Large-Scale Machine Learning:
Randomized techniques

Jean-Philippe Vert

jean-philippe.vert@{mines-paristech,curie,ens}.fr

PSL % D

ENS RESEARCH UNIVERSITY PARIS |nSt|tUtcu rie MlNES
Scois Rossis Together,let's beat cancer. Pari<sTech

LLLLLLLL

Outline

@ Stochastic optimization for empirical risk minimization
e Random projections for dimension reduction

© Random features for nonlinear embedding

e Approximate NN

© Shingling, hashing, sketching

2/53

Scalability issues

Method Memory | Training time | Test time
PCA O(d?) O(nd?) O(d)
k-means O(nd) O(ndk) O(kd)
Ridge regression 0(d?) O(nd?) O(d)
kNN O(nd) 0 O(nd)
Logistic regression O(nd) O(nd?) O(d)
SVM, kernel methods | O(n?) o(n®) O(nd)

X o(n*)!

3/53

Today's topic

@ Trade exactness for scalability
o Compress, sketch, hash data in a smart way

@ Randomization helps!

o E.g., sampling methods to approximate a mean value

4/53

Outline

@ Stochastic optimization for empirical risk minimization
e Random projections for dimension reduction

© Random features for nonlinear embedding

e Approximate NN

© Shingling, hashing, sketching

5/53

Motivation

o Classical learning theory analyzes the trade-off between:
e approximation error (how well we approximate the true function)
e estimation errors (how well we estimate the parameters)

Approximation error

@ But reaching the best trade-off for a given n may be impossible with
limited computational resources

@ We should include in the trade-off the computational budget, and
see which optimization algorithm gives the best trade-off!

e Seminal paper of Bottou and Bousquet (2008)

6

53

Classical ERM setting

Goal: learn a function f : R? = Y (¥ =R or {~1,1})
P unknown distribution over RY x)

Training set: S = {(X1, Y1), ..., (Xn, Ya)} C RY x Y i.i.d. following
P

Fix a class of functions F C {f -RY — R}
Choose a loss £(y, f(x))

Learning by empirical risk minimization

(]

. 1 ¢
fo € arg min Ralf] = — > e(YL (X))
i=1

Hope that f, has a small risk:

R[fa] = EC(Y, fa(X))

53

Classical ERM setting

@ The best possible risk is

R*= min RI[f]
FRISY

@ The best achievable risk over F is
R% = min R[f
F=mn []
@ We then have the decomposition
R[f)] — R* = R[f)] — R + R — R,
—_— ~—_—

estimation error €est approximation errror €zpp

Approximation error

Optimization error

@ Solving the ERM problem may be hard (when n and d are large)

o Instead we usually find an approximate solution #, that satisfies
Ralfal < Ralfal + p
@ The excess risk of f,, is then

e=Rlf] —R* = Rlfa] — R[fa] + €est + €app
—_—————

optimization error eopt

53

A new trade-off

€ = €app + €est + Eopt
Problem
@ Choose F, n, p to make € as small as possible
@ Subject to a limit on n and on the computation time T

Table 1: Typical variations when F, n, and p increase.

F n p
Eapp (approximation error) Y\
Eost (estimation error) PARRN
Eopt (optimization error) e A
T (computation time) S 0N

Large-scale or small-scale?
@ Small-scale when constraint on n is active
o Large-scale when constraint on T is active

10/53

Comparing optimization methods

n
in Ralfsl =S £(yi, fa(x;
semin_ | Ralfs] ; (i fa(xi))

o Gradient descent (GD):

ORn(f5,)
1

Bry1 < Bt

@ Second-order gradient descent (2GD), assuming Hessian H known

ORA(fs,
B o Ol

@ Stochastic gradient descent (SGD):

Qag(yta fﬁt(Xt))

Be1 < Bt — " 93

11/53

Results (Bottou and Bousquet, 2008)

Algorithm Cost of one Iterations Time to reach Time to reach
iteration to reach p accuracy p E < c(Eapp +€)
. %k 2
GD O(nd) @] (K log %) (@] (ndn log %) (@] (gl/(, log %)
2GD O(d* + nd) (@] (log log %) (9(((12 + nd) log log %) @] (Ef% log é log log %)
vi? 1 dvr? dvk?

@ « € [1/2,1] comes from the bound on £.5; and depends on the data
@ In the last column, n and p are optimized to reach ¢ for each method
@ 2GD optimizes much faster than GD, but limited gain on the final
performance limited by ¢ 1/® coming from the estimation error
e SGD:
o Optimization speed is catastrophic
o Learning speed is the best, and independent of «
@ This suggests that SGD is very competitive (and has become the de
facto standard in large-scale ML)

12/53

[[lustration

e Results: Linear SVM
0y, y) =max{0,1 —yy} A =0.0001

Training Time Primal cost Test Error

SVMLight 23,642 secs 0.2275 6.02%
SVMPerf 66 secs 0.2278 6.03%
SGD 1.4 secs 0.2275 6.02%

e Results: Log-Loss Classifier
Uy, y) =log(1+exp(—yy)) A= 0.00001

Training Time Primal cost Test Error

TRON(LibLinear, ¢ = 0.01) 30 secs 0.18907 5.68%
TRON(LibLinear, £ =0.001) 44 secs 0.18890 5.70%
SGD 2.3 secs 0.18893 5.66%

https://bigdata2013.sciencesconf.org/conference/bigdata2013/pages/bottou.pdf

13/53

https://bigdata2013.sciencesconf.org/conference/bigdata2013/pages/bottou.pdf

Outline

@ Stochastic optimization for empirical risk minimization
e Random projections for dimension reduction

© Random features for nonlinear embedding

e Approximate NN

© Shingling, hashing, sketching

14 /53

Issues when d is large

o Affects scalability of algorithms, e.g., O(nd) for kNN or O(d®) for
ridge regression

@ Hard to visualize

@ (Sometimes) counterintuitive phenomena in high dimension, e.g.,
concentration of measure for Gaussian data

d=1 d=10 d=100

200 300
100 150

Frequency

100
50

r T T T T T 1 r T T T T T 1 r T T T T T 1
00 05 10 15 20 25 30 00 05 10 15 20 25 30 00 05 10 15 20 25 30

IIxlifsart(k) IIxli/sart(k) |Ixll/sart(k)

o Statistical inference degrades when d increases (curse of dimension)

15/53

Dimension reduction with PCA

Projects data onto k < d dimensions that captures the largest
amount of variance

Also minimizes total reconstruction errors:

manHx, Ms, (x) 2

But computational expensive: O(nd?)

No theoretical garantee on distance preservation

16 /53

Linear dimension reduction

X = X x R
R S
nxk nxd dxk

o Can we find R efficiently?
@ Can we preserve distances?

Vij=1...on [[f(x) = FOg) = 1% = x|l

@ Note: when d > n, we can take k = n and preserve all distances
exactly (kernel trick)

17 /53

Random projections

Simply take a random projection matrix:

f(x) = \}ERTX with R; ~N(0,1)

Theorem (Johnson and Lindenstrauss, 1984)
For any ¢ > 0 and n € N, take
k>4(E/2- 63/3)_1 log(n) ~ e 2 log(n).
Then the following holds with probabiliy at least 1 — 1/n:
Vij=1,....n (L=e)llxi—x > <l f(x) =) > < (Q+e)]x—x |2

@ k does not depend on d!
on=1IM, e=01 — k=~5K
on=1B,¢=0.1 — k=38K

18 /53

Proof (1/3)

@ For a single dimension, g; = rou:

E(q)) = E() u =
E(q)* =u E(rr] Ju=|lu]?

o For the k-dimensional projection f(u) = 1/vVkR u:

| F(u)]? = qu RS0

Ell f(u)]* = kZEq,—IIUII2

o Need to show that || f(u) ||? is concentrated around its mean

19/53

Proof (2/3)

Pl f(u)?>@+e)lul?]
= P [X*(k) > (L + ¢)K]

=P [e)‘x2(k) > e’\(l‘“)k} (for any A > 0)
{ A (k)} e A1te)k (Markov)
= (1—2)\) "2 e 1+ (MGF of x2(k) for 0 < A < 1/2)
= (14)e)"? (take A = ¢/2(1 + €))
< e (¢/2-E/3)k/2 (use log(1 + x) < x — x*/2 + x3/3)
=n2 (take k = 4 (¢2/2 — €2 /3) log(n))

Similarly we get

PIIFIZ<(—o)llulP] <n?

20 /53

Proof (3/3)

@ Apply with u = x; — x; and use linearity of f to show that for an
(xi, ;) pair, the probability of large distortion is < 2n~2
@ Union bound: for all n(n — 1)/2 pairs, the probability that at least
one has large distortion is smaller than
n(n—1) 2 1

o1 0
2 ><n2 n

21/53

Scalability

n=0(1B); d = O(1M) = k= 0O(10K)
Memory: need to store R, O(dk) ~ 40GB
Computation: X x R in O(ndk)
Other random matrices R have similar properties but better
scalability, e.g.:
e "add or subtract” (Achlioptas, 2003), 1 bit/entry, sizexx 1,25GB

R — +1 with probability 1/2
Y71 =1 with probability 1/2

o Fast Johnson-Lindenstrauss transform (Ailon and Chazelle, 2009)
where R = PHD, compute f(x) in O(dlog d)

Sparse Walsh—
JL
Hadamard

kxd dxd dxd

+1

H_

1

+1

Outline

@ Stochastic optimization for empirical risk minimization
e Random projections for dimension reduction

© Random features for nonlinear embedding

e Approximate NN

© Shingling, hashing, sketching

23/53

Motivation

Kernel Phi JL random projection

Rt e« = >R te, R‘4 o @

g Y
0 R 0 O\ 00\ |
x

o
o

Random features?

24 /53

Fourier feature space

Example: Gaussian kernel

x—x' 2 . , w 2
e_ll . I _ 1 ; / e'wT(X_X)e_ I 2H duw
(2m)2 Jre

= E, cos (wT(x — x'))

=E.p {2 cos (wa + b) cos <wa’ - bﬂ

with
1 _llwl?

(2m)?
This is of the form K(x,x") = CD(X)TCD(x’) with D = 4-00:

w ~ p(dw) =

Q

¢RI L, ((Rd,p(dw)) % ([0, 27r],Z/I)>

e 2 dw, b ~U([0,2n]) .

25 /53

Random Fourier features (Rahimi and Recht, 2008)

@ Fori=1,..., k, sample randomly:
(wi, bi) ~ p(dw) x U ([0, 27])

@ Create random features:

2
Vx e R, fi(x) = \/; cos (w,-Tx + b;)

' /] \ / \ coJT x+b

26 /53

Random Fourier features (Rahimi and Recht, 2008)
For any x, x’ € R, it holds

E [f(x)Tf(x')] = Ek: E [fi(x)f(x)]
i=1
- % é E [2 cos (wTX + b) cos <wTX' + b)}
= K(x,x")

and by Hoeffding's inequality,

ke?

P H F)TF(X) — K(x, x)] > e] <2e7 5

This allows to approximate learning with the Gaussian kernel with a
simple linear model in k dimensions!

27 /53

Generalization

A translation-invariant (t.i.) kernel is of the form

K(x,x") = ¢(x — xX)

Bochner's theorem

For a continuous function ¢ : R — R, K is p.d. if and only if ¢ is the
Fourier-Stieltjes transform of a symmetric and positive finite Borel
measure ;1 € M (R?):

O I ®

Just sample w; ~ Z(ﬂ({:; and b; ~ U ([0, 27]) to approximate any t.i.
kernel K with random features

\/zcos (w,-Tx + b,-)

28 /53

Examples

K(X,X/) — QD(X _ X/) _ / e—in(x—X/)dN(w)

Rd
Kernel o(x) (dw)
Gaussian | exp (— I ’(2”2) (27) 9% exp — <|| w2||2
k
Laplace | exp(—| x|1) [T, m
Cauchy | T[22 ellwlh

29 /53

Performance (Rahimi and Recht, 2008)

Dataset Fourier+LS Binning+LS CVM Exact SVM
CPU 3.6% 5.3% 5.5% 11%
regression 20 secs 3 mins 51 secs 31 secs
6500 instances 21 dims D = 300 P = 350 ASVM
Census 5% 7.5% 8.8% 9%
regression 36 secs 19 mins 7.5 mins 13 mins
18,000 instances 119 dims D = 500 P =30 SVMTorch
Adult 14.9% 15.3% 14.8% 15.1%
classification 9 secs 1.5 mins 73 mins 7 mins
32,000 instances 123 dims D = 500 P =30 svmlight
Forest Cover 11.6% 2.2% 2.3% 2.2%
classification 71 mins 25 mins 7.5 hrs 44 hrs
522,000 instances 54 dims D = 5000 P =50 1ibSVM
KDDCUP 99 (see footnote) 7.3% 7.3% 6.2% (18%) 8.3%
classification 1.5 min 35 mins 1.4 secs (20 secs) <1s
4,900,000 instances 127 dims D =50 P =10 SVM+sampling

30/53

Outline

@ Stochastic optimization for empirical risk minimization
e Random projections for dimension reduction

© Random features for nonlinear embedding

e Approximate NN

© Shingling, hashing, sketching

31/53

Motivation

Database

Documents, Images, Videos,

o Database S = {x1,...,x,} C RY, query g € R?

e Naively: O(nd) to compute distances || g — x; || and find the
smallest one

@ For n=1B, d = 10k, it takes 15 hours

@ Projections RY — R¥ with k < d is not good enough if n is large s

ANN

Given € > 0, the approximate nearest neighbor (ANN) problem is:

Find y € S such that Hq—y||§(1—|—e)mig||q—x||
x€

Two popular ANN approaches

© Tree approaches

Recursively partition the data: Divide and Conquer

Expected query time: O(log(n))

Many variants: KDtree, Balltree, PCA-tree, Vantage Point tree
Shown to perform very well in relatively low-dim data

@ Hashing approaches

Each image in database represented as a code
Significant reduction in storage

Expected query time: O(1) or O(n)

Compact codes preferred

33/53

KD tree

o’:’;’ |
s "'o o S5
sgt Q

@ Axis-parallel splits
@ Along the direction of largest variance
@ Split along the median = balanced partitioning

@ Split recursively until each node has a single data point

34 /53

Search in a KD tree

o Finds the leaf of the query in O(log(n))

@ But backtracking is needed to visit other leaves surrounding the cell
@ As d increases, the number of leaves to visit grows exponentially
*]

Complexity: O(nd log(n)) to build the tree, O(nd) to store the
original data

Works fine up to d = 10 ~ 100

35/53

Variants

VP-Tree

36 /53

Variants

Ball tree

PCA tree

Random-
Projection tree

top eigenvector

37

53

Binary code using multiple hashing

hz h1 X X1 X2 X3 Xa
)8 2 0 1 1 0
oXx; va 1 0 1 0
X4 ™Y
o ©)
(] (] o © Yoo
e o o {]
o | X\ x 010 100 111 001

No recursive partitioning, unlike trees

ANN with codes:

X5

110

@ Choose a set of binary hashing functions to design a binary code

@ Index the database = compute codes for all points

© Querying: compute the code of the query, and retrieve the points

with similar codes

38 /53

Hashing
A hash function is a function h: X — Z where

o X is the set of data (R for us)
e Z={1,...,N} is a finite set of codes

hash
keys function hashes
00
John Smith
01
Lisa Smith -
03
04
Sam Doe
05
Sandra Dee .
15

https://en.wikipedia.org/wiki/Hash_function

There is a collision when h(x) = h(x’) for two different entries x # x’

39/53

https://en.wikipedia.org/wiki/Hash_function

Locality sensitive hashing (LSH)

@ Let a random hash function h: X — Z

o It is a LSH with respect to a similarity function sim(x,x’) on X if
there exists a monotonically increasing function f : R — [0, 1] such
that:

vx,x'e X, P [h(x) = h(x')] = f(sim(x, x"))

@ "Probability of collision increases with similarity”

Likely Unlikely
{ o
h 1 L]
—
o ® e 2 oe
Y 3

40/53

Example: simHash

* Tx < O

1 ifrix>
reRY N, Id) h(x)=4t Trx=20
0 otherwise.

LSH with respect to the cosine similarity sim(x,x’) = cos(f) (Goemans
and Williamson, 1995).

41 /53

ANN with LSH

h,4 | h> | Buckets
h (pointers only)
o /1\ 00 00 o & @---
-
0O 01l | » @O ...
- - .p =
10 [E t
- RD s [e 0] mpty
=3
hy, h,: RP - {0,1,2,3} 11 |11 | & -

e hi(q) = hi(x) implies high similarity (locality sensitive)

42 /53

ANN with LSH

Table 1
h}|... |hk |Buckets
00 ... |00 @w ...
00 ... |01 (w0o ..
00 ... |10 Empty
11 ... |11

e 6 o o

Choice of K and L:

Querying: report union of L buckets

n% |
00 | ...
0o | ...
00 | ...

11 ...

Table L

hi
00
o1
10

11

Buckets

Empty

hi(q) = hi(x) implies high similarity (locality sensitive)

Use K contenations, repeated in L tables

o Large K increases precision but decreases recall

o Large L increases recall but also storage

o Optimization is possible to minimize run-time for a given application

42 /53

Choice of K and L

Table 1 Table L
h}|... |hk |Buckets h%|... | Rk |Buckets
00 (... |00 @w ... 00 ... 00 @ =«

00 ... |01 (w0o .. b 00 ... 01 o e -..
00 ... |10 Empty 00 ... (10 ce e
11 ... (11 | ... 11 ... |11 Empty

o Large K increases precision but decreases recall

@ Large L increases recall but also storage

If P(h(x) = h(q)) = S, then

K L
P(x is among the candidate NN) =1 — (1))

43 /53

S-curve

1—(1—5"°

r =

=]
~N st ©
Nt
LI TR (= = R}

[l oo . .. ~

-~ -~ ~0O 0 O (=]
nwnwn Ao
LI L | I
[O

n f | | o

© © < ~ o<

=] =] =] S o

1.0

sajepipued se uasoyd Buiaq Jo Ayljiqeqolyd

Jaccard index

44 /53

LSH for || x — x"[|s?

T b d .
hk(x):v”kxt“J wi ~ T P(wi), be ~uU([o, 8]
i=1
h(x) o 1 2 3 4
w,{x+bk

t

@ P a s-stable distribution, i.e., for any x € R, and any w i.i.d. with
wi~ P, xTw ~ || x||sw?.
@ s-stable distributions exist for p € (0, 2]:
o Gaussian N(0,1) is 2-stable
o Cauchy dx/ (m(1 + x?)) is 1-stable
@ Then P[hk(x) = hi(x")] increases as || x — x"||s decreases

45 /53

Outline

@ Stochastic optimization for empirical risk minimization
e Random projections for dimension reduction

© Random features for nonlinear embedding

e Approximate NN

© Shingling, hashing, sketching

46 /53

Motivation

@ The hashing / LSH trick is a fast random projection to compact
binary codes

o Initially proposed for ANN problems, it can also be used for more
general learning problems

o It is particularly effective when data are first converted to huge
binary vectors, using a specific similarity measure (the resemblance).

@ Applications: texts, time series, images...

47 /53

Shingling and resemblance

e Given some input space X (e.g., texts, times series...), a shingling is
a representation as large binary vector

x e {0,1}°

e Equivalently, represent x as a subset of S, € Q ={0,...,D — 1}
o Example: represent a text by the set of w-shingles it contains, i.e.,
sequences of w words. Typically, w =5, 10° words, D = 10°5, but
very sparse.
@ A common measure of similarity between two such vectors is the
resemblance (a.k.a. Jaccart or Tanimoto similarity):
‘51 N 52‘
R(x1,x) = —————
(x1,x2) S US|
@ But computing R(x1,x2) is expensive, and not scalable for NN
search or machine learning

48 /53

Minwise hashing

o Let m € Sp be a random permutation of Q
o Let hy - {0,1}P — Q assign to S C Q the smallest index of 7(S):

hz(x) = min{m(i) : i € S5}

Theorem (Broder, 1997)

Minwise hashing is a LSH with respect to the resemblance:

P lhr(x1) = hr(x2)] = R(x1,x2)
Proof:

@ The smallest index min(h(x1), hz(x2)) correspond a random
element of 51 U S,

o h(x1) = he(xp) if itisin SN S,
@ This happens with probability R(x1, x2)

49 /53

Applications of minwise hashing

o If we pick k random permutations, we can represent x by
(h1(x),. .., hi(x)) € {0,1}P*
@ Used for ANN, using the general LSH technique discussed earlier
@ Learning linear models as an approximation to learning a nonlinear
function with the resemblance kernel!
@ Various tricks to improve scalability
e b-bit minwise hashing (Li and Konig, 2010): only keep the last b bits
oz hx(x), which reduces the dimensionality of the hashed matrix to
2%k
o One-permutation hashing (Li et al., 2012): use a single permutation,

keep the smallest index in each consecutive block of size k
i, 2 , 3 , 4

1 1 1
0 1 2 3,45 6 7:8 9 10 11,1213 14 15
T T T

1 1 1
™S;) 00 10!11001:0000!0100

1 1 1
uS): 1 001'0010!0000!0100
1 1 1

S): 1100,0000,0010,1000

1This shows in particular that the resemblance is positive definite
50/53

Hash kernel (Shi et al., 2009)

@ Goal: improve the scalability of random projections or minwise
hashing, both in memory (sparsity) and processing time

@ Simple idea:

Let h: [1,d] — [1, k] a hash function

For x € RY (or {0,1}7) let ®(x) € R with

Vi=1,...,k o(x)= > X

Jjel,d]: h(j)=i

" Accumulate coordinates i of x for which h(i) is the same
Repeat L times and concatenate if needed, to limit the effect of
collisions

o Advantages

o No memory needed for projections (vs. LSH)
o No need for dictionnary (just a hash function that can hash anything)
o Sparsity preserving

51/53

Outline

@ Stochastic optimization for empirical risk minimization
e Random projections for dimension reduction

© Random features for nonlinear embedding

e Approximate NN

© Shingling, hashing, sketching

52/53

Conclusion

@ Randomization is a powerful idea to trade exactness for scalability

@ Often in ML, we do not care about exactness, only about a
sufficiently accurate solution

@ Theoretical garanties in high probability (only)

53 /53

References |

D. Achlioptas. Database-friendly random projections: Johnson-lindenstrauss with binary coins.
J. Comput. Syst. Sci., 66(4):671-687, 2003. doi: 10.1016/S0022-0000(03)00025-4. URL
http://dx.doi.org/10.1016/50022-0000(03)00025-4.

N. Ailon and B. Chazelle. The fast Johnson-Lindenstrauss transform and approximate nearest
neighbors. SIAM J. Comput., 39(1):302-322, 2009. doi: 10.1137/060673096. URL
http://dx.doi.org/10.1137/060673096.

L. Bottou and O. Bousquet. The tradeoffs of large scale learning. In J. C. Platt, D. Koller,
Y. Singer, and S. T. Roweis, editors, Adv. Neural. Inform. Process Syst., volume 20, pages
161-168. Curran Associates, Inc., 2008. URL
http://papers.nips.cc/paper/3323-the-tradeoffs-of-large-scale-learning.pdf.

A. Z. Broder. On the resemblance and containment of documents. In Proceedings of the
Compression and Complexity of Sequences, pages 21-29, 1997. doi:
10.1109/SEQUEN.1997.666900. URL
http://dx.doi.org/10.1109/SEQUEN. 1997 .666900.

M. X. Goemans and D. P. Williamson. A general approximation technique for constrained
forest problems. SIAM J. Comput., 24(2):296-317, apr 1995. doi:
10.1137/50097539793242618. URL http://dx.doi.org/10.1137/50097539793242618.

W. B. Johnson and J. Lindenstrauss. Extensions of lipschitz mappings into a hilbert space.
Contemp. Math., 26:189-206, 1984. doi: 10.1090/conm/026/737400. URL
http://dx.doi.org/10.1090/conm/026/737400.

54 /53

http://dx.doi.org/10.1016/S0022-0000(03)00025-4
http://dx.doi.org/10.1137/060673096
http://papers.nips.cc/paper/3323-the-tradeoffs-of-large-scale-learning.pdf
http://dx.doi.org/10.1109/SEQUEN.1997.666900
http://dx.doi.org/10.1137/S0097539793242618
http://dx.doi.org/10.1090/conm/026/737400

References |l

P. Li and A. C. Konig. b-bit minwise hashing. In WWW, pages 671-680, Raleigh, NC, 2010.

P. Li, A. O., and C. hui Z. One permutation hashing. In F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger, editors, Advances in Neural Information Processing
Systems 25, pages 3113-3121. Curran Associates, Inc., 2012. URL
http://papers.nips.cc/paper/4778-one-permutation-hashing.pdf.

A. Rahimi and B. Recht. Random features for large-scale kernel machines. In J. Platt,
D. Koller, Y. Singer, and S. Roweis, editors, Adv. Neural. Inform. Process Syst., volume 20,

pages 1177-1184. Curran Associates, Inc., 2008. URL http://papers.nips.cc/paper/
3182-random-features-for-large-scale-kernel-machines.pdf.

Q. Shi, J. Petterson, G. Dror, J. Langford, A. Smola, and S. Vishwanathan. Hash kernels for
structured data. Journal of Machine Learning Research, 10:2615-2637, 2009.

55 /53

http://papers.nips.cc/paper/4778-one-permutation-hashing.pdf
http://papers.nips.cc/paper/3182-random-features-for-large-scale-kernel-machines.pdf
http://papers.nips.cc/paper/3182-random-features-for-large-scale-kernel-machines.pdf

	Stochastic optimization for empirical risk minimization
	Random projections for dimension reduction
	Random features for nonlinear embedding
	Approximate NN
	Shingling, hashing, sketching

