Probabilistic kernels for structured objects

Jean-Philippe.Vert@mines.org

Ecole des Mines de Paris
Groupe bioinformatique

SVM seminar, Orsay University, Jan. 10, 2003.
Outline

1. SVM and kernel methods
2. Probabilistic kernels for structured objects
3. Application: gene function prediction from phylogenetic profile
Part 1

SVM and kernel methods
Support vector machines

- Objects to classified x mapped to a feature space
- Largest margin separating hyperplane in the feature space
The kernel trick

• Implicit definition of $x \rightarrow \Phi(x)$ through the kernel:

$$K(x, y) \overset{def}{=} \langle \Phi(x), \Phi(y) \rangle$$
The kernel trick

- Implicit definition of $x \rightarrow \Phi(x)$ through the kernel:

$$K(x, y) \overset{def}{=} \langle \Phi(x), \Phi(y) \rangle$$

- Simple kernels can represent complex Φ
The kernel trick

- Implicit definition of \(x \to \Phi(x) \) through the kernel:

\[
K(x, y) \overset{def}{=} < \Phi(x), \Phi(y) >
\]

- Simple kernels can represent complex \(\Phi \)

- For a given kernel, not only SVM but also clustering, PCA, ICA... possible in the feature space = kernel methods
Kernel examples

• “Classical” kernels: polynomial, Gaussian, sigmoid… but the objects x must be vectors
Kernel examples

- “Classical” kernels: polynomial, Gaussian, sigmoid… but the objects x must be vectors
- “Exotic” kernels for strings:
Kernel examples

• “Classical” kernels: polynomial, Gaussian, sigmoid...
 but the objects x must be vectors

• “Exotic” kernels for strings:
 ★ Fisher kernel (Jaakkola and Haussler 98)
Kernel examples

- “Classical” kernels: polynomial, Gaussian, sigmoid... but the objects x must be vectors
- “Exotic” kernels for strings:
 - Fisher kernel (Jaakkola and Haussler 98)
 - Convolution kernels (Haussler 99, Watkins 99)
Kernel examples

• “Classical” kernels: polynomial, Gaussian, sigmoid...
 but the objects x must be vectors

• “Exotic” kernels for strings:
 ★ Fisher kernel (Jaakkola and Haussler 98)
 ★ Convolution kernels (Haussler 99, Watkins 99)
 ★ Kernel for translation initiation site (Zien et al. 00)
Kernel examples

- "Classical" kernels: polynomial, Gaussian, sigmoid...
 but the objects x must be vectors

- "Exotic" kernels for strings:
 - Fisher kernel (Jaakkoolo and Haussler 98)
 - Convolution kernels (Haussler 99, Watkins 99)
 - Kernel for translation initiation site (Zien et al. 00)
 - String kernel (Lodhi et al. 00)
Kernel examples

- "Classical" kernels: polynomial, Gaussian, sigmoid...
 but the objects x must be vectors

- "Exotic" kernels for strings:
 - Fisher kernel (Jaakkola and Haussler 98)
 - Convolution kernels (Haussler 99, Watkins 99)
 - Kernel for translation initiation site (Zien et al. 00)
 - String kernel (Lodhi et al. 00)
 - Spectrum kernel (Leslie et al., PSB 2002)
Kernel engineering

- Let \mathcal{X} be a finite set
Kernel engineering

- Let \mathcal{X} be a finite set

- A fonction $K : \mathcal{X}^2 \to \mathbb{R}$ is a valid kernel if it is symmetric positive definite.
Kernel engineering

- Let \mathcal{X} be a finite set

- A function $K : \mathcal{X}^2 \rightarrow \mathbb{R}$ is a valid kernel if it is symmetric positive definite.

- Kernel engineering: Use prior knowledge to build the geometry of the feature space through $K(.,.)$
Part 2

Probabilistic kernels for structured objects
The problem

- \mathcal{X} a finite set of (structured) objects
The problem

- \mathcal{X} a finite set of (structured) objects
- $p(x)$ a probability distribution on \mathcal{X}
The problem

- \mathcal{X} a finite set of (structured) objects
- $p(x)$ a probability distribution on \mathcal{X}
- How to build $K(x, y)$ from $p(x)$?
The problem

- \mathcal{X} a finite set of (structured) objects
- $p(x)$ a probability distribution on \mathcal{X}
- How to build $K(x, y)$ from $p(x)$?
- Remark: up to translation and scaling, we can restrict K to be a probability on $\mathcal{X} \times \mathcal{X}$ (P-kernel)
Product kernel

\[K_{prod}(x, y) = p(x)p(y) \]
Product kernel

\[K_{prod}(x, y) = p(x)p(y) \]
Product kernel

\[K_{prod}(x, y) = p(x)p(y) \]

SVM = probability threshold classifier
Diagonal kernel

\[K_{diag}(x, y) = p(x)\delta(x, y) \]
Diagonal kernel

\[K_{\text{diag}}(x, y) = p(x) \delta(x, y) \]
Diagonal kernel

\[K_{diag}(x, y) = p(x)\delta(x, y) \]

No learning
Interpolated kernel

If objects are composite: \(x = (x_1, x_2) \):

\[
K(x, y) = K_{\text{diag}}(x_1, y_1)K_{\text{prod}}(x_2, y_2)
\]
Interpolated kernel

If objects are composite: \(x = (x_1, x_2) : \)

\[
K(x, y) = K_{diag}(x_1, y_1)K_{prod}(x_2, y_2)
\]

\[
= p(x_1)\delta(x_1, y_1) \times p(x_2|x_1)p(y_2|y_1)
\]
General interpolated kernel

- Composite objects $x = (x_1, \ldots, x_n)$
General interpolated kernel

- Composite objects $x = (x_1, \ldots, x_n)$

- A list of index subsets: $\mathcal{V} = \{I_1, \ldots, I_v\}$
 where $I_i \subset \{1, \ldots, n\}$ for $i = 1, \ldots, v$.
General interpolated kernel

- Composite objects $x = (x_1, \ldots, x_n)$

- A list of index subsets: $\mathcal{V} = \{I_1, \ldots, I_v\}$
 where $I_i \subset \{1, \ldots, n\}$ for $i = 1, \ldots, v$.

- Interpolated kernel:

$$K_{\mathcal{V}}(x, y) = \frac{1}{|\mathcal{V}|} \sum_{I \in \mathcal{V}} K_{\text{diag}}(x_I, y_I) K_{\text{prod}}(x_{I^c}, y_{I^c})$$
Examples

• If $\mathcal{V} = \{\emptyset\}$, then:

$$K_\mathcal{V}(x, y) = K_{\text{prod}}(x, y).$$

• If $\mathcal{V} = \{[1, n]\}$, then:

$$K_\mathcal{V}(x, y) = K_{\text{diag}}(x, y).$$
Rare common subparts

For a given $p(x)$ and $p(y)$, we have:

$$K_V(x, y) = K_{prod}(x, y) \times \frac{1}{|V|} \sum_{I \in V} \frac{\delta(x_I, y_I)}{p(x_I)}$$
Rare common subparts

For a given $p(x)$ and $p(y)$, we have:

$$K_{\mathcal{V}}(x, y) = K_{\text{prod}}(x, y) \times \frac{1}{|\mathcal{V}|} \sum_{I \in \mathcal{V}} \frac{\delta(x_I, y_I)}{p(x_I)}$$

x and y get closer in the feature space when they share rare common subparts
Implementation

- For many applications, computation time of the kernel is a limiting factor

- The sum in the interpolated might involve up to 2^n terms...

- Good news: factorization possible for particular choices of $p(.)$ and \mathcal{V}
Example 1: Weight matrix kernel

\[p(x) = \prod_{i=1}^{n} p_i(x_i) \]

\[\mathcal{V} = \mathcal{P}([1, n]) \]

then:

\[K_\mathcal{V}(x, y) = \frac{1}{2^n} \prod_{i=1}^{n} \phi_i(x_i, y_i), \]
with:

\[\phi_i(x_i, y_i) = \begin{cases}
 p_i(x_i) + p_i(x_i)^2 & \text{if } x_i = y_i \\
 p_i(x_i)p_i(y_i) & \text{if } x_i \neq y_i
\end{cases} \]
Weight matrix kernel: Proof

\[K(x, y) = \frac{1}{2^n} \sum_{\mathcal{V} \subset [1,n]} \left[\prod_{i \in \mathcal{V}} p(x_i) \delta(x_i, y_i) \times \prod_{i \notin \mathcal{V}} p(x_i)p(y_i) \right] \]

\[= \frac{1}{2^n} \prod_{i=1}^{n} \left[p(x_i) \delta(x_i, y_i) + p(x_i)p(y_i) \right]. \]
Example 2: Markov block kernel

\[p(x) = p_1(x_1) \prod_{i=2}^{n} p_i(x_i \mid x_{i-1}) \]

\[\mathcal{V} = \{ [k, l] : 1 \leq k \leq l \leq n \} \cap \{ \emptyset \} \]

then:

\[K_{\mathcal{V}}(x, y) = \phi_0(n) + \phi_1(n) + \phi_2(n), \]
with:

\[
\begin{align*}
\phi_0(1) &= p_1(x_1)p_1(y_1) \\
\phi_1(1) &= p_1(x_1)\delta(x_1, y_1) \\
\phi_2(1) &= 0
\end{align*}
\]

and for \(i = 2, \ldots, n \)

\[
\begin{align*}
\phi_0(i) &= p_i(x_i|x_i-1)p_i(y_i|y_i-1) \times \phi_0(i-1) \\
\phi_1(i) &= p_i(x_i|x_i-1)\delta(x_i, y_i) \\
&\quad \times \left[\phi_1(i-1) + \frac{p_i(y_i|y_i-1)}{p_i(x_i)}\phi_0(i-1) \right] \\
\phi_2(i) &= p_i(x_i|x_i-1)p_i(y_i|y_i-1) \times \left[\phi_1(i-1) + \phi_2(i-1) \right]
\end{align*}
\]
Weight matrix kernel: Proof

Classical dynamic programming.
Example 3: common subtree kernel

- Let T be a rooted tree
- λ the root, $f(s)$ the father node of any node $s \in T$
- Graphical model and common subtrees:

$$p(x) = p_\lambda(x_\lambda) \prod_{s \in T \setminus \{\lambda\}} p_s(x_s|x_{f(s)})$$

$$\mathcal{V} = \{S \text{ rooted subtree of } \}$$
Then:

\[K(x, y) = \sum_{S \in \mathcal{V}} \left[\prod_{s \in S} p(x_s | x_{f(s)}) \delta(x_s, y_s) \times \prod_{s \notin S} p(x_s | x_{f(s)}) p(y_s | y_{f(s)}) \right] \]

Can be computed in **linear time** by one post-order traversal of the tree (similar to the CTW algorithm by Willems et al.)
Example 4: common subtree kernel with latent variables

- Same as example 3 but some variables are not observed:

\[
K(x_{obs}, y_{obs}) = \sum_{S \in \mathcal{V}} \sum_{z_S \in A^S} p(z_S) p(x_{obs} | z_S) p(y_{obs} | z_S)
\]

- A bit longer to write, but still possible

- Linear time computation
Part 3

Application: Gene functional prediction from phylogenetic profiles
Mini introduction

- Genes are small parts of the DNA which encode proteins.
- About 6,000 genes in the baker yeast, 30,000 in human
- The sequence of the genes are (almost) known (sequencing projects)
- Next big challenge: understand the function of the genes
Definition

- The phylogenetic profile of a gene is a vector of bits which indicates the presence (1) or absence (0) of the gene in every fully sequenced genome.

<table>
<thead>
<tr>
<th>Gene</th>
<th>aero</th>
<th>aful</th>
<th>...</th>
<th>tpal</th>
<th>worm</th>
</tr>
</thead>
<tbody>
<tr>
<td>YAL001C</td>
<td>1</td>
<td>1</td>
<td>...</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>YAB002W</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

- Can be estimated *in silico* by sequence similarity search
From profile to function

• Genes are likely to be transmitted together during evolution when they participate:
 ★ to a common structural complex,
 ★ to a common pathway.

• Consequently genes with similar phylogenetic profiles are likely to have similar functions

• How to measure the similarity between profiles?
Naive approach

- Count the number of bits in common:

\[
x = \begin{array}{cccccccc}
1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
\]

\[
y = \begin{array}{cccccccc}
1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0
\end{array}
\]

\[s(x, y) = 5\]

- Cluster or use k-NN for gene function prediction with this similarity measure (Pellegrini et al., 1999)
Limitations of the naive approach

- The set of sequenced organisms has a strong influence on the similarity score (e.g., eukaryotes are under-represented)

- A more detailed understanding of when two proteins were transmitted together or not during evolution could be useful

- A function could be characterized by only a subset of the bits (e.g., 1 in eukaryotes, 0 in bacteria, whatever in archae)
What is not used in the naive approach

The knowledge of the phylogenetic tree.
A possible pattern of transmission during evolution

Mathematically, a rooted subtree with nodes labeled 0 or 1.
Evolution patterns and phylogenetic profiles

Impossible to know for sure if the gene followed exactly this evolution pattern.
Probabilistic model of gene transmission

- The phylogenetic tree as a tree graphical model

- Simplified model:
 - \(P(1) = 1 - P(0) = 0.9 \), at the root,
 - Along each branch transmission follows the transition matrix:

\[
\begin{pmatrix}
0.9 & 0.1 \\
0.1 & 0.9
\end{pmatrix}
\]
Probabilistic assignment of evolution pattern

For a phylogenetic profile x and an evolution pattern e:

- $P(e)$ quantifies how “natural” the pattern is
- $P(x|e)$ quantifies how likely the pattern e is the “true history” of the profile x
Representation of a profile in terms of evolution patterns

- Consider all possible evolution patterns \((e_1, \ldots, e_N)\). A profile \(x\) can be represented by the \(N\)-dimensional vector:

\[
\Phi(x) = \begin{pmatrix}
\sqrt{P(e_1)}P(x|e_1) \\
\vdots \\
\sqrt{P(e_N)}P(x|e_N)
\end{pmatrix}
\]

- This leads to the probabilistic kernel described before
Comparing two profiles through evolution patterns
Gene function prediction with SVM

- Profiles for 2465 genes of *S. Cerevisiae* were computed by BLAST search (cf Pavlidis et al. 2001), using 24 genomes.
- Consensus phylogenetic tree (cf. Liberles et al. 2002) with simplified probabilistic model of gene transmission
- SVM trained to predict all functional classes of the MIPS catalog with at least 10 genes (cross-validation)
- Comparison of the tree kernel with the naive kernel
Results (ROC 50)

<table>
<thead>
<tr>
<th>Functional class</th>
<th>Naive kernel</th>
<th>Tree kernel</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amino-acid transporters</td>
<td>0.74</td>
<td>0.81</td>
<td>+ 9%</td>
</tr>
<tr>
<td>Fermentation</td>
<td>0.68</td>
<td>0.73</td>
<td>+ 7%</td>
</tr>
<tr>
<td>ABC transporters</td>
<td>0.64</td>
<td>0.87</td>
<td>+ 36%</td>
</tr>
<tr>
<td>C-compound transport</td>
<td>0.59</td>
<td>0.68</td>
<td>+ 15%</td>
</tr>
<tr>
<td>Amino-acid biosynthesis</td>
<td>0.37</td>
<td>0.46</td>
<td>+ 24%</td>
</tr>
<tr>
<td>Amino-acid metabolism</td>
<td>0.35</td>
<td>0.32</td>
<td>- 9%</td>
</tr>
<tr>
<td>Tricarboxylic-acid pathway</td>
<td>0.33</td>
<td>0.48</td>
<td>+ 45%</td>
</tr>
<tr>
<td>Transport Facilitation</td>
<td>0.33</td>
<td>0.28</td>
<td>- 15%</td>
</tr>
</tbody>
</table>
A insight into the feature space

- PCA can be performed implicitly in the feature space with a kernel function: kernel-PCA (Scholkopf et al. 1999)

- Projecting the genes on the first principal components gives an idea of the shape of the features space
Naive kernel PCA

- Amino–acid transporters
- Fermentation
- ABC transporters
- C–compound, carbohydrate transport
Tree kernel PCA

- Amino–acid transporters
- Fermentation
- ABC transporters
- C–compound, carbohydrate transport
Conclusion
Conclusion

- A general method to derive a kernel from a probability distribution
- Encouraging results
- Some problems and questions: diagonal dominance? Role of the prior distribution?
- Contributes to a general approach: encode genomic information into kernel functions.