrix form:

$$
\begin{aligned}
R(\beta)+\lambda \Omega(\beta) & =\frac{1}{n} \sum_{i=1}^{n}\left(f_{\beta}\left(x_{i}\right)-x_{i}\right)^{2}+\lambda \sum_{i=1}^{p} \beta_{i}^{2} \\
& =\frac{1}{n}(Y-X \beta)^{\top}(Y-X \beta)+\lambda \beta^{\top} \beta .
\end{aligned}
$$

Solution

- Let $X=\left(x_{1}, \ldots, x_{n}\right)$ the $n \times p$ data matrix, and $Y=\left(y_{1}, \ldots, y_{n}\right)^{\top} \in \mathbb{R}^{p}$ the response vector.
- The penalized risk can be written in matrix form:

$$
\begin{aligned}
R(\beta)+\lambda \Omega(\beta) & =\frac{1}{n} \sum_{i=1}^{n}\left(f_{\beta}\left(x_{i}\right)-x_{i}\right)^{2}+\lambda \sum_{i=1}^{p} \beta_{i}^{2} \\
& =\frac{1}{n}(Y-X \beta)^{\top}(Y-X \beta)+\lambda \beta^{\top} \beta .
\end{aligned}
$$

- Explicit minimizer:

$$
\hat{\beta}_{\lambda}^{\text {ridge }}=\arg \min _{\beta \in \mathbb{R}^{p}}\{R(\beta)+\lambda \Omega(\beta)\}=\left(X^{\top} X+\lambda n l\right)^{-1} X^{\top} Y .
$$

Limit cases

$$
\hat{\beta}_{\lambda}^{\text {ridge }}=\left(X^{\top} X+\lambda n \prime\right)^{-1} X^{\top} Y
$$

Corollary

- As $\lambda \rightarrow 0, \hat{\beta}_{\lambda}^{\text {ridge }} \rightarrow \hat{\beta}^{\text {OLS }}$ (low bias, high variance).
- As $\lambda \rightarrow+\infty, \hat{\beta}_{\lambda}^{\text {ridge }} \rightarrow 0$ (high bias, low variance).

Ridge regression example

(From Hastie et al., 2001)

Ridge regression with correlated features

Ridge regression is particularly useful in the presence of correlated features:
> library(MASS) \# for the lm.ridge command
> x1 <- rnorm(20)
$>\mathrm{x} 2$ <- $\operatorname{rnorm}(20$, mean=x1,sd=.01)
> y <- rnorm(20,mean=3+x1+x2)
$>\operatorname{lm}\left(y^{\sim} x 1+x 2\right) \$ c o e f$
(Intercept) x1 x2
$3.070699 \quad 25.797872-23.748019$
> lm.ridge ($\mathrm{y}^{\sim} \mathrm{x} 1+\mathrm{x} 2$, lambda=1)

$$
\mathrm{x} 1 \quad \mathrm{x} 2
$$

3.0660271 .0158620 .956560

Ridge regression complexity

- Compute $X^{\top} X: O\left(n d^{2}\right)$
- Inverse $\left(X^{\top} X+\lambda I\right): O\left(d^{3}\right)$

Computing $X^{\top} X$ is more expensive than inverting it when $n>d$!

Generalization: ℓ_{2}-regularized learning

- A general ℓ_{2}-penalized estimator is of the form

$$
\begin{equation*}
\min _{\beta}\left\{R(\beta)+\lambda\|\beta\|_{2}^{2}\right\} \tag{1}
\end{equation*}
$$

where

$$
R(\beta)=\frac{1}{n} \sum_{i=1}^{n} \ell\left(f_{\beta}\left(x_{i}\right), y_{i}\right)
$$

for some general loss functions ℓ.

- Ridge regression corresponds to the particular loss

$$
\ell(u, y)=(u-y)^{2} .
$$

- For general, convex losses, the problem (1) is strictly convex and has a unique global minimum, which can usually be found by numerical algorithms for convex optimization.
- Complexity: typically a factor more that ridge regression (e.g., iteratively approximate smooth losses by quadratic functions)

Losses for regression

- Square loss: $\ell(u, y)=(u-y)^{2}$
- ϵ-insensitive loss : $\ell(u, y)=(|u-y|-\epsilon)_{+}$
- Huber loss: mixed quadratic/linear

Choice of λ

Cross-validation

A simple and systematic procedure to estimate the risk (and to optimize the model's parameters)
(1) Randomly divide the training set (of size n) into K (almost) equal portions, each of size K / n
(2) For each portion, fit the model with different parameters on the $K-1$ other groups and test its performance on the left-out group
(3) Average performance over the K groups, and take the parameter with the smallest average performance.
Taking $K=5$ or 10 is recommended as a good default choice.

Complexity: multiply by K

Outline

(1) Introduction

(2) Standard machine learning

- Dimension reduction: PCA
- Clustering: k-means
- Regression: ridge regression
- Classification: kNN, logistic regression and SVM
- Nonlinear models: kernel methods

3 Scalability issues

Motivation

- Predict the category of a data
- 2 or more (sometimes many) categories

Motivation

- Predict the category of a data
- 2 or more (sometimes many) categories

Motivation

- Predict the category of a data
- 2 or more (sometimes many) categories

Motivation

- Predict the category of a data
- 2 or more (sometimes many) categories

k-nearest neigbors (kNN)

(Hastie et al. The elements of statistical learning. Springer, 2001.)

- Training set $\mathcal{S}=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\} \subset \mathbb{R}^{d} \times\{-1,1\}$
- No training
- Given a new point $x \in \mathbb{R}^{d}$, predict the majority class among its k nearest neighbors (take k odd)

kNN properties

Uniform Bayes consistency (Stone, 1977)

- Take $k=\sqrt{n}$ (for example)
- Let P be any distribution over (X, Y) pairs
- Assume training data are random pairs sampled i.i.d. according to P
- Then the k-NN classifier \hat{f}_{n} satisfies almost surely:

$$
\lim _{n \rightarrow+\infty} P(\hat{f}(X) \neq Y)=\inf _{f \text { measurable }} P(f(X) \neq Y)
$$

But " no free lunch":

- The speed of convergence to the best classifier can be arbitrarily slow

kNN complexity

Complexity:

- Memory: storing X is $O(n d)$
- Training time: 0 (the best!)
- Prediction: $O(n d)$ for each test point (outch!)

Linear models for classification

- Training set $\mathcal{S}=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\} \subset \mathbb{R}^{d} \times\{-1,1\}$
- Fit a linear function

$$
f_{\beta}(x)=\beta^{\top} x
$$

- The prediction on a new point $x \in \mathbb{R}^{d}$ is:

$$
\begin{cases}+1 & \text { if } f_{\beta}(x)>0 \\ -1 & \text { otherwise. }\end{cases}
$$

The $0 / 1$ loss

- The $0 / 1$ loss measures if a prediction is correct or not:

$$
\left.\ell_{0 / 1}(f(x), y)\right)=\mathbf{1}(y f(x)<0)= \begin{cases}0 & \text { if } y=\operatorname{sign}(f(x)) \\ 1 & \text { otherwise }\end{cases}
$$

- It is them tempting to learn $f_{\beta}(x)=\beta^{\top} x$ by solving:

$$
\min _{\beta \in \mathbb{R}^{p}} \underbrace{\frac{1}{n} \sum_{i=1}^{n} \ell_{0 / 1}\left(f_{\beta}\left(x_{i}\right), y_{i}\right)}_{\text {misclassification rate }}+\underbrace{\lambda\|\beta\|_{2}^{2}}_{\text {regularization }}
$$

- However:
- The problem is non-smooth, and typically NP-hard to solve
- The regularization has no effect since the $0 / 1$ loss is invariant by scaling of β
- In fact, no function achieves the minimum when $\lambda>0$ (why?)

The logistic loss

- An alternative is to define a probabilistic model of y parametrized by $f(x)$, e.g.:

$$
\forall y \in\{-1,1\}, \quad p(y \mid f(x))=\frac{1}{1+e^{-y f(x)}}=\sigma(y f(x))
$$

- The logistic loss is the negative conditional likelihood:

$$
\ell_{\text {logistic }}(f(x), y)=-\ln p(y \mid f(x))=\ln \left(1+e^{-y f(x)}\right)
$$

Ridge logistic regression

(Le Cessie and van Houwelingen, 1992)

$$
\min _{\beta \in \mathbb{R}^{p}} J(\beta)=\frac{1}{n} \sum_{i=1}^{n} \ln \left(1+e^{-y_{i} \beta^{\top} x_{i}}\right)+\lambda\|\beta\|_{2}^{2}
$$

- Can be interpreted as a regularized conditional maximum likelihood estimator
- No explicit solution, but smooth convex optimization problem that can be solved numerically

Solving ridge logistic regression

$$
\min _{\beta} J(\beta)=\frac{1}{n} \sum_{i=1}^{n} \ln \left(1+e^{-y_{i} \beta^{\top} x_{i}}\right)+\lambda\|\beta\|_{2}^{2}
$$

No explicit solution, but convex problem with:

$$
\begin{aligned}
\nabla_{\beta} J(\beta) & =-\frac{1}{n} \sum_{i=1}^{n} \frac{y_{i} x_{i}}{1+e^{y_{i} \beta^{\top} x_{i}}}+2 \lambda \beta \\
& =-\frac{1}{n} \sum_{i=1}^{n} y_{i}\left[1-P_{\beta}\left(y_{i} \mid x_{i}\right)\right] x_{i}+2 \lambda \beta \\
\nabla_{\beta}^{2} J(\beta) & =\frac{1}{n} \sum_{i=1}^{n} \frac{x_{i} x_{i}^{\top} e^{y_{i} \beta^{\top} x_{i}}}{\left(1+e^{y_{i} \beta^{\top} x_{i}}\right)^{2}}+2 \lambda I \\
& =\frac{1}{n} \sum_{i=1}^{n} P_{\beta}\left(1 \mid x_{i}\right)\left(1-P_{\beta}\left(1 \mid x_{i}\right)\right) x_{i} x_{i}^{\top}+2 \lambda I
\end{aligned}
$$

Solving ridge logistic regression (cont.)

$$
\min _{\beta} J(\beta)=\frac{1}{n} \sum_{i=1}^{n} \ln \left(1+e^{-y_{i} \beta^{\top} x_{i}}\right)+\lambda\|\beta\|_{2}^{2}
$$

- The solution can then be found by Newton-Raphson iterations:

$$
\beta^{\text {new }} \leftarrow \beta^{\text {old }}-\left[\nabla_{\beta}^{2} J\left(\beta^{\text {old }}\right)\right]^{-1} \nabla_{\beta} J\left(\beta^{\text {old }}\right)
$$

- Each step is equivalent to solving a weighted ridge regression problem (left as exercise)
- This method is therefore called iteratively reweighted least squares (IRLS).
- Complexity O (iterations $\left.*\left(n d^{2}+d^{3}\right)\right)$

Large-margin classifiers

- For any $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, the margin of f on an (x, y) pair is

$$
y f(x)
$$

- Large-margin classifiers fit a classifier by maximizing the margins on the training set:

$$
\min _{\beta} \sum_{i=1}^{n} \varphi\left(y_{i} f_{\beta}\left(x_{i}\right)\right)+\lambda \beta^{\top} \beta
$$

for a convex, non-increasing function $\varphi: \mathbb{R} \rightarrow \mathbb{R}+$

Loss function examples

Loss	Method	$\varphi(u)$
$0-1$	none	$1(u \leq 0)$
Hinge	Support vector machine (SVM)	$\max (1-u, 0)$
Logistic	Logistic regression	$\log \left(1+e^{-u}\right)$
Square	Ridge regression	$(1-u)^{2}$
Exponential	Boosting	e^{-u}

Which φ ?

- Computation
- φ convex means we need to solve a convex optimization problem.
- A "good" φ may be one which allows for fast optimization
- Theory
- Most φ lead to consistent estimators (see next slides)
- Some may be more efficient

A tiny bit of learning theory

Assumptions and notations

- Let \mathbb{P} be an (unknown) distribution on $\mathcal{X} \times \mathcal{Y}$, and $\eta(x)=\mathbb{P}(Y=1 \mid X=x)$ a measurable version of the conditional distribution of Y given X
- Assume the training set $\mathcal{S}_{n}=\left(X_{i}, Y_{i}\right)_{i=1, \ldots, n}$ are i.i.d. random variables according to \mathbb{P}.
- The risk of a classifier $f: \mathcal{X} \rightarrow \mathbb{R}$ is $R(f)=\mathbb{P}(\operatorname{sign}(f(X)) \neq Y)$
- The Bayes risk is

$$
R^{*}=\inf _{f \text { measurable }} R(f)
$$

which is attained for $f^{*}(x)=\eta(x)-1 / 2$

- The empirical risk of a classifier $f: \mathcal{X} \rightarrow \mathbb{R}$ is

$$
R^{n}(f)=\frac{1}{n} \sum_{i=1}^{n} \mathbf{1}\left(\operatorname{sign}\left(f\left(X_{i}\right)\right) \neq Y_{i}\right)
$$

φ-risk

- Let the empirical φ-risk be the empirical risk optimized by a large-margin classifier:

$$
R_{\varphi}^{n}(f)=\frac{1}{n} \sum_{i=1}^{n} \varphi\left(Y_{i} f\left(X_{i}\right)\right)
$$

- It is the empirical version of the φ-risk

$$
R_{\varphi}(f)=\mathbb{E}[\varphi(Y f(X))]
$$

- Can we hope to have a small risk $R(f)$ if we focus instead on the φ-risk $R_{\varphi}(f)$?

A small φ-risk ensures a small $0 / 1$ risk

Theorem (?)

Let $\varphi: \mathbb{R} \rightarrow \mathbb{R}_{+}$be convex, non-increasing, differentiable at 0 with $\varphi^{\prime}(0)<0$. Let $f: \mathcal{X} \rightarrow \mathbb{R}$ measurable such that

$$
R_{\varphi}(f)=\min _{g \text { measurable }} R_{\varphi}(g)=R_{\varphi}^{*}
$$

Then

$$
R(f)=\min _{g \text { measurable }} R(g)=R^{*} .
$$

Remarks:

- This tells us that, if we know \mathbb{P}, then minimizing the φ-risk is a good idea even if our focus is on the classification error.
- The assumptions on φ can be relaxed; it works for the broader class of classification-calibrated loss functions (?).
- More generally, we can show that if $R_{\varphi}(f)-R_{\varphi}^{*}$ is small, then $R(f)-R^{*}$ is small too (?).

A small φ-risk ensures a small $0 / 1$ risk

Proof sketch:
Condition on $X=x$:

$$
\begin{aligned}
R_{\varphi}(f \mid X=x) & =\mathbb{E}[\varphi(Y f(X)) \mid X=x]=\eta(x) \varphi(f(x))+(1-\eta(x)) \varphi(-f(x)) \\
R_{\varphi}(-f \mid X=x) & =\mathbb{E}[\varphi(-Y f(X)) \mid X=x]=\eta(x) \varphi(-f(x))+(1-\eta(x)) \varphi(f(x))
\end{aligned}
$$

Therefore:

$$
R_{\varphi}(f \mid X=x)-R_{\varphi}(-f \mid X=x)=[2 \eta(x)-1] \times[\varphi(f(x))-\varphi(-f(x))]
$$

This must be a.s. ≤ 0 because $R_{\varphi}(f) \leq R_{\varphi}(-f)$, which implies:

- if $\eta(x)>\frac{1}{2}, \varphi(f(x)) \leq \varphi(-f(x)) \Longrightarrow f(x) \geq 0$
- if $\eta(x)<\frac{1}{2}, \varphi(f(x)) \geq \varphi(-f(x)) \Longrightarrow f(x) \leq 0$

These inequalities are in fact strict thanks to the assumptions we made on φ (left as exercice).

SVM (Boser et al., 1992)

$$
\min _{\beta \in \mathbb{R}^{p}} \sum_{i=1}^{n} \max \left(0,1-y_{i} \beta^{\top} x_{i}\right)+\lambda \beta^{\top} \beta
$$

- A non-smooth convex optimization problem (convex quadratic program)
- Equivalent to the dual problem

$$
\max _{\alpha \in \mathbb{R}^{n}} 2 \alpha^{\top} Y-\alpha^{\top} X X^{\top} \alpha \quad \text { s.t. } \quad 0 \leq \mathbf{y}_{i} \alpha_{i} \leq \frac{1}{2 \lambda} \text { for } i=1, \ldots, n
$$

- The solution β^{*} of the primal is obtained from the solution α^{*} of the dual:

$$
\beta^{*}=X^{\top} \alpha^{*} \quad f_{\beta^{*}}(x)=\left(\beta^{*}\right)^{\top} x=\left(\alpha^{*}\right)^{\top} X x
$$

- Training complexity: $O\left(n^{2}\right)$ to store $X X^{\top}, O\left(n^{3}\right)$ to find α^{*}
- Prediction: $O(d)$ for $\left(\beta^{*}\right)^{\top} x, O(n d)$ for $\left(\alpha^{*}\right)^{\top} X x$

Outline

(1) Introduction

(2) Standard machine learning

- Dimension reduction: PCA
- Clustering: k-means
- Regression: ridge regression
- Classification: kNN, logistic regression and SVM
- Nonlinear models: kernel methods
(3) Scalability issues

Model

- Learn a function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ of the form

$$
f(x)=\sum_{i=1}^{n} \alpha_{i} K\left(x_{i}, x\right)
$$

- For a positive definite (p.d.) kernel $K: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$, such as

Linear $\quad K\left(x, x^{\prime}\right)=x^{\top} x^{\prime}$
Polynomial $K\left(x, x^{\prime}\right)=\left(x^{\top} x^{\prime}+c\right)^{p}$
Gaussian $K\left(x, x^{\prime}\right)=\exp \left(-\frac{\left\|x-x^{\prime}\right\|^{2}}{2 \sigma^{2}}\right)$
$\operatorname{Min} / \max \quad K\left(x, x^{\prime}\right)=\sum_{i=1}^{d} \frac{\min \left(\left|x_{i}\right|,\left|x_{i}^{\prime}\right|\right)}{\max \left(\left|x_{i}\right|,\left|x_{i}^{\prime}\right|\right)}$

Feature space

- A function $K: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ is a p.d. kernel if and only if there existe a mapping $\Phi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{D}$, for some $D \in \mathbb{N} \cup\{+\infty\}$, such that

$$
\forall x, x^{\prime} \in \mathbb{R}^{d}, \quad K\left(x, x^{\prime}\right)=\Phi(x)^{\top} \Phi\left(x^{\prime}\right)
$$

- Surprise: all functions in the previous slide are kernels! (sometime with $D=+\infty$)
- Exercice: can you prove it?

Example: polynomial kernel

For $\vec{x}=\left(x_{1}, x_{2}\right)^{\top} \in \mathbb{R}^{2}$, let $\vec{\Phi}(\vec{x})=\left(x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right) \in \mathbb{R}^{3}$:

$$
\begin{aligned}
K\left(\vec{x}, \vec{x}^{\prime}\right) & =x_{1}^{2} x_{1}^{\prime 2}+2 x_{1} x_{2} x_{1}^{\prime} x_{2}^{\prime}+x_{2}^{2} x_{2}^{\prime 2} \\
& =\left(x_{1} x_{1}^{\prime}+x_{2} x_{2}^{\prime}\right)^{2} \\
& =\left(\vec{x}^{\top} \vec{x}^{\prime}\right)^{2} .
\end{aligned}
$$

From $\alpha \in \mathbb{R}^{n}$ to $\beta \in \mathbb{R}^{D}$

$$
\sum_{i=1}^{n} \alpha_{i} K\left(x_{i}, x\right)=\sum_{i=1}^{n} \alpha_{i} \Phi\left(x_{i}\right)^{\top} \Phi(x)=\beta^{\top} \Phi(x)
$$

for $\beta=\sum_{i=1}^{n} \alpha_{i} \Phi\left(x_{i}\right)$.

Learning

- We can learn $f(x)=\sum_{i=1}^{n} \alpha_{i} K\left(x_{i}, x\right)$ by fitting a linear model $\beta^{\top} \Phi(x)$ in the feature space
- Example: ridge regression / logistic regression / SVM

$$
\min _{\beta \in \mathbb{R}^{D}} \sum_{i=1}^{n} \ell\left(y_{i}, \beta^{\top} \Phi\left(x_{i}\right)\right)+\lambda \beta^{\top} \beta
$$

- But D can be very large, even infinite...

Kernel tricks

- $K\left(x, x^{\prime}\right)=\Phi(x)^{\top} \Phi\left(x^{\prime}\right)$ can be quick to compute even if D is large (even infinite)
- For a set of training samples $\left\{x_{1}, \ldots, \mathbf{x}_{n}\right\} \subset \mathbb{R}^{d}$ let K_{n} the $n \times n$ Gram matrix:

$$
\left[K_{n}\right]_{i j}=K\left(x_{i}, x_{j}\right)
$$

- For $\beta=\sum_{i=1}^{n} \alpha_{i} \Phi\left(x_{i}\right)$ we have

$$
\beta^{\top} \Phi\left(x_{i}\right)=[K \alpha]_{i} \quad \text { and } \quad \beta^{\top} \beta=\alpha^{\top} K \alpha
$$

- We can therefore solve the equivalent problem in $\alpha \in \mathbb{R}^{n}$

$$
\min _{\alpha \in \mathbb{R}^{n}} \sum_{i=1}^{n} \ell\left(y_{i},[K \alpha]_{i}\right)+\lambda \alpha^{\top} K \alpha
$$

Example: kernel ridge regression (KRR)

$$
\min _{\beta \in \mathbb{R}^{d}} \sum_{i=1}^{n}\left(y_{i}-\beta^{\top} \Phi\left(x_{i}\right)\right)^{2}+\lambda \beta^{\top} \beta
$$

- Solve in \mathbb{R}^{D} :

$$
\hat{\beta}=\underbrace{\left(\Phi(X)^{\top} \Phi(X)+\lambda I\right)^{-1}}_{D \times D} \Phi(X)^{\top} Y
$$

- Solve in \mathbb{R}^{n} :

$$
\hat{\alpha}=\underbrace{(K+\lambda I)^{-1}}_{n \times n} Y
$$

KRR with Gaussian RBF kernel

$$
\min _{\beta \in \mathbb{R}^{d}} \sum_{i=1}^{n}\left(y_{i}-\beta^{\top} \Phi\left(x_{i}\right)\right)^{2}+\lambda \beta^{\top} \beta \quad K\left(x, x^{\prime}\right)=\exp \left(\frac{\left\|x-x^{\prime}\right\|^{2}}{2 \sigma^{2}}\right)
$$

KRR with Gaussian RBF kernel

$$
\min _{\beta \in \mathbb{R}^{d}} \sum_{i=1}^{n}\left(y_{i}-\beta^{\top} \Phi\left(x_{i}\right)\right)^{2}+\lambda \beta^{\top} \beta \quad K\left(x, x^{\prime}\right)=\exp \left(\frac{\left\|x-x^{\prime}\right\|^{2}}{2 \sigma^{2}}\right)
$$

$$
\text { lambda = } 1000
$$

KRR with Gaussian RBF kernel

$$
\min _{\beta \in \mathbb{R}^{d}} \sum_{i=1}^{n}\left(y_{i}-\beta^{\top} \Phi\left(x_{i}\right)\right)^{2}+\lambda \beta^{\top} \beta \quad K\left(x, x^{\prime}\right)=\exp \left(\frac{\left\|x-x^{\prime}\right\|^{2}}{2 \sigma^{2}}\right)
$$

lambda $=100$

KRR with Gaussian RBF kernel

$$
\min _{\beta \in \mathbb{R}^{d}} \sum_{i=1}^{n}\left(y_{i}-\beta^{\top} \Phi\left(x_{i}\right)\right)^{2}+\lambda \beta^{\top} \beta \quad K\left(x, x^{\prime}\right)=\exp \left(\frac{\left\|x-x^{\prime}\right\|^{2}}{2 \sigma^{2}}\right)
$$

$\operatorname{lambda}=10$

KRR with Gaussian RBF kernel

$$
\min _{\beta \in \mathbb{R}^{d}} \sum_{i=1}^{n}\left(y_{i}-\beta^{\top} \Phi\left(x_{i}\right)\right)^{2}+\lambda \beta^{\top} \beta \quad K\left(x, x^{\prime}\right)=\exp \left(\frac{\left\|x-x^{\prime}\right\|^{2}}{2 \sigma^{2}}\right)
$$

lambda $=1$

KRR with Gaussian RBF kernel

$$
\min _{\beta \in \mathbb{R}^{d}} \sum_{i=1}^{n}\left(y_{i}-\beta^{\top} \Phi\left(x_{i}\right)\right)^{2}+\lambda \beta^{\top} \beta \quad K\left(x, x^{\prime}\right)=\exp \left(\frac{\left\|x-x^{\prime}\right\|^{2}}{2 \sigma^{2}}\right)
$$

lambda $=0.1$

KRR with Gaussian RBF kernel

$$
\min _{\beta \in \mathbb{R}^{d}} \sum_{i=1}^{n}\left(y_{i}-\beta^{\top} \Phi\left(x_{i}\right)\right)^{2}+\lambda \beta^{\top} \beta \quad K\left(x, x^{\prime}\right)=\exp \left(\frac{\left\|x-x^{\prime}\right\|^{2}}{2 \sigma^{2}}\right)
$$

lambda $=0.01$

KRR with Gaussian RBF kernel

$$
\min _{\beta \in \mathbb{R}^{d}} \sum_{i=1}^{n}\left(y_{i}-\beta^{\top} \Phi\left(x_{i}\right)\right)^{2}+\lambda \beta^{\top} \beta \quad K\left(x, x^{\prime}\right)=\exp \left(\frac{\left\|x-x^{\prime}\right\|^{2}}{2 \sigma^{2}}\right)
$$

lambda $=0.001$

KRR with Gaussian RBF kernel

$$
\min _{\beta \in \mathbb{R}^{d}} \sum_{i=1}^{n}\left(y_{i}-\beta^{\top} \Phi\left(x_{i}\right)\right)^{2}+\lambda \beta^{\top} \beta \quad K\left(x, x^{\prime}\right)=\exp \left(\frac{\left\|x-x^{\prime}\right\|^{2}}{2 \sigma^{2}}\right)
$$

lambda $=0.0001$

KRR with Gaussian RBF kernel

$$
\min _{\beta \in \mathbb{R}^{d}} \sum_{i=1}^{n}\left(y_{i}-\beta^{\top} \Phi\left(x_{i}\right)\right)^{2}+\lambda \beta^{\top} \beta \quad K\left(x, x^{\prime}\right)=\exp \left(\frac{\left\|x-x^{\prime}\right\|^{2}}{2 \sigma^{2}}\right)
$$

lambda $\mathbf{= 0 . 0 0 0 0 1}$

KRR with Gaussian RBF kernel

$$
\min _{\beta \in \mathbb{R}^{d}} \sum_{i=1}^{n}\left(y_{i}-\beta^{\top} \Phi\left(x_{i}\right)\right)^{2}+\lambda \beta^{\top} \beta \quad K\left(x, x^{\prime}\right)=\exp \left(\frac{\left\|x-x^{\prime}\right\|^{2}}{2 \sigma^{2}}\right)
$$

lambda $=0.000001$

KRR with Gaussian RBF kernel

$$
\min _{\beta \in \mathbb{R}^{d}} \sum_{i=1}^{n}\left(y_{i}-\beta^{\top} \Phi\left(x_{i}\right)\right)^{2}+\lambda \beta^{\top} \beta \quad K\left(x, x^{\prime}\right)=\exp \left(\frac{\left\|x-x^{\prime}\right\|^{2}}{2 \sigma^{2}}\right)
$$

lambda $=0.0000001$

Complexity

lambda $=1$

- Compute K: $O\left(d n^{2}\right)$
- Store $K: O\left(n^{2}\right)$
- Solve α : $O\left(n^{2 \sim 3}\right)$
- Compute $f(x)$ for one x : $O(n d)$
- Unpractical for $n>10 \sim 100 k$

Outline

(1) Introduction
(2) Standard machine learning

- Dimension reduction: PCA
- Clustering: k-means
- Regression: ridge regression
- Classification: kNN, logistic regression and SVM
- Nonlinear models: kernel methods
(3) Scalability issues

What is "large-scale"?

- Data cannot fit in RAM
- Algorithm cannot run on a single machine in reasonable time (algorithm-dependent)
- Sometimes even $O(n)$ is too large! (e.g., nearest neighbor in a database of $O(B+)$ items)
- Many tasks / parameters (e.g., image categorization in $O(10 M)$ classes)
- Streams of data

Things to worry about

- Training time (usually offline)
- Memory requirements
- Test time
- Complexities so far

Method	Memory	Training time	Test time
PCA	$O\left(d^{2}\right)$	$O\left(n d^{2}\right)$	$O(d)$
k-means	$O(n d)$	$O(n d k)$	$O(k d)$
Ridge regression	$O\left(d^{2}\right)$	$O\left(n d^{2}\right)$	$O(d)$
kNN	$O(n d)$	0	$O(n d)$
Logistic regression	$O(n d)$	$O\left(n d^{2}\right)$	$O(d)$
SVM, kernel methods	$O\left(n^{2}\right)$	$O\left(n^{3}\right)$	$O(n d)$

Techniques for large-scale ML

- Understand modern architecture, and how to distribute data / computation (cf C. Azencott)
- Trade optimization accuracy for speed (cf F. Bach)
- Know the tricks, eg, for deep learning (cf F. Moutarde)
- Randomization helps (cf friday)

References I

D. Achlioptas. Database-friendly random projections: Johnson-lindenstrauss with binary coins. J. Comput. Syst. Sci., 66(4):671-687, 2003. doi: 10.1016/S0022-0000(03)00025-4. URL http://dx.doi.org/10.1016/S0022-0000(03)00025-4.
N. Ailon and B. Chazelle. The fast Johnson-Lindenstrauss transform and approximate nearest neighbors. SIAM J. Comput., 39(1):302-322, 2009. doi: 10.1137/060673096. URL http://dx.doi.org/10.1137/060673096.
B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal margin classifiers. In Proceedings of the 5th annual ACM workshop on Computational Learning Theory, pages 144-152, New York, NY, USA, 1992. ACM Press. URL http://www.clopinet.com/isabelle/Papers/colt92.ps.Z.
L. Bottou and O. Bousquet. The tradeoffs of large scale learning. In J. C. Platt, D. Koller, Y. Singer, and S. T. Roweis, editors, Adv. Neural. Inform. Process Syst., volume 20, pages 161-168. Curran Associates, Inc., 2008. URL http://papers.nips.cc/paper/3323-the-tradeoffs-of-large-scale-learning.pdf.
A. Z. Broder. On the resemblance and containment of documents. In Proceedings of the Compression and Complexity of Sequences, pages 21-29, 1997. doi: 10.1109/SEQUEN.1997.666900. URL http://dx.doi.org/10.1109/SEQUEN. 1997.666900.
M. X. Goemans and D. P. Williamson. A general approximation technique for constrained forest problems. SIAM J. Comput., 24(2):296-317, apr 1995. doi: 10.1137/S0097539793242618. URL http://dx.doi.org/10.1137/S0097539793242618.

References II

T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical learning: data mining, inference, and prediction. Springer, 2001.
A. E. Hoerl and R. W. Kennard. Ridge regression : biased estimation for nonorthogonal problems. Technometrics, 12(1):55-67, 1970.
W. B. Johnson and J. Lindenstrauss. Extensions of lipschitz mappings into a hilbert space. Contemp. Math., 26:189-206, 1984. doi: 10.1090/conm/026/737400. URL http://dx.doi.org/10.1090/conm/026/737400.
S. Le Cessie and J. C. van Houwelingen. Ridge estimators in logistic regression. Appl. Statist., 41(1):191-201, 1992. URL http://www.jstor.org/stable/2347628.
P. Li and A. C. König. b-bit minwise hashing. In WWW, pages 671-680, Raleigh, NC, 2010.
P. Li, A. O., and C. hui Z. One permutation hashing. In F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 25, pages 3113-3121. Curran Associates, Inc., 2012. URL http://papers.nips.cc/paper/4778-one-permutation-hashing.pdf.
A. Rahimi and B. Recht. Random features for large-scale kernel machines. In J. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Adv. Neural. Inform. Process Syst., volume 20, pages 1177-1184. Curran Associates, Inc., 2008. URL http://papers.nips.cc/paper/ 3182-random-features-for-large-scale-kernel-machines.pdf.
Q. Shi, J. Petterson, G. Dror, J. Langford, A. Smola, and S. Vishwanathan. Hash kernels for structured data. Journal of Machine Learning Research, 10:2615-2637, 2009.

References III

C. Stone. Consistent nonparametric regression. Ann. Stat., 8:1348-1360, 1977. URL http://links.jstor.org/sici?sici=0090-5364\(197707\)5\%3A4\<595\%3ACNR\>2. $0 . C 0 \% 3 B 2-0$.

