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Outline

@ Stochastic optimization for empirical risk minimization
e Random projections for dimension reduction

© Random features for nonlinear embedding

e Approximate NN

© Shingling, hashing, sketching
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Scalability issues

Method Memory | Training time | Test time
PCA O(d?) O(nd?) O(d)
k-means O(nd) O(ndk) O(kd)
Ridge regression 0(d?) O(nd?) O(d)
kNN O(nd) 0 O(nd)
Logistic regression O(nd) O(nd?) O(d)
SVM, kernel methods | O(n?) o(n®) O(nd)

X o(n*)!
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Today's topic

@ Trade exactness for scalability
o Compress, sketch, hash data in a smart way

@ Randomization helps!

o E.g., sampling methods to approximate a mean value
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Motivation

o Classical learning theory analyzes the trade-off between:
e approximation error (how well we approximate the true function)
e estimation errors (how well we estimate the parameters)

Approximation error

@ But reaching the best trade-off for a given n may be impossible with
limited computational resources

@ We should include in the trade-off the computational budget, and
see which optimization algorithm gives the best trade-off!

e Seminal paper of Bottou and Bousquet (2008)
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Classical ERM setting

Goal: learn a function f : R? = Y (¥ =R or {~1,1})
P unknown distribution over RY x )

Training set: S = {(X1, Y1), ..., (Xn, Ya)} C RY x Y i.i.d. following
P

Fix a class of functions F C {f -RY — R}
Choose a loss £(y, f(x))

Learning by empirical risk minimization

(]

. 1 ¢
fo € arg min Ralf] = — > e(YL (X))
i=1

Hope that f, has a small risk:

R[fa] = EC(Y, fa(X))

53



Classical ERM setting

@ The best possible risk is

R*= min RI[f]
FRISY

@ The best achievable risk over F is
R% = min R[f
F=mn []
@ We then have the decomposition
R[f)] — R* = R[f)] — R + R — R,
—_— ~—_—

estimation error €est approximation errror €zpp

Approximation error




Optimization error

@ Solving the ERM problem may be hard (when n and d are large)

o Instead we usually find an approximate solution #, that satisfies
Ralfal < Ralfal + p
@ The excess risk of f,, is then

e=Rlf] —R* = Rlfa] — R[fa] + €est + €app
—_—————

optimization error eopt
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A new trade-off

€ = €app + €est + Eopt
Problem
@ Choose F, n, p to make € as small as possible
@ Subject to a limit on n and on the computation time T

Table 1: Typical variations when F, n, and p increase.

F n p
Eapp  (approximation error) Y\
Eost  (estimation error) PARRN
Eopt  (optimization error) e A
T (computation time) S 0N

Large-scale or small-scale?
@ Small-scale when constraint on n is active
o Large-scale when constraint on T is active
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Comparing optimization methods

n
in Ralfsl =S £(yi, fa(x;
semin_ | Ralfs] ; (i fa(xi))

o Gradient descent (GD):

ORn(f5,)
1

Bry1 < Bt

@ Second-order gradient descent (2GD), assuming Hessian H known

ORA(fs,
B o Ol

@ Stochastic gradient descent (SGD):

Qag(yta fﬁt(Xt))

Be1 < Bt — " 93
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Results (Bottou and Bousquet, 2008)

Algorithm  Cost of one Iterations Time to reach Time to reach
iteration to reach p accuracy p E < c(Eapp +€)
. %k 2
GD O(nd) @] (K log %) (@] (ndn log %) (@] ( gl/(, log %)
2GD O(d* + nd) (@] (log log %) (9(((12 + nd) log log %) @] (Ef% log é log log %)
vi? 1 dvr? dvk?

@ « € [1/2,1] comes from the bound on £.5; and depends on the data
@ In the last column, n and p are optimized to reach ¢ for each method
@ 2GD optimizes much faster than GD, but limited gain on the final
performance limited by ¢ 1/® coming from the estimation error
e SGD:
o Optimization speed is catastrophic
o Learning speed is the best, and independent of «
@ This suggests that SGD is very competitive (and has become the de
facto standard in large-scale ML)
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[[lustration

e Results: Linear SVM
0y, y) =max{0,1 —yy} A =0.0001

Training Time Primal cost Test Error

SVMLight 23,642 secs 0.2275 6.02%
SVMPerf 66 secs 0.2278 6.03%
SGD 1.4 secs 0.2275 6.02%

e Results: Log-Loss Classifier
Uy, y) =log(1+exp(—yy)) A= 0.00001

Training Time Primal cost Test Error

TRON(LibLinear, ¢ = 0.01) 30 secs 0.18907 5.68%
TRON(LibLinear, £ =0.001) 44 secs 0.18890 5.70%
SGD 2.3 secs 0.18893 5.66%

https://bigdata2013.sciencesconf.org/conference/bigdata2013/pages/bottou.pdf
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Issues when d is large

o Affects scalability of algorithms, e.g., O(nd) for kNN or O(d®) for
ridge regression

@ Hard to visualize

@ (Sometimes) counterintuitive phenomena in high dimension, e.g.,
concentration of measure for Gaussian data

d=1 d=10 d=100
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Frequency
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IIxlifsart(k) IIxli/sart(k) |Ixll/sart(k)

o Statistical inference degrades when d increases (curse of dimension)
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Dimension reduction with PCA

Projects data onto k < d dimensions that captures the largest
amount of variance

Also minimizes total reconstruction errors:

manHx, Ms, (x) 2

But computational expensive: O(nd?)

No theoretical garantee on distance preservation
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Linear dimension reduction

X = X x R
R S
nxk nxd dxk

o Can we find R efficiently?
@ Can we preserve distances?

Vij=1...on [[f(x) = FOg) = 1% = x|l

@ Note: when d > n, we can take k = n and preserve all distances
exactly (kernel trick)
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Random projections

Simply take a random projection matrix:

f(x) = \}ERTX with  R; ~N(0,1)

Theorem (Johnson and Lindenstrauss, 1984)
For any ¢ > 0 and n € N, take
k>4(E/2- 63/3)_1 log(n) ~ e 2 log(n).
Then the following holds with probabiliy at least 1 — 1/n:
Vij=1,....n (L=e)llxi—x > <l f(x) =) > < (Q+e)]x—x |2

@ k does not depend on d!
on=1IM, e=01 — k=~5K
on=1B,¢=0.1 — k=38K
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Proof (1/3)

@ For a single dimension, g; = rou:

E(q)) = E() u =
E(q)* =u E(rr] Ju=|lu]?

o For the k-dimensional projection f(u) = 1/vVkR u:

| F(u)]? = qu RS0

Ell f(u)]* = kZEq,—IIUII2

o Need to show that || f(u) ||? is concentrated around its mean
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Proof (2/3)

Pl f(u)?>@+e)lul?]
= P [X*(k) > (L + ¢)K]

=P [e)‘x2(k) > e’\(l‘“)k} (for any A > 0)
{ A (k)} e A1te)k (Markov)
= (1—2)\) "2 e 1+ (MGF of x2(k) for 0 < A < 1/2)
= (14 )e)"? (take A = ¢/2(1 + €))
< e (¢/2-E/3)k/2 (use log(1 + x) < x — x*/2 + x3/3)
=n2 (take k = 4 (¢2/2 — €2 /3) log(n))

Similarly we get

PIIFIZ<(—o)llulP] <n?
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Proof (3/3)

@ Apply with u = x; — x; and use linearity of f to show that for an
(xi, ;) pair, the probability of large distortion is < 2n~2
@ Union bound: for all n(n — 1)/2 pairs, the probability that at least
one has large distortion is smaller than
n(n—1) 2 1

o1 0
2 ><n2 n
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Scalability

n=0(1B); d = O(1M) = k= 0O(10K)
Memory: need to store R, O(dk) ~ 40GB
Computation: X x R in O(ndk)
Other random matrices R have similar properties but better
scalability, e.g.:
e "add or subtract” (Achlioptas, 2003), 1 bit/entry, sizexx 1,25GB

R — +1  with probability 1/2
Y71 =1 with probability 1/2

o Fast Johnson-Lindenstrauss transform (Ailon and Chazelle, 2009)
where R = PHD, compute f(x) in O(dlog d)

Sparse Walsh—
JL
Hadamard

kxd dxd dxd

+1

H_

1

+1
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Motivation

Kernel Phi JL random projection

Rt e« = >R te, R‘4 o @

g Y
0 R 0 O\ 00\ |
x

o
o

Random features?
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Fourier feature space

Example: Gaussian kernel

x—x' 2 . , w 2
e_ll . I _ 1 ; / e'wT(X_X )e_ I 2H duw
(2m)2 Jre

= E, cos (wT(x — x'))

=E.p {2 cos (wa + b) cos <wa’ - bﬂ

with
1 _llwl?

(2m)?
This is of the form K(x,x") = CD(X)TCD(x’) with D = 4-00:

w ~ p(dw) =

Q

¢RI L, ((Rd,p(dw)) % ([0, 27r],Z/I)>

e 2 dw, b ~U([0,2n]) .
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Random Fourier features (Rahimi and Recht, 2008)

@ Fori=1,..., k, sample randomly:
(wi, bi) ~ p(dw) x U ([0, 27])

@ Create random features:

2
Vx e R, fi(x) = \/; cos (w,-Tx + b;)

' /] \ / \ coJT x+b
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Random Fourier features (Rahimi and Recht, 2008)
For any x, x’ € R, it holds

E [f(x)Tf(x')] = Ek: E [fi(x)f(x)]
i=1
- % é E [2 cos (wTX + b) cos <wTX' + b)}
= K(x,x")

and by Hoeffding's inequality,

ke?

P H F)TF(X) — K(x, x) ] > e] <2e7 5

This allows to approximate learning with the Gaussian kernel with a
simple linear model in k dimensions!
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Generalization

A translation-invariant (t.i.) kernel is of the form

K(x,x") = ¢(x — xX)

Bochner's theorem

For a continuous function ¢ : R — R, K is p.d. if and only if ¢ is the
Fourier-Stieltjes transform of a symmetric and positive finite Borel
measure ;1 € M (R?):

O I ®

Just sample w; ~ Z(ﬂ({:; and b; ~ U ([0, 27]) to approximate any t.i.
kernel K with random features

\/zcos (w,-Tx + b,-)

28 /53



Examples

K(X,X/) — QD(X _ X/) _ / e—in(x—X/)dN(w)

Rd
Kernel o(x) (dw)
Gaussian | exp (— I ’(2”2) (27) 9% exp — <|| w2||2
k
Laplace | exp(—| x|1) [T, m
Cauchy | T[22 ellwlh

29 /53



Performance (Rahimi and Recht, 2008)

Dataset Fourier+LS Binning+LS CVM Exact SVM
CPU 3.6% 5.3% 5.5% 11%
regression 20 secs 3 mins 51 secs 31 secs
6500 instances 21 dims D = 300 P = 350 ASVM
Census 5% 7.5% 8.8% 9%
regression 36 secs 19 mins 7.5 mins 13 mins
18,000 instances 119 dims D = 500 P =30 SVMTorch
Adult 14.9% 15.3% 14.8% 15.1%
classification 9 secs 1.5 mins 73 mins 7 mins
32,000 instances 123 dims D = 500 P =30 svmlight
Forest Cover 11.6% 2.2% 2.3% 2.2%
classification 71 mins 25 mins 7.5 hrs 44 hrs
522,000 instances 54 dims D = 5000 P =50 1ibSVM
KDDCUP 99 (see footnote) 7.3% 7.3% 6.2% (18%) 8.3%
classification 1.5 min 35 mins 1.4 secs (20 secs) <1s
4,900,000 instances 127 dims D =50 P =10 SVM+sampling
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Motivation

Database

Documents, Images, Videos,

o Database S = {x1,...,x,} C RY, query g € R?

e Naively: O(nd) to compute distances || g — x; || and find the
smallest one

@ For n=1B, d = 10k, it takes 15 hours

@ Projections RY — R¥ with k < d is not good enough if n is large s



ANN

Given € > 0, the approximate nearest neighbor (ANN) problem is:

Find y € S such that Hq—y||§(1—|—e)mig||q—x||
x€

Two popular ANN approaches

© Tree approaches

Recursively partition the data: Divide and Conquer

Expected query time: O(log(n))

Many variants: KDtree, Balltree, PCA-tree, Vantage Point tree
Shown to perform very well in relatively low-dim data

@ Hashing approaches

Each image in database represented as a code
Significant reduction in storage

Expected query time: O(1) or O(n)

Compact codes preferred
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KD tree

o’:’;’ |
s "'o o S5
sgt Q

@ Axis-parallel splits
@ Along the direction of largest variance
@ Split along the median = balanced partitioning

@ Split recursively until each node has a single data point
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Search in a KD tree

o Finds the leaf of the query in O(log(n))

@ But backtracking is needed to visit other leaves surrounding the cell
@ As d increases, the number of leaves to visit grows exponentially
*]

Complexity: O(nd log(n)) to build the tree, O(nd) to store the
original data

Works fine up to d = 10 ~ 100
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Variants

VP-Tree
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Variants

Ball tree

PCA tree

Random-
Projection tree

top eigenvector

37
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Binary code using multiple hashing

hz h1 X X1 X2 X3 Xa
)8 2 0 1 1 0
oXx; va 1 0 1 0
X4 ™Y
o © )
(] (] o © Yoo
e o o { ]
o | X\ x 010 100 111 001

No recursive partitioning, unlike trees

ANN with codes:

X5

110

@ Choose a set of binary hashing functions to design a binary code

@ Index the database = compute codes for all points

© Querying: compute the code of the query, and retrieve the points

with similar codes
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Hashing
A hash function is a function h: X — Z where

o X is the set of data (R for us)
e Z={1,...,N} is a finite set of codes

hash
keys function hashes
00
John Smith
01
Lisa Smith -
03
04
Sam Doe
05
Sandra Dee .
15

https://en.wikipedia.org/wiki/Hash_function

There is a collision when h(x) = h(x’) for two different entries x # x’
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Locality sensitive hashing (LSH)

@ Let a random hash function h: X — Z

o It is a LSH with respect to a similarity function sim(x,x’) on X if
there exists a monotonically increasing function f : R — [0, 1] such
that:

vx,x'e X, P [h(x) = h(x')] = f(sim(x, x"))

@ "Probability of collision increases with similarity”

Likely Unlikely
{ o
h 1 L]
—
o ® e 2 oe
Y 3
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Example: simHash

* Tx < O

1 ifrix>
reRY N, Id)  h(x)=4t Trx=20
0 otherwise.

LSH with respect to the cosine similarity sim(x,x’) = cos(f) (Goemans
and Williamson, 1995).
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ANN with LSH

h,4 | h> | Buckets
h (pointers only)
o /1\ 00 00 o & @---
-
0O 01l | » @O ...
- - .p =
10 [ E t
- RD s [e 0] mpty
=3
hy, h,: RP - {0,1,2,3} 11 |11 | & -

e hi(q) = hi(x) implies high similarity (locality sensitive)
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ANN with LSH

Table 1
h}|... |hk |Buckets
00 ... |00 @w ...
00 ... |01 (w0o ..
00 ... |10  Empty
11 ... |11

e 6 o o

Choice of K and L:

Querying: report union of L buckets

n% |
00 | ...
0o | ...
00 | ...

11 ...

Table L

hi
00
o1
10

11

Buckets

Empty

hi(q) = hi(x) implies high similarity (locality sensitive)

Use K contenations, repeated in L tables

o Large K increases precision but decreases recall

o Large L increases recall but also storage

o Optimization is possible to minimize run-time for a given application
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Choice of K and L

Table 1 Table L
h}|... |hk |Buckets h%|... | Rk |Buckets
00 (... |00 @w ... 00 ... 00 @ =«

00 ... |01 (w0o .. b 00 ... 01 o e -..
00 ... |10 Empty 00 ... (10 ce e
11 ... (11 | ... 11 ... |11 Empty

o Large K increases precision but decreases recall

@ Large L increases recall but also storage

If P(h(x) = h(q)) = S, then

K L
P(x is among the candidate NN) =1 — (1 ) )
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S-curve
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LSH for || x — x"[|s?

T b d .
hk(x):v”kxt“J wi ~ T P(wi),  be ~uU([o, 8]
i=1
h(x) o 1 2 3 4
w,{x+bk

t

@ P a s-stable distribution, i.e., for any x € R, and any w i.i.d. with
wi~ P, xTw ~ || x||sw?.
@ s-stable distributions exist for p € (0, 2]:
o Gaussian N(0,1) is 2-stable
o Cauchy dx/ (m(1 + x?)) is 1-stable
@ Then P[hk(x) = hi(x")] increases as || x — x"||s decreases
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Motivation

@ The hashing / LSH trick is a fast random projection to compact
binary codes

o Initially proposed for ANN problems, it can also be used for more
general learning problems

o It is particularly effective when data are first converted to huge
binary vectors, using a specific similarity measure (the resemblance).

@ Applications: texts, time series, images...
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Shingling and resemblance

e Given some input space X (e.g., texts, times series...), a shingling is
a representation as large binary vector

x e {0,1}°

e Equivalently, represent x as a subset of S, € Q ={0,...,D — 1}
o Example: represent a text by the set of w-shingles it contains, i.e.,
sequences of w words. Typically, w =5, 10° words, D = 10°5, but
very sparse.
@ A common measure of similarity between two such vectors is the
resemblance (a.k.a. Jaccart or Tanimoto similarity):
‘51 N 52‘
R(x1,x) = —————
(x1,x2) S US|
@ But computing R(x1,x2) is expensive, and not scalable for NN
search or machine learning
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Minwise hashing

o Let m € Sp be a random permutation of Q
o Let hy - {0,1}P — Q assign to S C Q the smallest index of 7(S):

hz(x) = min{m(i) : i € S5}

Theorem (Broder, 1997)

Minwise hashing is a LSH with respect to the resemblance:

P lhr(x1) = hr(x2)] = R(x1,x2)
Proof:

@ The smallest index min(h(x1), hz(x2)) correspond a random
element of 51 U S,

o h(x1) = he(xp) if itisin SN S,
@ This happens with probability R(x1, x2)
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Applications of minwise hashing

o If we pick k random permutations, we can represent x by
(h1(x),. .., hi(x)) € {0,1}P*
@ Used for ANN, using the general LSH technique discussed earlier
@ Learning linear models as an approximation to learning a nonlinear
function with the resemblance kernel!
@ Various tricks to improve scalability
e b-bit minwise hashing (Li and Konig, 2010): only keep the last b bits
oz hx(x), which reduces the dimensionality of the hashed matrix to
2%k
o One-permutation hashing (Li et al., 2012): use a single permutation,

keep the smallest index in each consecutive block of size k
i, 2 , 3 , 4

1 1 1
0 1 2 3,45 6 7:8 9 10 11,1213 14 15
T T T

1 1 1
™S;) 00 10!11001:0000!0100

1 1 1
uS): 1 001'0010!0000!0100
1 1 1

S): 1100,0000,0010,1000

1This shows in particular that the resemblance is positive definite
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Hash kernel (Shi et al., 2009)

@ Goal: improve the scalability of random projections or minwise
hashing, both in memory (sparsity) and processing time

@ Simple idea:

Let h: [1,d] — [1, k] a hash function

For x € RY (or {0,1}7) let ®(x) € R with

Vi=1,...,k o(x)= > X

Jjel,d]: h(j)=i

" Accumulate coordinates i of x for which h(i) is the same
Repeat L times and concatenate if needed, to limit the effect of
collisions

o Advantages

o No memory needed for projections (vs. LSH)
o No need for dictionnary (just a hash function that can hash anything)
o Sparsity preserving
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Conclusion

@ Randomization is a powerful idea to trade exactness for scalability

@ Often in ML, we do not care about exactness, only about a
sufficiently accurate solution

@ Theoretical garanties in high probability (only)
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