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Perception
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Communication
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Mobility
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Health

https://pct.mdanderson.org
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Reasoning
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A common process: learning from data

https://www.linkedin.com/pulse/supervised-machine-learning-pega-decisioning-solution-nizam-muhammad

Given examples (training data), make a machine learn how to
predict on new samples, or discover patterns in data

Statistics + optimization + computer science

Gets better with more training examples and bigger computers
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Large-scale ML?

X	 Y	

d	dimensions	 t	tasks	

n	
sa
m
pl
es
	

Iris dataset: n = 150, d = 4, t = 1

Cancer drug sensitivity: n = 1k, d = 1M, t = 100

Imagenet: n = 14M, d = 60k+, t = 22k

Shopping, e-marketing n = O(M), d = O(B), t = O(100M)

Astronomy, GAFA, web... n = O(B), d = O(B), t = O(B)
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Today’s goals

1 Review a few standard ML techniques

2 Introduce a few ideas and techniques to scale them to modern, big
datasets
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Main ML paradigms

Unsupervised learning

Dimension reduction
Clustering
Density estimation
Feature learning

Supervised learning

Regression
Classification
Structured output classification

Semi-supervised learning

Reinforcement learning
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Main ML paradigms

Unsupervised learning

Dimension reduction: PCA
Clustering: k-means
Density estimation
Feature learning

Supervised learning

Regression: OLS, ridge regression
Classification: kNN, logistic regression, SVM
Structured output classification

Semi-supervised learning

Reinforcement learning

16 / 76



Outline

1 Introduction

2 Standard machine learning
Dimension reduction: PCA
Clustering: k-means
Regression: ridge regression
Classification: kNN, logistic regression and SVM
Nonlinear models: kernel methods

3 Scalability issues

17 / 76



Motivation

X	 X’	

d	
n	 n	

k	<	d	

Dimension reduction

Preprocessing (remove noise, keep signal)

Visualization (k = 2, 3)

Discover structure
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PCA definition

PC1PC2

Training set S = {x1, . . . , xn} ⊂ Rd

For i = 1, . . . , k ≤ d , PCi is the linear projection onto the direction
that captures the largest amount of variance and is orthogonal to
the previous ones:

ui ∈ argmax
‖ u ‖=1, u⊥{u1,...,ui−1}

n∑

i=1


x>i u − 1

n

n∑

j=1

x>j u




2
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PCA solution

PC1PC2

Let X̃ be the centered n × d data matrix

PCA solves, for i = 1, . . . , k ≤ d :

ui ∈ argmax
‖ u ‖=1, u⊥{u1,...,ui−1}

u>X̃>X̃ u

Solution: ui is the i-th eigenvector of C = X̃>X̃ , the empirical
covariance matrix
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PCA example
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●

●

setosa
versicolor
virginica

> data(iris)

> head(iris, 3)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa

2 4.9 3.0 1.4 0.2 setosa

3 4.7 3.2 1.3 0.2 setosa

> m <- princomp(log(iris[,1:4]))
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PCA complexity

Memory: store X and C : O(max(nd , d2))

Compute C : O(nd2)

Compute k eigenvectors of C (power method): O(kd2)

Computing C is more expensive than computing its eigenvectors (n > k)!

n = 1B, d = 100M
Store C: 40, 000TB
Compute C: 2× 1025FLOPS = 20yottaFLOPS (about 300 years of the
most powerful supercomputer in 2016)
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Motivation
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Unsupervised learning

Discover groups

Reduce dimension

24 / 76



Motivation
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k-means definition

Training set S = {x1, . . . , xn} ⊂ Rd

Given k, find C = (C1, . . . ,Cn) ∈ {1, k}n that solves

min
C

n∑

i=1

‖ xi − µCi
‖2

where is the barycentre of data in class i .

This is an NP-hard problem. k-means finds an approximate solution
by iterating

1 Assignment step: fix µ, optimize C

∀i = 1, . . . , n, Ci ← arg min
c∈{1,...,k}

‖ xi − µc ‖

2 Update step

∀i = 1, . . . , k , µi ←
1

|Ci |
∑

j :Cj=i

xj
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k-means example
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> irisCluster <- kmeans(log(iris[, 1:4]), 3, nstart = 20)

> table(irisCluster$cluster, iris$Species)

setosa versicolor virginica

1 0 48 4

2 50 0 0

3 0 2 46

26 / 76



k-means example

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●●
●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

● ●
●

●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

−2 −1 0 1

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

Iris k−means, k = 2

PC1

P
C

2

●

●

Cluster  1
Cluster  2

> irisCluster <- kmeans(log(iris[, 1:4]), 3, nstart = 20)
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k-means complexity

Each update step: O(nd)

Each assignment step: O(ndk)
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Ridge regression (Hoerl and Kennard, 1970)

Training set S = {(x1, y1), . . . , (xn, yn)} ⊂ Rd × R
Fit a linear function:

fβ(x) = β>x

Goodness of fit measured by residual sum of squares:

RSS(β) =
n∑

i=1

(yi − fβ(xi ))2

Ridge regression minimizes the regularized RSS:

min
β

RSS(β) + λ

d∑

i=1

β2
i
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Solution

Let X = (x1, . . . , xn) the n × p data matrix, and
Y = (y1, . . . , yn)> ∈ Rp the response vector.

The penalized risk can be written in matrix form:

R(β) + λΩ(β) =
1

n

n∑

i=1

(fβ (xi )− xi )
2 + λ

p∑

i=1

β2
i

=
1

n
(Y − Xβ)> (Y − Xβ) + λβ>β .

Explicit minimizer:

β̂ridge
λ = arg min

β∈Rp
{R(β) + λΩ(β)} =

(
X>X + λnI

)−1
X>Y .
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Limit cases

β̂ridge
λ =

(
X>X + λnI

)−1
X>Y

Corollary

As λ→ 0, β̂ridge
λ → β̂OLS (low bias, high variance).

As λ→ +∞, β̂ridge
λ → 0 (high bias, low variance).
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Ridge regression example

(From Hastie et al., 2001)
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Ridge regression with correlated features

Ridge regression is particularly useful in the presence of correlated
features:

> library(MASS) # for the lm.ridge command

> x1 <- rnorm(20)

> x2 <- rnorm(20,mean=x1,sd=.01)

> y <- rnorm(20,mean=3+x1+x2)

> lm(y~x1+x2)$coef

(Intercept) x1 x2

3.070699 25.797872 -23.748019

> lm.ridge(y~x1+x2,lambda=1)

x1 x2

3.066027 1.015862 0.956560
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Ridge regression complexity

Compute X>X : O(nd2)

Inverse
(
X>X + λI

)
: O(d3)

Computing X>X is more expensive than inverting it when n > d!
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Generalization: `2-regularized learning

A general `2-penalized estimator is of the form

min
β

{
R(β) + λ‖β‖2

2

}
, (1)

where

R(β) =
1

n

n∑

i=1

`(fβ(xi ), yi )

for some general loss functions `.

Ridge regression corresponds to the particular loss

`(u, y) = (u − y)2 .

For general, convex losses, the problem (1) is strictly convex and has
a unique global minimum, which can usually be found by numerical
algorithms for convex optimization.

Complexity: typically a factor more that ridge regression (e.g.,
iteratively approximate smooth losses by quadratic functions)
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Losses for regression

Square loss : `(u, y) = (u − y)2

ε-insensitive loss : `(u, y) = (| u − y | − ε)+

Huber loss : mixed quadratic/linear
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FIGURE 2.11. Test and training error as a function of model complexity.

be close to f(x0). As k grows, the neighbors are further away, and then
anything can happen.

The variance term is simply the variance of an average here, and de-
creases as the inverse of k. So as k varies, there is a bias–variance tradeoff.

More generally, as the model complexity of our procedure is increased, the
variance tends to increase and the squared bias tends to decrease. The op-
posite behavior occurs as the model complexity is decreased. For k-nearest
neighbors, the model complexity is controlled by k.

Typically we would like to choose our model complexity to trade bias
off with variance in such a way as to minimize the test error. An obvious
estimate of test error is the training error 1

N

∑
i(yi − ŷi)

2. Unfortunately
training error is not a good estimate of test error, as it does not properly
account for model complexity.

Figure 2.11 shows the typical behavior of the test and training error, as
model complexity is varied. The training error tends to decrease whenever
we increase the model complexity, that is, whenever we fit the data harder.
However with too much fitting, the model adapts itself too closely to the
training data, and will not generalize well (i.e., have large test error). In

that case the predictions f̂(x0) will have large variance, as reflected in the
last term of expression (2.46). In contrast, if the model is not complex
enough, it will underfit and may have large bias, again resulting in poor
generalization. In Chapter 7 we discuss methods for estimating the test
error of a prediction method, and hence estimating the optimal amount of
model complexity for a given prediction method and training set.
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Cross-validation

A simple and systematic procedure to estimate the risk (and to optimize
the model’s parameters)

1 Randomly divide the training set (of size n) into K (almost) equal
portions, each of size K/n

2 For each portion, fit the model with different parameters on the
K − 1 other groups and test its performance on the left-out group

3 Average performance over the K groups, and take the parameter
with the smallest average performance.

Taking K = 5 or 10 is recommended as a good default choice.

Complexity: multiply by K
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Outline

1 Introduction

2 Standard machine learning
Dimension reduction: PCA
Clustering: k-means
Regression: ridge regression
Classification: kNN, logistic regression and SVM
Nonlinear models: kernel methods

3 Scalability issues
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Motivation

Predict the category of a data

2 or more (sometimes many) categories
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k-nearest neigbors (kNN)16 2. Overview of Supervised Learning

1−Nearest Neighbor Classifier
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FIGURE 2.3. The same classification example in two dimensions as in Fig-
ure 2.1. The classes are coded as a binary variable (BLUE = 0, ORANGE = 1), and
then predicted by 1-nearest-neighbor classification.

2.3.3 From Least Squares to Nearest Neighbors

The linear decision boundary from least squares is very smooth, and ap-
parently stable to fit. It does appear to rely heavily on the assumption
that a linear decision boundary is appropriate. In language we will develop
shortly, it has low variance and potentially high bias.

On the other hand, the k-nearest-neighbor procedures do not appear to
rely on any stringent assumptions about the underlying data, and can adapt
to any situation. However, any particular subregion of the decision bound-
ary depends on a handful of input points and their particular positions,
and is thus wiggly and unstable—high variance and low bias.

Each method has its own situations for which it works best; in particular
linear regression is more appropriate for Scenario 1 above, while nearest
neighbors are more suitable for Scenario 2. The time has come to expose
the oracle! The data in fact were simulated from a model somewhere be-
tween the two, but closer to Scenario 2. First we generated 10 means mk

from a bivariate Gaussian distribution N((1, 0)T , I) and labeled this class
BLUE. Similarly, 10 more were drawn from N((0, 1)T , I) and labeled class
ORANGE. Then for each class we generated 100 observations as follows: for
each observation, we picked an mk at random with probability 1/10, and

(Hastie et al. The elements of statistical learning. Springer, 2001.)

Training set S = {(x1, y1), . . . , (xn, yn)} ⊂ Rd × {−1, 1}
No training

Given a new point x ∈ Rd , predict the majority class among its k
nearest neighbors (take k odd)
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kNN properties

Uniform Bayes consistency (Stone, 1977)

Take k =
√
n (for example)

Let P be any distribution over (X ,Y ) pairs

Assume training data are random pairs sampled i.i.d. according to P

Then the k-NN classifier f̂n satisfies almost surely:

lim
n→+∞

P(f̂ (X ) 6= Y ) = inf
f measurable

P(f (X ) 6= Y )

But ”no free lunch”:

The speed of convergence to the best classifier can be arbitrarily
slow
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kNN complexity

Complexity:

Memory: storing X is O(nd)

Training time: 0 (the best!)

Prediction: O(nd) for each test point (outch!)
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Linear models for classification

Training set S = {(x1, y1), . . . , (xn, yn)} ⊂ Rd × {−1, 1}
Fit a linear function

fβ(x) = β>x

The prediction on a new point x ∈ Rd is:
{

+1 if fβ(x) > 0 ,

−1 otherwise.
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The 0/1 loss

The 0/1 loss measures if a prediction is correct or not:

`0/1 (f (x), y)) = 1 (yf (x) < 0) =

{
0 if y = sign (f (x))

1 otherwise.

It is them tempting to learn fβ(x) = β>x by solving:

min
β∈Rp

1

n

n∑

i=1

`0/1 (fβ (xi ) , yi )

︸ ︷︷ ︸
misclassification rate

+ λ‖β ‖2
2︸ ︷︷ ︸

regularization

However:

The problem is non-smooth, and typically NP-hard to solve
The regularization has no effect since the 0/1 loss is invariant by
scaling of β
In fact, no function achieves the minimum when λ > 0 (why?)
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The logistic loss

An alternative is to define a probabilistic model of y parametrized by
f (x), e.g.:

∀y ∈ {−1, 1} , p (y | f (x)) =
1

1 + e−yf (x)
= σ (yf (x))

−5 0 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

sigma(u)
sigma(−u)

The logistic loss is the negative conditional likelihood:

`logistic (f (x), y) = − ln p (y | f (x)) = ln
(

1 + e−yf (x)
)
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Ridge logistic regression
(Le Cessie and van Houwelingen, 1992)

min
β∈Rp

J(β) =
1

n

n∑

i=1

ln
(

1 + e−yiβ
>xi
)

+ λ‖β‖2
2

Can be interpreted as a regularized conditional maximum likelihood
estimator

No explicit solution, but smooth convex optimization problem that
can be solved numerically
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Solving ridge logistic regression

min
β

J(β) =
1

n

n∑

i=1

ln
(

1 + e−yiβ
>xi
)

+ λ‖β‖2
2

No explicit solution, but convex problem with:

∇βJ(β) = −1

n

n∑

i=1

yixi

1 + eyiβ>xi
+ 2λβ

= −1

n

n∑

i=1

yi [1− Pβ(yi | xi )] xi + 2λβ

∇2
βJ(β) =

1

n

n∑

i=1

xix
>
i eyiβ

>xi

(
1 + eyiβ>xi

)2
+ 2λI

=
1

n

n∑

i=1

Pβ(1 | xi ) (1− Pβ(1 | xi )) xix
>
i + 2λI
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Solving ridge logistic regression (cont.)

min
β

J(β) =
1

n

n∑

i=1

ln
(

1 + e−yiβ
>xi
)

+ λ‖β‖2
2

The solution can then be found by Newton-Raphson iterations:

βnew ← βold −
[
∇2
βJ
(
βold

)]−1
∇βJ

(
βold

)
.

Each step is equivalent to solving a weighted ridge regression
problem (left as exercise)

This method is therefore called iteratively reweighted least squares
(IRLS).

Complexity O(iterations ∗ (nd2 + d3))
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Large-margin classifiers

For any f : Rd → R, the margin of f on an (x , y) pair is

yf (x)

Large-margin classifiers fit a classifier by maximizing the margins on
the training set:

min
β

n∑

i=1

ϕ (yi fβ(xi )) + λβ>β

for a convex, non-increasing function ϕ : R→ R+
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Loss function examples

Loss Method ϕ(u)

0-1 none 1(u ≤ 0)
Hinge Support vector machine (SVM) max (1− u, 0)

Logistic Logistic regression log (1 + e−u)

Square Ridge regression (1− u)2

Exponential Boosting e−u
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Which ϕ?

Computation

ϕ convex means we need to solve a convex optimization problem.
A ”good” ϕ may be one which allows for fast optimization

Theory

Most ϕ lead to consistent estimators (see next slides)
Some may be more efficient
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A tiny bit of learning theory

Assumptions and notations

Let P be an (unknown) distribution on X × Y, and
η(x) = P(Y = 1 |X = x) a measurable version of the conditional
distribution of Y given X

Assume the training set Sn = (Xi ,Yi )i=1,...,n are i.i.d. random
variables according to P.

The risk of a classifier f : X → R is R(f ) = P (sign(f (X )) 6= Y )

The Bayes risk is
R∗ = inf

f measurable
R(f )

which is attained for f ∗(x) = η(x)− 1/2

The empirical risk of a classifier f : X → R is

Rn(f ) =
1

n

n∑

i=1

1 (sign(f (Xi )) 6= Yi )
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ϕ-risk

Let the empirical ϕ-risk be the empirical risk optimized by a
large-margin classifier:

Rn
ϕ(f ) =

1

n

n∑

i=1

ϕ (Yi f (Xi ))

It is the empirical version of the ϕ-risk

Rϕ(f ) = E[ϕ (Yf (X ))]

Can we hope to have a small risk R(f ) if we focus instead on the
ϕ-risk Rϕ(f )?
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A small ϕ-risk ensures a small 0/1 risk

Theorem (?)

Let ϕ : R→ R+ be convex, non-increasing, differentiable at 0 with
ϕ′(0) < 0. Let f : X → R measurable such that

Rϕ(f ) = min
g measurable

Rϕ(g) = R∗ϕ .

Then
R(f ) = min

g measurable
R(g) = R∗ .

Remarks:

This tells us that, if we know P, then minimizing the ϕ-risk is a
good idea even if our focus is on the classification error.

The assumptions on ϕ can be relaxed; it works for the broader class
of classification-calibrated loss functions (?).

More generally, we can show that if Rϕ(f )− R∗ϕ is small, then
R(f )− R∗ is small too (?).
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A small ϕ-risk ensures a small 0/1 risk

Proof sketch:
Condition on X = x :

Rϕ(f |X = x) = E [ϕ (Yf (X )) |X = x ] = η(x)ϕ (f (x)) + (1− η(x))ϕ (−f (x))

Rϕ(−f |X = x) = E [ϕ (−Yf (X )) |X = x ] = η(x)ϕ (−f (x)) + (1− η(x))ϕ (f (x))

Therefore:

Rϕ(f |X = x)− Rϕ(−f |X = x) = [2η(x)− 1]× [ϕ (f (x))− ϕ (−f (x))]

This must be a.s. ≤ 0 because Rϕ(f ) ≤ Rϕ(−f ), which implies:

if η(x) > 1
2 , ϕ (f (x)) ≤ ϕ (−f (x)) =⇒ f (x) ≥ 0

if η(x) < 1
2 , ϕ (f (x)) ≥ ϕ (−f (x)) =⇒ f (x) ≤ 0

These inequalities are in fact strict thanks to the assumptions we made on ϕ
(left as exercice). �
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SVM (Boser et al., 1992)

min
β∈Rp

n∑

i=1

max
(

0, 1− yiβ
>xi

)
+ λβ>β

A non-smooth convex optimization problem (convex quadratic
program)

Equivalent to the dual problem

max
α∈Rn

2α>Y − α>XX>α s.t. 0 ≤ yiαi ≤
1

2λ
for i = 1, . . . , n

The solution β∗ of the primal is obtained from the solution α∗ of
the dual:

β∗ = X>α∗ fβ∗(x) = (β∗)>x = (α∗)>Xx

Training complexity: O(n2) to store XX>, O(n3) to find α∗

Prediction: O(d) for (β∗)>x , O(nd) for (α∗)>Xx
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Outline

1 Introduction

2 Standard machine learning
Dimension reduction: PCA
Clustering: k-means
Regression: ridge regression
Classification: kNN, logistic regression and SVM
Nonlinear models: kernel methods

3 Scalability issues
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Model

Learn a function f : Rd → R of the form

f (x) =
n∑

i=1

αiK (xi , x)

For a positive definite (p.d.) kernel K : Rd × Rd → R, such as

Linear K (x , x ′) = x>x ′

Polynomial K (x , x ′) =
(
x>x ′ + c

)p

Gaussian K (x , x ′) = exp

(
−‖ x − x ′ ‖2

2σ2

)

Min/max K (x , x ′) =
d∑

i=1

min(|xi |, |x ′i |)
max(|xi |, |x ′i |)
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Feature space

A function K : Rd × Rd → R is a p.d. kernel if and only if there
existe a mapping Φ : Rd → RD , for some D ∈ N ∪ {+∞}, such that

∀x , x ′ ∈ Rd , K (x , x ′) = Φ(x)>Φ(x ′)

Surprise: all functions in the previous slide are kernels! (sometime
with D = +∞)

Exercice: can you prove it?
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Example: polynomial kernel

2R

x1

x2

x1

x2

2

For ~x = (x1, x2)> ∈ R2, let ~Φ(~x) = (x2
1 ,
√

2x1x2, x
2
2 ) ∈ R3:

K (~x , ~x ′) = x2
1x
′2
1 + 2x1x2x

′
1x
′
2 + x2

2x
′2
2

=
(
x1x
′
1 + x2x

′
2

)2

=
(
~x>~x ′

)2
.
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From α ∈ Rn to β ∈ RD

n∑

i=1

αiK (xi , x) =
n∑

i=1

αiΦ(xi )
>Φ(x) = β>Φ(x)

for β =
∑n

i=1 αiΦ(xi ).

2R

x1

x2

x1

x2

2
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Learning

2R

x1

x2

x1

x2

2

We can learn f (x) =
∑n

i=1 αiK (xi , x) by fitting a linear model
β>Φ(x) in the feature space

Example: ridge regression / logistic regression / SVM

min
β∈RD

n∑

i=1

`(yi , β
>Φ(xi )) + λβ>β

But D can be very large, even infinite...
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Kernel tricks

K (x , x ′) = Φ(x)>Φ(x ′) can be quick to compute even if D is large
(even infinite)

For a set of training samples {x1, . . . , xn} ⊂ Rd let Kn the n × n
Gram matrix:

[Kn]ij = K (xi , xj)

For β =
∑n

i=1 αiΦ(xi ) we have

β>Φ(xi ) = [Kα]i and β>β = α>Kα

We can therefore solve the equivalent problem in α ∈ Rn

min
α∈Rn

n∑

i=1

`(yi , [Kα]i ) + λα>Kα
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Example: kernel ridge regression (KRR)

min
β∈Rd

n∑

i=1

(
yi − β>Φ(xi )

)2
+ λβ>β

Solve in RD :

β̂ =
(

Φ(X )>Φ(X ) + λI
)−1

︸ ︷︷ ︸
D×D

Φ(X )>Y

Solve in Rn:
α̂ = (K + λI )−1

︸ ︷︷ ︸
n×n

Y
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KRR with Gaussian RBF kernel

min
β∈Rd

n∑

i=1

(
yi − β>Φ(xi )

)2
+ λβ>β K (x , x ′) = exp

(‖ x − x ′ ‖2

2σ2

)
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KRR with Gaussian RBF kernel

min
β∈Rd

n∑

i=1

(
yi − β>Φ(xi )

)2
+ λβ>β K (x , x ′) = exp

(‖ x − x ′ ‖2

2σ2

)
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KRR with Gaussian RBF kernel

min
β∈Rd

n∑

i=1

(
yi − β>Φ(xi )

)2
+ λβ>β K (x , x ′) = exp

(‖ x − x ′ ‖2

2σ2

)
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KRR with Gaussian RBF kernel

min
β∈Rd

n∑

i=1

(
yi − β>Φ(xi )

)2
+ λβ>β K (x , x ′) = exp

(‖ x − x ′ ‖2

2σ2

)
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KRR with Gaussian RBF kernel

min
β∈Rd

n∑

i=1
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KRR with Gaussian RBF kernel

min
β∈Rd

n∑

i=1

(
yi − β>Φ(xi )

)2
+ λβ>β K (x , x ′) = exp
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KRR with Gaussian RBF kernel

min
β∈Rd

n∑

i=1

(
yi − β>Φ(xi )

)2
+ λβ>β K (x , x ′) = exp
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KRR with Gaussian RBF kernel

min
β∈Rd

n∑

i=1
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yi − β>Φ(xi )
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KRR with Gaussian RBF kernel

min
β∈Rd

n∑

i=1

(
yi − β>Φ(xi )

)2
+ λβ>β K (x , x ′) = exp
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KRR with Gaussian RBF kernel

min
β∈Rd

n∑

i=1

(
yi − β>Φ(xi )

)2
+ λβ>β K (x , x ′) = exp
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KRR with Gaussian RBF kernel

min
β∈Rd

n∑

i=1

(
yi − β>Φ(xi )

)2
+ λβ>β K (x , x ′) = exp
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KRR with Gaussian RBF kernel

min
β∈Rd

n∑

i=1

(
yi − β>Φ(xi )

)2
+ λβ>β K (x , x ′) = exp

(‖ x − x ′ ‖2

2σ2
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Complexity

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●
●
●
●●

●

●

●

●
●

●

●
●● ●

●

●

●

●

●
●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

● ●
●

●

●

●

●●
●

●

●

●

●

●

0 2 4 6 8 10

−
1

0
1

2

lambda = 1

x

y

Compute K : O(dn2)

Store K : O(n2)

Solve α: O(n2∼3)

Compute f (x) for one x : O(nd)

Unpractical for n > 10 ∼ 100k
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Outline

1 Introduction

2 Standard machine learning
Dimension reduction: PCA
Clustering: k-means
Regression: ridge regression
Classification: kNN, logistic regression and SVM
Nonlinear models: kernel methods

3 Scalability issues
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What is ”large-scale”?

Data cannot fit in RAM
Algorithm cannot run on a single machine in reasonable time
(algorithm-dependent)
Sometimes even O(n) is too large! (e.g., nearest neighbor in a
database of O(B+) items)
Many tasks / parameters (e.g., image categorization in O(10M)
classes)
Streams of data
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Things to worry about

Training time (usually offline)

Memory requirements

Test time

Complexities so far

Method Memory Training time Test time

PCA O(d2) O(nd2) O(d)
k-means O(nd) O(ndk) O(kd)

Ridge regression O(d2) O(nd2) O(d)
kNN O(nd) 0 O(nd)

Logistic regression O(nd) O(nd2) O(d)
SVM, kernel methods O(n2) O(n3) O(nd)
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Techniques for large-scale ML

Understand modern architecture, and how to distribute data /
computation (cf C. Azencott)

Trade optimization accuracy for speed (cf F. Bach)

Know the tricks, eg, for deep learning (cf F. Moutarde)

Randomization helps (cf friday)
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