Extracting metabolic pathways activity from gene expression data

Jean-Philippe Vert

Computational biology group
Ecole des Mines de Paris

Jean-Philippe.Vert@mines.org

Overview

1. Problem formulation
2. Using expression data only
3. Using a pathway database
4. Combining expression and pathways
5. Experiments
Part 1

Problem formulation
Genes encode proteins which can catalyse chemical reactions

Nicotinamide Mononucleotide Adenylyltransferase With Bound Nad+
Chemical reactions are often parts of pathways

From http://www.genome.ad.jp/kegg/pathway
Microarray technology monitors RNA quantity

(From Spellman et al., 1998)
Comparing gene expression and pathway databases

Detect active pathways? Denoise expression data?
Denoise pathway database? Find new pathways?
Are there “correlations”?

VS
A useful first step
Part 1

Using expression data only
Motivation

- Pathways and biological events involve the coordinated action of several genes

- Co-regulation is an important way to coordinate the action of several genes

- Systematic variations in the set of gene expression profiles might be an indicator of an underlying biological phenomenon
Principal component analysis (PCA)

PCA finds the directions (profiles) explaining the largest amount of variations among expression profiles.
PCA notations

- \(N \) genes, \(P \) experimental conditions

- \(e_i \in \mathbb{R}^P \) the expression profile of gene \(i = 1, \ldots, N \).

- The expression profiles are centered: \(\sum_{i=1}^{N} e_i = 0 \)

- For a candidate profile \(v \in \mathbb{R}^p \), \(f_v(i) = v^\top e_i \) the projection of \(e_i \) onto \(v \)
PCA classical formulation

• The amount of variation captured by f_v is:

$$\|f_v\|_{L_2}^2 = \sum_{i=1}^{N} f_v(i)^2$$

• The norm of v is

$$\|f_v\|_{H_1}^2 = \sum_{i=1}^{P} v_i^2$$

• PCA solves:

$$\max_{\|f_v\|_{H_1}=1} \|f_v\|_{L_2}^2 = \max_{f_v} \frac{\|f_v\|_{L_2}^2}{\|f_v\|_{H_1}^2}$$
PCA conclusion

- For any candidate profile $v \in \mathbb{R}^p$,

 $$h_1(v) = \frac{\|f_v\|_{L^2}^2}{\|f_v\|_{H^1}^2}$$

 is a first indicator of how relevant v is: the larger the better

- In the absence of other information, maximizing $h(v)$ is natural: this is PCA
Part 3

Using the metabolic database
Motivation

- PCA is useful if there is a small number of strong signal
- In concrete applications, we observe a noisy superposition of many events
- Using a prior knowledge of metabolic networks can help denoising the information detected by PCA
The metabolic gene network

Link two genes when they can catalyze two successive reactions
Mapping f_v to the metabolic gene network

Does it look interesting or not?
Important hypothesis

If \(v \) is related to a metabolic activity, then \(f_v \) should vary "smoothly" on the graph

Smooth

Rugged
Graph Laplacian

\[L = \begin{pmatrix}
1 & 0 & -1 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 \\
-1 & -1 & 3 & 1 & 0 \\
0 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & -1 & 1
\end{pmatrix} \]
How smooth is f?

- **Local quantification:**

 $$f^\top L f = \sum_{i \sim j} (f_i - f_j)^2 \left(= \int \frac{\partial f^2}{\partial x} \, dx \right)$$

- **Spectral quantification:**

 $$\|f\|_{H_2}^2 = f^\top \exp(L) f = \sum_{j=1}^{N} \hat{f}_j e^{\lambda_j} \left(= \int \hat{f}(\omega) e^{\omega^2} \, d\omega \right)$$
Smoothness quantification

\[h_2(f) = \frac{\|f\|_{L_2}^2}{\|f\|_{H_2}^2} \]

is large when \(f \) is smooth

\[h(f) = 2.5 \]

\[h(f) = 34.2 \]
Part 3

Combining expression and metabolic pathways
Motivation

For a candidate profile \(v \),

- \(h_1(f_v) \) is large when \(v \) captures a lot of natural variation among profiles

- \(h_2(f_v) \) is large when \(f_v \) is smooth on the graph

Try to maximize both terms in the same time
Problem reformulation

Find a function f_v and a function f_2 such that:

- $h_1(f_v) = \frac{\|f_v\|_{L^2}}{\|f_v\|_{H^1}}$ be large
- $h_2(f_2) = \frac{\|f_2\|_{L^2}}{\|f_2\|_{H^2}}$ be large
- f_v and f_2 be correlated:
 \[
 \frac{f_v^\top f_2}{\|f_v\|_{L^2} \|f_2\|_{L^2}}
 \]
 be large
The three goals can be combined in the following problem:

\[
\max_{f_v, f_2} \frac{f_v^\top f_2}{\left(\|f_v\|_{L_2}^2 + \delta \|f_v\|_{H_1}^2 \right)^{1/2} \left(\|f_2\|_{L_2}^2 + \delta \|f_2\|_{H_2}^2 \right)^{1/2}}
\]

where the parameter \(\delta \) controls the trade-off between relevance/smoothness on the one hand, correlation on the other hand.
Solving the problem

This formulation is equivalent to a generalized form of CCA (Kernel-CCA, Bach and Jordan, 2002), which is equivalent to the following generalized eigenvector problem

\[
\begin{pmatrix}
0 & K_1K_2 \\
K_2K_1 & 0
\end{pmatrix}
\begin{pmatrix}
\alpha \\
\beta
\end{pmatrix}
= \rho
\begin{pmatrix}
K_1^2 + \delta K_1 & 0 \\
0 & K_2^2 + \delta K_2
\end{pmatrix}
\begin{pmatrix}
\alpha \\
\beta
\end{pmatrix}
\]

where \([K_1]_{i,j} = e_i^\top e_j\) and \(K_2 = \exp(-L)\).

Then, \(f_v = K_1\alpha\) and \(f_2 = K_2\beta\).
Part 4

Experimental results
Data

- **Gene network**: two genes are linked if they catalyze successive reactions in the KEGG database.
- **Expression profiles**: 18 time series measures for the 6,000 genes of yeast, during two cell cycles.
First pattern of expression
Related metabolic pathways

50 genes with highest $s_2 - s_1$ belong to:

- Oxidative phosphorylation (10 genes)
- Citrate cycle (7)
- Purine metabolism (6)
- Glycerolipid metabolism (6)
- Sulfur metabolism (5)
- Selenoaminoacid metabolism (4), etc...
Related genes
Related genes
Related genes

![Diagram of Selenoamino Acid Metabolism](image)
Opposite pattern
Related genes

- RNA polymerase (11 genes)
- Pyrimidine metabolism (10)
- Aminoacyl-tRNA biosynthesis (7)
- Urea cycle and metabolism of amino groups (3)
- Oxidative phosphorlation (3)
- ATP synthesis (3), etc...
Related genes

RNA polymerase II (Saccharomyces cerevisiae)
Related genes
Related genes
Conclusion
Conclusion

- An approach to integrate heterogeneous data (expression profiles and network)

- A particular case of more generic methods (kernel methods)

- Generalization to other types of data and more than two datasets is possible (see ISMB’s paper with Yamanishi)