Metric learning pairwise kernel for graph inference with SVM

Jean-Philippe Vert1 Jian Qiu2 William Stafford Noble3

1Center for Computational Biology
Ecole des Mines de Paris

2Department of Genome Sciences
University of Washington

2Department of Genome Sciences
Department of Computer Science and Engineering
University of Washington

NIPS workshop “Open problems in computational biology”, Whistler, Canada, December 8th, 2006
Motivation

Data
- Gene expression,
- Gene sequence,
- Protein localization, ...

Graph
- Protein-protein interactions,
- Metabolic pathways,
- Signaling pathways, ...

Vert, Qiu and Noble ()
Strategies

Unsupervised approaches

The graph is completely unknown

- **model-based** approaches: Bayes nets, dynamical systems,..
- **similarity-based**: connect similar nodes

Supervised approaches

Part of the graph is known

- **Undirect approach** (ML): a pair \((a, b)\) is likely to be connected if it is similar to a pair \((c, d)\) which is connected.
- **Direct approach**: \(a\) is likely to be connected to \(b\) if they are similar to each other, for a measure of similarity to be optimized.
Strategies

Unsupervised approaches

The graph is completely unknown
- **model-based** approaches: Bayes nets, dynamical systems,..
- **similarity-based**: connect similar nodes

Supervised approaches

Part of the graph is known
- **Undirect approach** (ML): a pair \((a, b)\) is likely to be connected if it is similar to a pair \((c, d)\) which is connected.
- **Direct approach**: \(a\) is likely to be connected to \(b\) if they are similar to each other, for a measure of similarity to be optimized
Example: supervised undirect approach with SVM

TPPK kernel

- Suppose a kernel K exists for individual genes.
- Construct a tensor product pairwise kernel (TPPK) between pairs (Ben-Hur and Noble, 2005):

$$K_{TPPK} \left((x_1, x_2), (x_3, x_4)\right) = K(x_1, x_3)K(x_2, x_4) + K(x_1, x_4)K(x_2, x_3).$$

- Given a training set of connected and non-connected pairs, train a binary SVM to predict if a new pair is connected or not.
Example: supervised direct approach

Metric learning

- Suppose a kernel K exists for individual genes.
- Given a training set of connected and non-connected pairs, find a new distance metric such that connected genes are closer to each other than non-connected pairs.
- For a new pair, predict an edge is the distance is below a threshold (Vert and Yamanishi, 2005).
Contribution

- A new distance metric learning algorithm for supervised graph inference
- A relaxation equivalent to a SVM with a particular kernel for pairs, which we call metric learning pairwise kernel (MLPK).
- Therefore the possibility to:
 - use out-of-the-box SVM implementation for supervised direct graph inference
 - easily combine direct and undirect approaches by kernel combination.
Objective function

Suppose genes are described as vectors $x \in \mathbb{R}^d$

After a linear mapping $\Phi(x) = Ax$ the square Euclidean distance is:

$$d_M(x, x') = (x - x')^\top M(x - x')$$

$$= tr \left(M(x - x')(x - x')^\top \right),$$

with $M = A^\top A \succ 0$.

Direct edge inference is possible if, for example,

$$d_\phi(x_i, x_j) \begin{cases}
\leq \gamma - 1 & \text{for } x_i \sim x_j, \\
\geq \gamma + 1 & \text{for } x_i \not\sim x_j.
\end{cases}$$
Large-margin metric learning

Problem formulation

In the spirit of SVM, this suggests the following optimization problem:

Minimize \[\| M \|_{Fro}^2 + C \sum_{(i,j)} \zeta_{i,j} \]

subject to \[\zeta_{i,j} \geq 0, \quad \forall (i,j) \in \mathcal{T} \]
\[d_M(x_i, x_j) \leq \gamma - 1 + \zeta_{i,j}, \quad i \sim j \]
\[d_M(x_i, x_j) \geq \gamma + 1 - \zeta_{i,j}, \quad i \not\sim j \]
\[M \succeq 0. \]

Similar to Tsang and Kwok (2003)
Representation of the solution

Lemma

The solution \hat{M} of the previous problem can be expanded as:

$$\hat{M} = \sum_{(i,j) \in T} \alpha_{i,j} (x_i - x_j) (x_i - x_j)^\top,$$

where $\alpha_{i,j}$ are real number associated to the training pairs $(i,j) \in T$.

Remarks

- The “classical” representer theorem can not be applied here because of the $M \succeq 0$ constraint. A slight extension is required.
- Plugging back into the problem leads to a SDP problem.
- The dimension of the SDP is $2 |T| + 1 \implies$ computational issues.
Lemma

The solution \hat{M} of the previous problem can be expanded as:

$$\hat{M} = \sum_{(i,j) \in T} \alpha_{i,j} (x_i - x_j) (x_i - x_j)^\top,$$

where $\alpha_{i,j}$ are real number associated to the training pairs $(i, j) \in T$.

Remarks

- The “classical” representer theorem can not be applied here because of the $M \succeq 0$ constraint. A slight extension is required.
- Plugging back into the problem leads to a SDP problem
- The dimension of the SDP is $2 |T| + 1 \implies$ computational issues.
Relaxation

- **Relax the constraint** $M \succeq 0$

- The problem becomes:

 \[
 \text{Minimize} \quad \|M\|_F^2 + C \sum_{(i,j)} \zeta_{i,j}
 \]

 \[
 \text{subject to} \quad \zeta_{i,j} \geq 0, \quad \forall (i,j)
 \]

 \[
 < M, D_{i,j} >_F - \gamma \leq -1 + \zeta_{i,j}, \quad i \sim j
 \]

 \[
 < M, D_{i,j} >_F - \gamma \geq 1 - \zeta_{i,j}, \quad i \not\sim j.
 \]

 with the notation

 \[
 D_{i,j} = (x_i - x_j) (x_i - x_j)^T.
 \]

- This is a **SVM over** $d \times d$ matrices with training set $\{(D_{i,j})_{(i,j) \in \mathcal{T}}\}$.
Relaxation

- Relax the constraint $M \succeq 0$
- The problem becomes:

$$\begin{align*}
\text{Minimize} & \quad \| M \|_{Fro}^2 + C \sum_{(i,j)} \zeta_{i,j} \\
\text{subject to} & \quad \zeta_{i,j} \geq 0, \quad \forall (i, j) \\
& \quad < M, D_{i,j} >_{Fro} - \gamma \leq -1 + \zeta_{i,j}, \quad i \sim j \\
& \quad < M, D_{i,j} >_{Fro} - \gamma \geq 1 - \zeta_{i,j}, \quad i \not\sim j.
\end{align*}$$

with the notation

$$D_{i,j} = (x_i - x_j)(x_i - x_j)\top.$$

This is a SVM over $d \times d$ matrices with training set $(D_{i,j})_{(i,j) \in \mathcal{T}}$.

Vert, Qiu and Noble ()
Graph inferences with SVM
Relax the constraint $M \succeq 0$

The problem becomes:

Minimize $\| M \|_{\text{Fro}}^2 + C \sum_{(i,j)} \zeta_{i,j}$

subject to $\zeta_{i,j} \geq 0$, $\forall (i, j)$

$< M, D_{i,j} >_{\text{Fro}} - \gamma \leq -1 + \zeta_{i,j}$, $i \sim j$

$< M, D_{i,j} >_{\text{Fro}} - \gamma \geq 1 - \zeta_{i,j}$, $i \not\sim j$.

with the notation

$$D_{i,j} = (x_i - x_j) (x_i - x_j)^\top.$$

This is a SVM over $d \times d$ matrices with training set $\{ D_{i,j} \}_{(i,j) \in \mathcal{T}}$.
Metric learning pairwise kernel

Pairwise inner product

\[
\langle D_{x_1, x_2}, D_{x_3, x_4}\rangle_{\text{Fro}} = \operatorname{Trace}\left((x_1 - x_2) (x_1 - x_2)^\top (x_3 - x_4) (x_3 - x_4)^\top \right)
\]

\[
= \left((x_1 - x_2)^\top (x_3 - x_4) \right)^2
\]

\[
= \left(x_1^\top x_3 - x_1^\top x_4 - x_2^\top x_3 + x_2^\top x_4 \right)^2 .
\]

Pairwise kernel

\[
K_{\text{MLPK}} \left((x_1, x_2), (x_3, x_4) \right)
\]

\[
= \left(K (x_1, x_3) - K (x_1, x_4) - K (x_2, x_3) + K (x_2, x_4) \right)^2 .
\]
Results

Metabolic network
- 769 vertices: enzymes
- 3702 edges: catalyze successive reactions
- 3702 negative pairs (randomly sampled)
- 5-fold CV, 3 repeats, parameter optimization over the training set

Table

<table>
<thead>
<tr>
<th>Data</th>
<th>MLPK</th>
<th>TPPK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Accuracy</td>
<td>AUC</td>
</tr>
<tr>
<td>Expression</td>
<td>77.8 ± 0.2</td>
<td>84.5 ± 0.1</td>
</tr>
<tr>
<td>Localization</td>
<td>63.9 ± 0.4</td>
<td>68.2 ± 0.4</td>
</tr>
<tr>
<td>Phylogenetic profile</td>
<td>79.8 ± 0.1</td>
<td>84.9 ± 0.2</td>
</tr>
<tr>
<td>Yeast two-hybrid</td>
<td>76.6 ± 0.2</td>
<td>82.0 ± 0.1</td>
</tr>
<tr>
<td>Sum</td>
<td>83.9 ± 0.4</td>
<td>90.9 ± 0.3</td>
</tr>
</tbody>
</table>

Vert, Qiu and Noble ()

Graph inferences with SVM
Results

Co-complex network
- 797 vertices: **proteins**
- 3280 edges: **member of the same complex**
- 3280 negative pairs (randomly sampled)
- 5-fold CV, 3 repeats, parameter optimization over the training set

<table>
<thead>
<tr>
<th>Data</th>
<th>MLPK</th>
<th>TPPK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Accuracy</td>
<td>AUC</td>
</tr>
<tr>
<td>Localization</td>
<td>76.5 ± 0.1</td>
<td>76.8 ± 0.1</td>
</tr>
<tr>
<td>Chip-chip</td>
<td>82.4 ± 0.3</td>
<td>89.7 ± 0.1</td>
</tr>
<tr>
<td>Pfam</td>
<td>92.2 ± 0.2</td>
<td>98.2 ± 0.1</td>
</tr>
<tr>
<td>PSI-BLAST</td>
<td>90.0 ± 0.3</td>
<td>97.3 ± 0.1</td>
</tr>
</tbody>
</table>
Conclusion and future work

Summary

- A kernel method for distance metric learning, with an objective function optimized for graph inference
- A relaxation that leads to a SVM with a particular kernel for pairs
- Encouraging experimental results

Future work

- Assess the effect of relaxation
- Integration of multiple pairwise kernels

Reference