Statistical Sequence Modelling

Jean-Philippe Vert
Jean-Philippe.Vert@mines.org
http://www.dma.ens.fr/users/vert

May 21, 2001
Outline
Outline

1. Adaptive Context Trees : Theory
Outline

1. Adaptive Context Trees : Theory
2. Adaptive Context Trees : Applications
Outline

1. Adaptive Context Trees : Theory
2. Adaptive Context Trees : Applications
3. Combining ACT with HMM?
Outline

1. Adaptive Context Trees: Theory
2. Adaptive Context Trees: Applications
3. Combining ACT with HMM?
4. From sequence modelling to classification...
Part 1

Adaptive Context Trees : Theory
Motivations
Motivations

- A sequence (DNA, protein...) is a complex object
Motivations

• A sequence (DNA, protein...) is a complex object

• A probabilistic model is a probability distribution over the set of sequences
Motivations

- A sequence (DNA, protein...) is a complex object
- A probabilistic model is a probability distribution over the set of sequences
- It can be used to compare two sequences or a sequence and a model
Classical models: Markov
Classical models: Markov

- A model is characterized by the conditional distribution $P(Y | X)$ where X is the past, Y is the next character.
Classical models: Markov

• A model is characterized by the conditional distribution \(P(Y | X) \) where \(X \) is the past, \(Y \) is the next character.

• Markov models: \(P(Y | X) \) only depends on the last \(D \) letters of \(X \).
Classical models: Markov

- A model is characterized by the conditional distribution $P(Y \mid X)$ where X is the past, Y is the next character.

- Markov models: $P(Y \mid X)$ only depends on the last D letters of X

- The number of parameters is exponential with $D!$
Context tree model
Context tree model

- Maps any past sequence \(X \) into its longest suffix \(S(X) \)
Context tree model

- Maps any past sequence X into its longest suffix $S(X)$
- A probability distribution θ_s is attached to each node $s \in S$:

$$P_{S,\theta}(Y \mid X) = \theta_{S(X)}(Y)$$
The estimation issue

- Let $P(X \mid Y)$ an unknown probability distribution
The estimation issue

• Let $P(X \mid Y)$ an unknown probability distribution

• We observe an i.i.d. sample

$$\mathcal{E} = \{(X_1, Y_1), \ldots, (X_N, Y_N)\}$$
The estimation issue

- Let $P(X \mid Y)$ an unknown probability distribution
- We observe an i.i.d. sample $E = \{(X_1, Y_1), \ldots, (X_N, Y_N)\}$

- How to guess a good tree S and a good set of parameters θ from E?
Adaptive Context tree model : the recipe

1. Split \mathcal{E} into \mathcal{E}_1 and \mathcal{E}_2
Adaptive Context tree model: the recipe

1. Split \mathcal{E} into \mathcal{E}_1 and \mathcal{E}_2

2. Use \mathcal{E}_1 to estimate the parameters of every model S by:

$$\hat{P}_S(Y \mid X) = \frac{\#\{i : s(X_i) = s(X) \text{ et } Y_i = Y\} + 1}{\#\{i : s(X_i) = s(X)\} + |\mathcal{A}|}$$
Adaptive Context tree model: the recipe

1. Split \mathcal{E} into \mathcal{E}_1 and \mathcal{E}_2

2. Use \mathcal{E}_1 to estimate the parameters of every model S by:

$$\hat{P}_S(Y | X) = \frac{\#\{i : s(X_i) = s(X) \text{ et } Y_i = Y\} + 1}{\#\{i : s(X_i) = s(X)\} + |\mathcal{A}|}$$

3. Chose a probability a priori on the set of trees $\pi(S)$
4. Use \mathcal{E}_2 to build a posterior distribution on the trees:

$$
\rho(S) = \frac{1}{Z} \pi(S) \times \prod_{i \in \mathcal{E}_2} \hat{P}_S(Y_i \mid X_i)^\beta
$$
4. Use \mathcal{E}_2 to build a posterior distribution on the trees:

$$\rho(S) = \frac{1}{Z} \pi(S) \times \prod_{i \in \mathcal{E}_2} \hat{P}_S(Y_i \mid X_i)^\beta$$

5. The ACT estimator is finally:

$$\hat{P}(Y \mid X) = \sum_{S} \rho(S) \hat{P}_S(Y \mid X)$$
Is $\hat{P}(Y \mid X)$ a “good” estimation?
Is \(\hat{P}(Y \mid X) \) a “good” estimation?

- The closeness of \(P(Y \mid X) \) and \(Q(Y \mid X) \) can be measured in conditional relative entropy

\[
D(P \mid\mid Q) = \sum_{(x, y)} P(x, y) \log \frac{Q(y \mid x)}{P(y \mid x)}
\]
For any unknown P the average loss of \hat{P} satisfies

$$E[D(P||\hat{P})] \leq \inf_{S,\theta} \left\{ D(P||P_{S,\theta}) + C \frac{|S|}{N} \right\}$$
• For any unknown P the average loss of \hat{P} satisfies

$$E[D(P||\hat{P})] \leq \inf_{S,\theta} \left\{ D(P||P_{S,\theta}) + C\frac{|S|}{N} \right\}$$

• C is an optimal constant
Remarks

- No assumption is made on the unknown P
Remarks

- No assumption is made on the unknown P
- The implementation is efficient using a recursive algorithm (Context Tree Weighting method)
Remarks

- No assumption is made on the unknown P
- The implementation is efficient using a recursive algorithm (Context Tree Weighting method)
- The resulting distribution $\hat{P}(Y|X)$ is a mixture of all $P_{S,\theta}$ and not a particular one
Part 2

Adaptive Context Trees: Applications
Unsupervised Text clustering (1)

- Let:
 - T_1 and T_2 two given texts (i.e. long strings)
Unsupervised Text clustering (1)

Let:

- T_1 and T_2 two given texts (i.e. long strings)
- E_1, E'_1, E_2, E'_2 sampled i.i.d. from T_1 et T_2
Unsupervised Text clustering (1)

- Let:
 - T_1 and T_2 two given texts (i.e. long strings)
 - E_1, E'_1, E_2, E'_2 sampled i.i.d. from T_1 et T_2

- A pseudo-distance between T_1 et T_2 is:

\[
d(T_1, T_2) = \ln \frac{\hat{Q}(E'_1 | E_1)}{\hat{Q}(E'_2 | E_1)} + \ln \frac{\hat{Q}(E'_2 | E_2)}{\hat{Q}(E'_1 | E_2)}
\]
Unsupervised Text clustering (2)

<table>
<thead>
<tr>
<th>Text Number</th>
<th>Extracted from</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-5</td>
<td>Wintson Churchill (The Crossing)</td>
</tr>
<tr>
<td>6-10</td>
<td>Joseph Conrad (The Arrow of gold)</td>
</tr>
<tr>
<td>11-15</td>
<td>Arthur Conan Doyle (The hound of the Baskervilles)</td>
</tr>
<tr>
<td>16-20</td>
<td>Karl Marx (Manifesto of the communist party)</td>
</tr>
<tr>
<td>21-25</td>
<td>Baruch Spinoza (Political treatise)</td>
</tr>
<tr>
<td>26-30</td>
<td>Jonathan Swift (Gulliver’s travel)</td>
</tr>
<tr>
<td>31-35</td>
<td>Francois Marie Arouet Voltaire (Candide)</td>
</tr>
<tr>
<td>36-40</td>
<td>Virginia Woolf (Night and day)</td>
</tr>
</tbody>
</table>

Text database
Distance between text n.23 (Spinoza) and other texts

Text clustering (1.03 threshold)
Automatic text generation

talk.politics.mideast: associattements in the greeks who be neven exclub no bribedom of spread marinary s trooperties savi tack acter i ruthh jake bony

soc.religion.christian: that must as a friend one jerome unimovingt ail serving are national atan cwru evid which done joseph in response of the wholeleaseriend
Biological sequences?

- The same method can be applied to cluster or classify proteins, DNA etc...
Biological sequences?

- The same method can be applied to cluster or classify proteins, DNA etc...

- Approach already tested with good results for protein family prediction by Bejerano/Rona (RECOMB 1999) and Eskin/Grundy/Singer (RECOMB 2000)
Part 3

ACT with HMM?
Definition of a CT-HMM (1)

- \mathcal{H} a finite set of hidden states
Definition of a CT-HMM (1)

- \mathcal{H} a finite set of hidden states
- $(\mathcal{S}, \theta) = \{(\mathcal{S}, \theta)_h, h \in \mathcal{H}\}$ a family of context tree models for each hidden state
Definition of a CT-HMM (1)

- \mathcal{H} a finite set of hidden states
- $(\mathcal{S}, \theta) = \{(\mathcal{S}, \theta)_h, h \in \mathcal{H}\}$ a family of context tree models for each hidden state
- $\mu(h_2 | h_1)$ a transition probability
Definition of a CT-HMM (2)

- The CT-HMM distribution is:

\[
P_{S, \theta, \mu}(H_{n+1}, X_{n+1} \mid H_{-\infty}^n, X_{-\infty}^n) = \mu(H_{n+1} \mid H_n) \times P_{(S, \theta)_{H_i}}(X_i \mid X_{-\infty}^n)
\]
Definition of a CT-HMM (2)

- The CT-HMM distribution is:

\[P_{S,\theta,\mu}(H_{n+1}, X_{n+1} \mid H_{-\infty}^n, X_{-\infty}^n) = \mu(H_{n+1} \mid H_n) \times P_{(S,\theta)_{H_i}}(X_i \mid X_{-\infty}^n) \]

- It generalizes HMMs
How to guess the hidden state sequence?

- Let \(x = (\ldots, x_0, \ldots, x_N) \) a observed sequence, generated by an unknown model supposed to be well approached by a CT-HMM.
How to guess the hidden state sequence?

- Let \(x = (\ldots, x_0, \ldots, x_N) \) a observed sequence, generated by an unknown model supposed to be well approached by a CT-HMM.
- The classical approach (E-M algorithm) does not work
How to guess the hidden state sequence?

- Let $x = (\ldots, x_0, \ldots, x_N)$ a observed sequence, generated by an unknown model supposed to be well approached by a CT-HMM.
- The classical approach (E-M algorithm) does not work
- How to guess a good $h = (h_1, \ldots, h_N)$?
How to guess the hidden state sequence?

- Let $x = (\ldots, x_0, \ldots, x_N)$ a observed sequence, generated by an unknown model supposed to be well approached by a CT-HMM.
- The classical approach (E-M algorithm) does not work.
- How to guess a good $h = (h_1, \ldots, h_N)$?
- A good sequence can be seen as a one which reduces the complexity of the observed sequence.
A mixture approach

- Let \(\pi(S, d\theta, d\mu) \) a probability \textit{a priori} on the models and parameters
A mixture approach

- Let $\pi(S, d\theta, d\mu)$ a probability *a priori* on the models and parameters

- The mixture probability sums up the information contained in all models:

\[
P_w(X) = \sum_{H, S} \int_{\mu, \theta} P_{\mu, S, \theta}(X, H) \pi(d\mu, S, d\theta)
\]
Selection by Minimum Description Length

- $\log_2 P_w(h)$ bits to describe the hidden sequence
Selection by Minimum Description Length

- $\log_2 P_w(h)$ bits to describe the hidden sequence
- $\log_2 P_w(x \mid h)$ to describe the observation x given a hidden sequence h
Selection by Minimum Description Length

- $\log_2 P_w(h)$ bits to describe the hidden sequence
- $\log_2 P_w(x \mid h)$ to describe the observation x given a hidden sequence h
- MDL: Choose $h = \arg \max_h P_w(h) \times P_w(x \mid h)$
Application : E Coli genome segmentation
Part 3

From modelling to classification
Classification ?

• \(X \in \mathcal{X} \) an objet
Classification?

- $X \in \mathcal{X}$ an objet
- $Y \in \mathcal{Y}$ a class (typically $\{1, \ldots, k\}$)
Classification?

- $X \in \mathcal{X}$ an objet
- $Y \in \mathcal{Y}$ a class (typically $\{1, \ldots, k\}$)
- Classifier = mapping $f : \mathcal{X} \rightarrow \mathcal{Y}$
Classification and bioinformatics

- protein classification,
Classification and bioinformatics

- protein classification, structure prediction ...
Classification and bioinformatics

- protein classification, structure prediction ...
- (promoter-sequence based) gene classification...
Classification and bioinformatics

- protein classification, structure prediction ...
- (promoter-sequence based) gene classification...
- functional classification of enzymes, binding pairs...
Classical approach in bioinformatics

- build probabilistic models
Classical approach in bioinformatics

- build probabilistic models
- derive a score function
Classical approach in bioinformatics

- build probabilistic models
- derive a score function
- classify according to maximum score
Research proposal

- Efficient learning algorithms include:
Research proposal

• Efficient learning algorithms include:
 ✴ Support Vector Machine ,
Research proposal

- Efficient learning algorithms include:
 - Support Vector Machine,
 - Boosting,
Research proposal

- Efficient learning algorithms include:
 - Support Vector Machine,
 - Boosting,
 - Randomized classifiers...
Research proposal

- Efficient learning algorithms include:
 - Support Vector Machine,
 - Boosting,
 - Randomized classifiers ...

- First papers give impressive results
Research proposal

- Efficient learning algorithms include:
 - Support Vector Machine,
 - Boosting,
 - Randomized classifiers...

- First papers give impressive results

- What about a seminar?