Inference on Graphs with Support Vector Machines

Jean-Philippe Vert

Ecole des Mines de Paris, France
Jean-Philippe.Vert@mines.org

INSEAD, Feb. 6, 2004
Outline

1. Introduction to SVMs
2. Inference on graphs
Part 1

Support Vector Machines (SVMs)
The pattern recognition problem
The pattern recognition problem

- Learn from labelled examples a discrimination rule
The pattern recognition problem

- Learn from labelled examples a **discrimination rule**
- Use it to **predict** the class of new points
Pattern recognition examples

- Hand-written digit recognition
- Medical diagnosis
- Direct marketing
- Predicting the future...

Remark: other problems are possible: multi-class, continuous values, etc...
Linear SVM
Linear SVM
Linear SVM

\[H \]

\[m \]
Linear SVM
Linear SVM

\[
\min_H \left\{ \min_m \left[\frac{1}{m^2} + C \sum_i e_i \right] \right\}
\]
Dual formulation

The classification of a new point x is the sign of:

$$f(x) = w.x + b = \left(\sum_{i} \alpha_i x_i \right).x + b,$$

where α_i solves:

$$\begin{align*}
\max_{\alpha} & \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j x_i . x_j \\
\forall i & = 1, \ldots, n \quad 0 \leq \alpha_i \leq C \\
\sum_{i=1}^{n} \alpha_i y_i & = 0.
\end{align*}$$
General Support Vector Machines

- Object x represented by the vector $\Phi(\vec{x})$ (feature space)
General Support Vector Machines

- Object x represented by the vector $\Phi(x)$ (feature space)
- Linear SVM in the feature space
General Support Vector Machines

- Object x represented by the vector $\Phi(x)$ (feature space)
- Linear SVM in the feature space
Dual formulation

The classification of a new point x is the sign of:

$$f(x) = w \cdot \Phi(x) + b = \left(\sum_i \alpha_i \Phi(x_i) \right) \cdot \Phi(x) + b,$$

where α_i solves:

$$\begin{cases}
\max_{\alpha} \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j \Phi(x_i)_i \cdot \Phi(x_j)_j \\
\forall i = 1, \ldots, n \quad 0 \leq \alpha_i \leq C \\
\sum_{i=1}^{n} \alpha_i y_i = 0.
\end{cases}$$
A useful trick

Let

\[K(x, y) := \Phi(x) \cdot \Phi(y) \]

\(K\) is called a kernel.
Dual formulation using the kernel

The classification of a new point x is the sign of:

$$f(x) = w \cdot \Phi(x) + b = \sum_i \alpha_i K(x_i, x) + b,$$

where α_i solves:

$$\begin{align*}
\max_{\alpha} & \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j K(x_i, x_j) \\
\forall i = 1, \ldots, n & \quad 0 \leq \alpha_i \leq C \\
\sum_{i=1}^{n} & \alpha_i y_i = 0.
\end{align*}$$
The kernel trick for SVM

- The separation can be found without computing $\Phi(x)$ explicitly. Only the kernel matters:

$$K(x, y) = \Phi(x).\Phi(y)$$

- Simple kernels $K(x, y)$ can correspond to complex Φ

- SVM work with any sort of data as soon as a kernel is defined
Kernel examples

• Linear:
 \[K(x, x') = x \cdot x' \]

• Polynomial:
 \[K(x, x') = (x \cdot x' + c)^d \]

• Gaussian RBF:
 \[K(x, x') = \exp \left(-\frac{||x - x'||^2}{2\sigma^2} \right) \]
Kernels

For any set \mathcal{X}, a function $K : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is a kernel iff:

- it is **symmetric**:
 \[K(x, y) = K(y, x), \]

- it is **positive semi-definite**:
 \[\sum_{i,j} a_i a_j K(x_i, x_j) \geq 0 \]

 for all $a_i \in \mathbb{R}$ and $x_i \in \mathcal{X}$
Advantages of SVM

- Works well on real-world applications
- Large dimensions, noise OK (?)
- Can be applied to any kind of data as soon as a kernel is available
Part 2

Inference on Graphs
Motivations

Data to be analyzed are often not vectors, but rather nodes of a network

- by nature,

- by discretization/sampling of a continuous space

- because it’s convenient.
Internet (by nature)
Social Network (by nature)
Protein interaction network (by nature)
Spatial data (by discretization)
Molecules (by convenience)
SVM on a graph

We need a kernel $K(x, y)$ between nodes.
Using a distance?

- Remember the Gaussian kernel

\[K(x, y) = \exp \left(-\frac{||x - y||^2}{2\sigma^2} \right) \]

- Let \(d(x, x') \) a distance on the graph, e.g., the length of the shortest path between nodes.

- Soit \(K(x, x') = \exp(-d(x, x')^2/2\sigma^2) \)

- Problem: not a valid kernel...
Using the heat equation?

Let $K_x(t, y)$ the temperature at time t and position y. K_x solves the heat equation:

$$\frac{\partial K_x}{\partial t} = \Delta K_x.$$

The solution is the Gaussian kernel:

$$K_x(t, y) = \frac{1}{\sqrt{4\pi}} \exp \left(-\frac{||x - y||^2}{4t} \right)$$

(interpretation: describes how heat, gas, introduced at x, diffuse over time)
The Laplacian

• For vectors,

\[\Delta = \sum_{i=1}^{p} \frac{\partial}{\partial x_i}. \]

• On a graph: for any function \(f \) on the graph, \(\Delta f \) is the function defined by:

\[\Delta f(x) = \sum_{x' \sim x} (f(x') - f(x)) \]
Example

\[\Delta = \begin{pmatrix}
-1 & 0 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 & 0 \\
1 & 1 & -3 & 1 & 0 \\
0 & 0 & 1 & -2 & 1 \\
0 & 0 & 0 & 1 & -1 \\
\end{pmatrix}\]
Heat equation on a graph

- The heat equation is the same:

 $$\frac{\partial K_x}{\partial t} = \Delta K_x.$$

- The solution is the heat kernel:

 $$K(t) = \exp(t\Delta)$$

(Remember $e^A = Id + A + \frac{A^2}{2!} + \frac{A^3}{3!} + \ldots$)
Heat kernel example

\[K = \exp(\Delta) = \begin{pmatrix} 0.49 & 0.12 & 0.23 & 0.10 & 0.03 \\ 0.12 & 0.49 & 0.23 & 0.10 & 0.03 \\ 0.23 & 0.23 & 0.24 & 0.17 & 0.10 \\ 0.10 & 0.10 & 0.17 & 0.31 & 0.30 \\ 0.03 & 0.03 & 0.10 & 0.30 & 0.52 \end{pmatrix} \]
Interpretation

\[K_t(x, y) = \left[e^{t\Delta} \right]_{x,y}. \]

- a **discrete version** of the Gaussian
- is related to **diffusions** on the graph
- increases when there are **many short paths** between \(x \) and \(y \)
Inference on graphs
Inference on graphs
Example: protein function prediction
Example: protein function prediction
Conclusion
Conclusion

- SVM and kernel methods are powerful machine learning tools
- The kernel trick enables the use of SVM for non-vectorial data
- SVM on graph is possible and leads to good experimental results
- Applications in marketing?