Supervised Gene Network Inference

Jean-Philippe Vert
Ecole des Mines de Paris
Computational Biology group
Jean-Philippe.Vert@mines.org

Institute for Genomics and Bioinformatics, UC Irvine, August 18th, 2005
Thanks

- Yoshihiro Yamanishi
- Computational biology at the Ecole des Mines
Motivations: systems biology

- Gene expression
- Sequence
- Protein structure
- Protein localization, etc...
- Regulatory network
- Signaling pathways
- Metabolic pathways
- Interaction network, etc...
Outline

- A direct approach to network inference
- Supervised network inference
- Extraction of pathway activity
- Learning from several heterogeneous data
Part 1

A direct approach to network inference
Related approaches

- Bayesian nets for regulatory networks (Friedman et al. 2000)
- Boolean networks (Akutsu, 2000)
- Nearest neighbors method (Marcotte et al, 1999)
Example: nearest neighbors method
Evaluation of the performance: the ROC curve

- True Positives
- False Positives
Evaluation of the performance: the ROC curve

True Positives

False Positives
Evaluation of the performance: the ROC curve

True Positives

False Positives
Evaluation of the performance: the ROC curve

True Positives

False Positives
Evaluation of the performance: the ROC curve

True Positives

False Positives
Evaluation of the performance: the ROC curve

True Positives

False Positives
Evaluation of the performance: the ROC curve

True Positives

False Positives
Evaluation of the performance: the ROC curve

True Positives

False Positives
Evaluation of the performance: the ROC curve

\[ROC = \frac{21}{24} = 87.5\% \]
Application: the metabolic gene network

Link two genes when they can catalyze two successive reactions
Performance of metabolic network reconstruction

The metabolic network of the yeast involves 769 genes. Each gene is represented by 157 expression measurements. (ROC=0.52)
What is wrong?

- What *similarity measure* between profiles should be used?
What is wrong?

• What similarity measure between profiles should be used?

• Which network are we expecting to recover?
Part 2

Supervised network inference
The supervised gene inference problem
The supervised gene inference problem

Similarity matrix of the other genomic data

Adjacency matrix of protein network

Unknown Pathway
The main idea

Supervised graph inference through distance metric learning
The main idea

Supervised graph inference through distance metric learning
The main idea

Supervised graph inference through distance metric learning

\[\Phi \]
The main idea

Supervised graph inference through distance metric learning
The main idea

Supervised graph inference through distance metric learning
The main idea

Supervised graph inference through distance metric learning
The main idea

Supervised graph inference through distance metric learning
Learning the mapping Φ

- Let $x \in \mathbb{R}^p$ be an expression profile
Learning the mapping Φ

- Let $x \in \mathbb{R}^p$ be an expression profile
- Let us consider linear mappings:

$$\Phi(x) = (f_1(x), \ldots, f_d(x))' \in \mathbb{R}^d$$

made of linear features $f_i(x) = w_i^\top x$
Learning the mapping Φ

- Let $x \in \mathbb{R}^p$ be an expression profile
- Let us consider linear mappings:
 $$\Phi(x) = (f_1(x), \ldots, f_d(x))' \in \mathbb{R}^d$$
 made of linear features $f_i(x) = w_i^\top x$
- A feature $f : \mathbb{R}^p \to \mathbb{R}$ is "good" if connected genes in the known network have similar value.
“Good” features

- A “good” feature $f(x) = w^\top x$ should minimize:

$$R(f) = \frac{\sum_{i \sim j} (f(x_i) - f(x_j))^2}{\sum_{i=1}^{n} f(x_i)^2}$$
“Good” features

• A “good” feature $f(x) = w^\top x$ should minimize:

$$R(f) = \frac{\sum_{i \sim j} (f(x_i) - f(x_j))^2}{\sum_{i=1}^{n} f(x_i)^2}$$

• Regularisation: for statistical reasons, it is safer to minimize:

$$\min_{f(x) = w^\top x} \frac{\sum_{i \sim j} (f(x_i) - f(x_j))^2 + \lambda ||w||^2}{\sum_{i=1}^{n} f(x_i)^2}$$
Influence of λ

- $\lambda \to +\infty$: PCA
 - Useful for noisy, high-dimensional data.
 - Used in spectral clustering. The graph does not play any role (unsupervised)

- $\lambda \to 0$: second smallest eigenvector of the graph
 - Useful to embed the graph in a Euclidean space (used in graph partitioning)
 - Sensitive to noise. Mapping of points outside of the graph unstable (overfitting)
Extracting successive features

• Successive features to form Φ can be obtained by:

$$w_i = \arg \min_{w \perp \{w_1, \ldots, w_{i-1}\}, \text{var}(f_w) = 1} \left\{ \sum_{i \sim j} (f_w(x_i) - f_w(x_j))^2 + \lambda \|w\|^2 \right\}.$$
Extracting successive features

- Successive features to form Φ can be obtained by:

$$w_i = \arg \min_{w \perp \{w_1, \ldots, w_{i-1}\}, \text{var}(f_w)=1} \left\{ \sum_{i \sim j} (f_w(x_i) - f_w(x_j))^2 + \lambda ||w||^2 \right\}.$$

- Generalizes Principal Component Analysis (PCA)
Extension to non-linear features

- In order to allow nonlinear features, we need to replace:
 - $||w||^2$ by $||f||^2$
 - $w_i \perp w_j$ by $f_i \perp f_j$

- We need to work in a **Hilbert space of (nonlinear) functions** that generalizes the linear case.
Positive definite kernels

Let \mathcal{X} be a set endowed with a symmetric positive definite kernel $k : \mathcal{X}^2 \rightarrow \mathbb{R}$, i.e.,

$$\sum_{i=1}^{n} \sum_{j=1}^{n} c_i c_j k(x_i, x_j) \geq 0$$

for any $n \geq 0$, $(x_1, \ldots, x_n) \in \mathcal{X}$ and $(a_1, \ldots, a_n) \in \mathbb{R}$

Examples:

- $k(x, y) = x \cdot y$ for $\mathcal{X} = \mathbb{R}^d$
- $k(x, y) = \exp(-||x - y||^2/(2\sigma^2))$ for $\mathcal{X} = \mathbb{R}^d$
Reproducing kernel Hilbert space

- A p.d. kernel defines a **Hilbert space** of functions $f : \mathcal{X} \to \mathbb{R}$ obtained by completing the span of $\{k(x, \cdot), x \in \mathcal{X}\}$

- The norm of a function $f(x) = \sum_{i=1}^{n} c_i k(x_i, x)$ is:

$$\|f\|_{k}^{2} = \sum_{i,j=1}^{n} c_i c_j k(x_i, x_j).$$

- This space is called the **reproducing kernel Hilbert space** (RKHS)
Example: linear RKHS

For $\mathcal{X} = \mathbb{R}^d$ and $k(x, y) = x \cdot y$, we have:

- $f(x) = \sum_{i=1}^{n} c_i x_i \cdot x = fw(x)$ with $w = \sum_{i=1}^{n} c_i x_i$.
- $\|f\|^2_k = \sum_{i,j=1}^{n} c_i c_j x_i \cdot x_j = \|w\|^2$
- If $f(x) = w \cdot x$ and $g(x) = v \cdot x$ then:

$$\langle f, g \rangle_k = w \cdot v$$
Graph-driven feature extraction in RKHS

- For a general set \mathcal{X} endowed with a p.d. kernel k we therefore have the following graph-driven feature extractor:

$$f_i = \arg \min_{f \perp \{f_1, \ldots, f_{i-1}\}, \text{var}(f) = 1} \left\{ \sum_{i \sim j} (f(x_i) - f(x_j))^2 + \lambda \|f\|_k^2 \right\}.$$

- The values at the minima (the spectrum) quantifies how much the graph fits the data.
Solving the problem

- By the representer theorem, f_i can be expanded as:

$$f_i(x) = \sum_{j=1}^{n} \alpha_{i,j} k(x_i, x).$$

- This shows that

$$\langle f_i, f_j \rangle_k = \alpha_i^\top K \alpha_j$$
$$\|f_i\|_k^2 = \alpha_i^\top K \alpha_i$$

(1)
The problem can then be rewritten:

\[\alpha_i = \arg \min_{\alpha \in \mathbb{R}^n, \alpha K_V \alpha_1 = \ldots = \alpha K_V \alpha_{i-1} = 0} \left\{ \frac{\alpha^\top K_V L K_V \alpha + \lambda \alpha^\top K_V \alpha}{\alpha^\top K_V^2 \alpha} \right\} \]

where \(K_V \) is the centered \(n \times n \) Gram matrix and \(L \) is the Laplacian of the graph.

It is equivalent to solving the generalized eigenvalue problem:

\[(L K_V + \lambda I) \alpha = \mu K_V \alpha. \]
Evaluation of the supervised approach: effect of λ

Metabolic network, 10-fold cross-validation, 1 feature
Evaluation of the supervised approach: number of features ($\lambda = 2$)
Part 3

Extraction of pathway activity
The idea

- The previous approach is a way to extract features from gene expression data: \(f(x) = w^\top x \).

- These features are smooth on the graph: connected nodes tend to have similar values.

- This is way to detect “correlations” between gene expression data and metabolic network: **typical activity patterns of typical pathways**.
Illustration
Experiment

- **Gene network**: two genes are linked if they catalyze successive reactions in the KEGG database (669 yeast genes)

- **Expression profiles**: 18 time series measures for the 6,000 genes of yeast, during two cell cycles
First pattern of expression
Related metabolic pathways

50 genes with highest $s_2 - s_1$ belong to:

- Oxidative phosphorylation (10 genes)
- Citrate cycle (7)
- Purine metabolism (6)
- Glycerolipid metabolism (6)
- Sulfur metabolism (5), etc...
Related genes
Related genes
Related genes

[Diagram of SeLENOAMINO ACID METABOLISM]

- Hydrogen selenide
 - 1.8.1.2
 - 1.8.7.1
 - 1.8.99.1

- Selenite
 - 1.8.99.2

- Selenate
 - 2.7.7.4

- Adenylylselenate
 - 2.7.1.25

- 3'-Phosphoadenylylselenate

- Selenophosphate

- Se

- 2.7.9.3
Opposite pattern

Expression vs. Time
Related genes

- RNA polymerase (11 genes)
- Pyrimidine metabolism (10)
- Aminoacyl-tRNA biosynthesis (7)
- Urea cycle and metabolism of amino groups (3)
- Oxidative phosphorylation (3)
- ATP synthesis (3), etc...
Related genes
Related genes
Related genes
Second pattern

Expression

Time
Part 4

Learning from several heterogeneous data
Summary of the process
Kernels

Several similarity kernels have been developed recently:

- for phylogenetic profiles (JPV. 2004)
- for gene sequences (Leslie et al. 2003, Saigo et al. 2004, ...)
- for nodes in a network (Kondor et al. 2000)
Learning from heterogeneous data

- Suppose several data are available about the genes, e.g., expression, localization, structure, predicted interaction etc...
- Each data can be represented by a positive definite similarity matrix K_1, \ldots, K_p
- Kernel can be combined by various operations, e.g., addition:

$$K = \sum_{i=1}^{p} K_i$$
Learning from heterogeneous data (unsupervised)
Learning from heterogeneous data (supervised)
The gene **YJR137C** was predicted in 09/2003 between $EC:1.8.4.8$ and $EC:2.5.1.47$. It was recently annotated as **EC:1.8.1.2**
Conclusion
Conclusion

1. *Supervised inference* is better than unsupervised
Conclusion

1. **Supervised inference** is better than unsupervised

2. Supervised graph inference can be performed by **distance metric learning**
Conclusion

1. **Supervised inference** is better than unsupervised

2. Supervised graph inference can be performed by **distance metric learning**

3. **Data integration with kernels** is simple and powerful
Conclusion

1. **Supervised inference** is better than unsupervised

2. Supervised graph inference can be performed by **distance metric learning**

3. **Data integration with kernels** is simple and powerful

4. **Few assumptions** about the network to infer (works well for the metabolic network and the protein interaction network)