Extracting metabolic pathways from gene expression data using kernel CCA

Jean-Philippe Vert

Bioinformatics group
Ecole des Mines de Paris

Jean-Philippe.Vert@mines.org

Overview

1. Motivations
2. Problem Formulation
3. An approach using RKHS
4. Experimental results
Part 1

Motivations
Context

- Data available in bioinformatics: sequences, molecules, graphs, measurements...
 - heterogeneous
 - large quantity
 - noisy.

- Complex biological process still poorly understood
From DNA to proteins

Central dogma: DNA \rightarrow RNA \rightarrow Protein
Genes encode proteins which can catalyse chemical reactions

Nicotinamide Mononucleotide Adenylyltransferase With Bound Nad+
Chemical reactions are often parts of pathways

From http://www.genome.ad.jp/kegg/pathway
Microarray technology monitors RNA quantity

(From Spellman et al., 1998)
Part 2

Problem formulation
Comparing gene expression and protein network

Gene network

Expression profiles

Are there “correlations”?
What is a correlation?

• A pattern of expression shared by genes close to each other on the graph
 ★ activity level of a metabolic pathway
 ★ environmental change
A pattern is by definition a profile.

The correlation between a candidate pattern and a gene quantifies how much the gene shares the pattern.
The correlation function with interesting patterns should vary smoothly on the graph.
Pattern relevance

• Interesting patterns involve many genes

• The projection of profiles onto an interesting pattern should capture a lot of variations among profiles
Problem

Find patterns of expression which are simultaneously

- smooth

- relevant
Part 3

An approach using RKHS
The idea
Pattern relevance

- Let $e(x)$ the profile of gene x, and $v = \sum_x \alpha_x e(x)$ a candidate pattern.

- Let $K_1(x, y) = e(x).e(y)$ be the linear kernel matrix on the space of genes.

- The relevance of a pattern is quantified as:

$$R(v) \triangleq \sum_x (v.e(x))^2 / \|v\|^2 = \frac{\alpha' K_1^2 \alpha}{\alpha' K_1 \alpha} = \frac{\|K_1 \alpha\|_{L^2}}{\|K_1 \alpha\|_{H_1}}$$
Pattern smoothness

- Let $K_2(x, y)$ be the diffusion kernel obtained from the gene network.
- It can be considered as a discretized version of a Gaussian kernel (solving the heat equation with the graph Laplacian).
- The norm in the RKHS defined by K_2 is a smoothness functional: the smoother a function $K_{2/\beta}$, the larger the function:

$$S(K_{2/\beta}) = \frac{||K_{2/\beta}||_{L^2}}{||K_{2/\beta}||_{H^2}} = \frac{\beta' K_{2/\beta}}{\beta' K_{2/\beta}}$$
Diffusion kernel (Kondor and Lafferty, 2002)

\[-L = \begin{pmatrix}
-1 & 0 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 & 0 \\
1 & 1 & -3 & 1 & 0 \\
0 & 0 & 1 & -2 & 1 \\
0 & 0 & 0 & 1 & -1 \\
\end{pmatrix}\]
Diffusion kernel (Kondor and Lafferty, 2002)

\[K = \exp(-L) = \begin{pmatrix}
0.49 & 0.12 & 0.23 & 0.10 & 0.03 \\
0.12 & 0.49 & 0.23 & 0.10 & 0.03 \\
0.23 & 0.23 & 0.24 & 0.17 & 0.10 \\
0.10 & 0.10 & 0.17 & 0.31 & 0.30 \\
0.03 & 0.03 & 0.10 & 0.30 & 0.52
\end{pmatrix} \]
Problem reformulation

Find a linear function $K_1 \alpha$ and a function $K_2 \beta$ such that:

- $K_1 \alpha$ be relevant: $\frac{\|K_1 \alpha\|_{L^2}}{\|K_1 \alpha\|_{H_1}}$ be large

- $K_2 \beta$ be smooth: $\frac{\|K_2 \beta\|_{L^2}}{\|K_2 \beta\|_{H_2}}$ be large

- $K_1 \alpha$ and $K_2 \beta$ be correlated:

$$\frac{\alpha' K_1 K_2 \beta}{\|K_1 \alpha\|_{L^2} \|K_2 \beta\|_{L^2}}$$

be large
The three goals can be combined in the following problem:

\[
\max_{\alpha, \beta} \frac{\alpha'K_1K_2\beta}{\left(\|K_1\alpha\|_{L^2}^2 + \delta\|K_1\alpha\|_{H^1}^2\right)^{1/2} \left(\|K_2\beta\|_{L^2}^2 + \delta\|K_2\beta\|_{H^2}^2\right)^{1/2}}
\]

where the parameter \(\delta\) controls the trade-off between relevance/smoothness on the one hand, correlation on the other hand.
Solving the problem

This formulation is equivalent to a generalized form of CCA (Kernel-CCA, Bach and Jordan, 2002), which is equivalent to the following generalized eigenvector problem

\[
\begin{pmatrix}
0 & K_1 K_2 \\
K_2 K_1 & 0
\end{pmatrix}
\begin{pmatrix}
\alpha \\
\beta
\end{pmatrix}
=
ho
\begin{pmatrix}
K_1^2 + \delta K_1 & 0 \\
0 & K_2^2 + \delta K_2
\end{pmatrix}
\begin{pmatrix}
\alpha \\
\beta
\end{pmatrix}
\]
Part 4

Experimental results
Data

- **Gene network**: two genes are linked if they catalyze successive reactions in the KEGG database.

- **Expression profiles**: 18 time series measures for the 6,000 genes of yeast, during two cell cycles.
First pattern of expression

<table>
<thead>
<tr>
<th>Time</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Related metabolic pathways

50 genes with highest \(s_2 - s_1 \) belong to:

- Oxidative phosphorylation (10 genes)
- Citrate cycle (7)
- Purine metabolism (6)
- Glycerolipid metabolism (6)
- Sulfur metabolism (5)
- Selenoaminoacid metabolism (4) , etc...
Related genes
Related genes
Related genes
Opposite pattern

Expression

Time
Related genes

- RNA polymerase (11 genes)
- Pyrimidine metabolism (10)
- Aminoacyl-tRNA biosynthesis (7)
- Urea cycle and metabolism of amino groups (3)
- Oxidative phosphorylation (3)
- ATP synthesis(3), etc...
Related genes
Related genes
Related genes
Conclusion
Conclusion

- **Heterogeneous data** can be integrated with kernels
- The approach can be **generalized** (non-linear kernel for gene expression, string kernels...)
- Working in RKHS can help solve **real-world problems**
Workshop

Kernel Methods in Bioinformatics
Harnack-Haus, Berlin, April 14, 2003
http://www.cg.ensmp.fr/vert/kmb03