Statistical learning on graphs and groups through embeddings in Hilbert spaces

Jean-Philippe Vert
Jean-Philippe.Vert@ensmp.fr

Centre for Computational Biology
Ecole des Mines de Paris, ParisTech

Outline

1. Positive definite kernels and statistical learning
2. Kernels on groups and semigroups
3. Kernels on graphs
4. Conclusion
Outline

1. Positive definite kernels and statistical learning
2. Kernels on groups and semigroups
3. Kernels on graphs
4. Conclusion
1. Positive definite kernels and statistical learning
2. Kernels on groups and semigroups
3. Kernels on graphs
4. Conclusion
Outline

1. Positive definite kernels and statistical learning
2. Kernels on groups and semigroups
3. Kernels on graphs
4. Conclusion
Outline

1. Positive definite kernels and statistical learning
2. Kernels on groups and semigroups
3. Kernels on graphs
4. Conclusion
Positive Definite (p.d.) Kernels

Definition

A positive definite (p.d.) kernel on the set \mathcal{X} is a function $K : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ symmetric:

$$\forall (x, x') \in \mathcal{X}^2, \quad K(x, x') = K(x', x),$$

and which satisfies, for all $N \in \mathbb{N}$, $(x_1, x_2, \ldots, x_N) \in \mathcal{X}^N$ and $(a_1, a_2, \ldots, a_N) \in \mathbb{R}^N$:

$$\sum_{i=1}^{N} \sum_{j=1}^{N} a_i a_j K(x_i, x_j) \geq 0.$$
P.d. kernels are inner products

Theorem (Aronszajn, 1950)

*K is a p.d. kernel on the set \(\mathcal{X} \) if and only if there exists a Hilbert space \(\mathcal{H} \) and a mapping \(\Phi : \mathcal{X} \mapsto \mathcal{H} \), such that, for any \(x, x' \) in \(\mathcal{X} \):

\[
K(x, x') = \langle \Phi(x), \Phi(x') \rangle_{\mathcal{H}}.
\]
Reproducing kernel Hilbert space

Definition

Let \(\mathcal{X} \) be a set and \(\mathcal{H} \subset \mathbb{R}^{\mathcal{X}} \) be a class of functions forming a (real) Hilbert space with inner product \(\langle ., . \rangle_{\mathcal{H}} \). The function \(K : \mathcal{X}^2 \rightarrow \mathbb{R} \) is called a reproducing kernel (r.k.) of \(\mathcal{H} \) if

1. \(\mathcal{H} \) contains all functions of the form

\[
\forall x \in \mathcal{X}, \quad K_x : t \mapsto K(x, t).
\]

2. For every \(x \in \mathcal{X} \) and \(f \in \mathcal{H} \) the reproducing property holds:

\[
f(x) = \langle f, K_x \rangle_{\mathcal{H}}.
\]

If a r.k. exists, then \(\mathcal{H} \) is called a reproducing kernel Hilbert space (RKHS).
Equivalence between positive definite and reproducing kernels

Theorem (Aronszajn, 1950)

\(K \) is a p.d. kernel if and only if there exists a RKHS having \(K \) as r.k.

Explicit construction of the RKHS

- If \(K \) is p.d., then the RKHS \(\mathcal{H} \) is the vector subspace of \(\mathbb{R}^X \) spanned by the functions \(\{K_x\}_{x \in X} \) (and their pointwise limits).
- For any \(f, g \in \mathcal{H}_0 \), given by:

 \[
 f = \sum_i a_i K_{x_i}, \quad g = \sum_j b_j K_{y_j},
 \]

 the inner product is given by:

 \[
 \langle f, g \rangle_{\mathcal{H}_0} := \sum_{i,j} a_i b_j K(x_i, y_j).
 \]
Equivalence between positive definite and reproducing kernels

Theorem (Aronszajn, 1950)

K is a p.d. kernel if and only if there exists a RKHS having *K* as r.k.

Explicit construction of the RKHS

- If *K* is p.d., then the RKHS *H* is the vector subspace of \(\mathbb{R}^X \) spanned by the functions \(\{K_x\}_{x \in X} \) (and their pointwise limits).
- For any \(f, g \in H_0 \), given by:
 \[
 f = \sum_i a_i K_{x_i}, \quad g = \sum_j b_j K_{y_j},
 \]
 the inner product is given by:
 \[
 \langle f, g \rangle_{H_0} := \sum_{i,j} a_i b_j K(x_i, y_j).
 \]
Example: RKHS of the linear kernel (cont.)

\[
\begin{aligned}
 K(\mathbf{x}, \mathbf{x}') &= \mathbf{x}^\top \mathbf{x}' , \\
 \mathbf{f}(\mathbf{x}) &= \mathbf{w}^\top \mathbf{x} , \\
 \| \mathbf{f} \|_{\mathcal{H}} &= \| \mathbf{w} \|_2 .
\end{aligned}
\]
Smoothness functional

A simple inequality

By Cauchy-Schwarz we have, for any function $f \in \mathcal{H}$ and any two points $x, x' \in \mathcal{X}$:

$$
\left| f(x) - f(x') \right| = \left| \langle f, K_x - K_{x'} \rangle_{\mathcal{H}} \right| \\
\leq \| f \|_{\mathcal{H}} \times \| K_x - K_{x'} \|_{\mathcal{H}} \\
= \| f \|_{\mathcal{H}} \times d_K(x, x') .
$$

The norm of a function in the RKHS controls how fast the function varies over \mathcal{X} with respect to the geometry defined by the kernel (Lipschitz with constant $\| f \|_{\mathcal{H}}$).

Important message

Small norm \implies slow variations.
The representer theorem

Theorem (Kimeldorf and Wahba, 1971)

- Let \mathcal{X} be a set endowed with a p.d. kernel K, \mathcal{H}_K the corresponding RKHS, and $\mathcal{S} = \{x_1, \ldots, x_n\} \subset \mathcal{X}$ a finite set of points in \mathcal{X}.
- Let $\Psi : \mathbb{R}^{n+1} \to \mathbb{R}$ be a function of $n + 1$ variables, strictly increasing with respect to the last variable.
- Then, any solution to the optimization problem:

$$
\min_{f \in \mathcal{H}_K} \Psi(f(x_1), \ldots, f(x_n), \|f\|_{\mathcal{H}_K}) ,
$$

admits a representation of the form:

$$
\forall x \in \mathcal{X}, \quad f(x) = \sum_{i=1}^{n} \alpha_i K(x_i, x) .
$$
Pattern recognition

- Input variables $\mathbf{x} \in \mathcal{X}$
- Output $y \in \{-1, 1\}$.
- Training set $S = \{(\mathbf{x}_1, y_1), \ldots, (\mathbf{x}_n, y_n)\}$.
Empirical risk minimization (ERM)

ERM estimator

- **Loss function** $l(f(x), y) \in \mathbb{R}$ small when $f(x)$ is a good predictor for y
- **Empirical risk:**
 \[
 R_n(f) = \frac{1}{n} \sum_{i=1}^{n} l(f(X_i), Y_i).
 \]

- The **ERM estimator** on the functional class \mathcal{F} is the solution of:
 \[
 \hat{f}_n = \arg \min_{f \in \mathcal{F}} R_n(f).
 \]

- **Statistical learning theory:** the estimator is consistent when the “complexity” of the class \mathcal{F} is controlled.
Principle

- Suppose \mathcal{X} is endowed with a p.d. kernel.
- We consider the ball of radius B in the RKHS as function class for the ERM:

 $$\mathcal{F}_B = \{ f \in \mathcal{H} : \| f \|_{\mathcal{H}} \leq B \} .$$

- Theoretical justifications exist (upper bounds on the “complexity” of \mathcal{F}_B).
Reformulation as penalized minimization

We must solve the constrained minimization problem:

\[
\begin{align*}
\min_{f \in \mathcal{H}} & \quad \frac{1}{n} \sum_{i=1}^{n} l(f(x_i), y_i) \\
\text{subject to} & \quad \|f\|_{\mathcal{H}} \leq B.
\end{align*}
\]

To make this practical we assume that \(l\) is a convex function of \(f\).

The problem is then a convex problem in \(f\) for which strong duality holds. In particular \(f\) solves the problem if and only if it solves for some dual parameter \(\lambda\) the unconstrained problem:

\[
\min_{f \in \mathcal{H}} \left\{ \frac{1}{n} \sum_{i=1}^{n} l(f(x_i), y_i) + \lambda \|f\|_{\mathcal{H}}^2 \right\},
\]

and complimentary slackness holds (\(\lambda = 0\) or \(\|f\|_{\mathcal{H}} = B\)).
By the **representer theorem**, the solution of the unconstrained problem can be expanded as:

$$f(x) = \sum_{i=1}^{n} \alpha_i K(x_i, x).$$

Plugging into the original problem we obtain the following unconstrained and convex optimization problem in \mathbb{R}^n:

$$\min_{\alpha \in \mathbb{R}^n} \left\{ \frac{1}{n} \sum_{i=1}^{n} l \left(\sum_{j=1}^{n} \alpha_j K(x_i, x_j), y_i \right) + \lambda \sum_{i,j=1}^{n} \alpha_i \alpha_j K(x_i, x_j) \right\}.$$

This can be implemented using general packages for convex optimization or specific algorithms (e.g., SVM).
Example : support vector machines

The classifier is:

$$\forall \mathbf{x} \in \mathcal{X}, \quad f(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i K(\mathbf{x}, \mathbf{x}_i),$$

where α is the solution of the following QP:

$$\max_{\alpha \in \mathbb{R}^d} 2 \sum_{i=1}^{n} \alpha_i y_i - \sum_{i,j=1}^{n} \alpha_i \alpha_j K(\mathbf{x}_i, \mathbf{x}_j),$$

subject to:

$$0 \leq y_i \alpha_i \leq C, \quad \text{for } i = 1, \ldots, n.$$
3 ways to map \mathcal{X} to a Hilbert space

1. Explicitly define and compute $\Phi : \mathcal{X} \to \mathcal{H}$
2. Define a p.d. kernel over \mathcal{X}
3. Define a RKHS over \mathcal{X}

The p.d. kernel is sufficient for a variety of applications in data analysis and machine learning
1. Positive definite kernels and statistical learning
2. Kernels on groups and semigroups
3. Kernels on graphs
4. Conclusion
Semigroups

Definition

- A semigroup \((S, \circ)\) is a nonempty set \(S\) equipped with an associative composition \(\circ\) and a neutral element \(e\).
- A semigroup with involution \((S, \circ, \ast)\) is a semigroup \((S, \circ)\) together with a mapping \(\ast : S \rightarrow S\) called involution satisfying:
 1. \((s \circ t)^\ast = t^\ast \circ s^\ast\), for \(s, t \in S\).
 2. \((s^\ast)^\ast = s\) for \(s \in S\).

Examples

- Any group \((G, \circ)\) is a semigroup with involution when we define \(s^\ast = s^{-1}\).
- Any abelian semigroup \((S, +)\) is a semigroup with involution when we define \(s^\ast = s\), the identical involution.
Positive definite functions on semigroups

Definition

Let \((S, \circ, \ast)\) be a semigroup with involution. A function \(\phi : S \rightarrow \mathbb{R}\) is called **positive definite** if the function:

\[
\forall s, t \in S, \quad K(s, t) = \phi(s^* \circ t)
\]

is a p.d. kernel on \(S\).

Example: translation invariant kernels

\((\mathbb{R}^d, +, -)\) is an abelian group with involution. A function \(\phi : \mathbb{R}^d \rightarrow \mathbb{R}\) is p.d. if the function

\[
K(x, y) = \phi(x - y)
\]

is p.d. on \(\mathbb{R}^d\) (translation invariant kernels).
A function $\rho : S \to \mathbb{C}$ on an abelian semigroup with involution $(S, +, \ast)$ is called a semicharacter if

1. $\rho(0) = 1$,
2. $\rho(s + t) = \rho(s)\rho(t)$ for $s, t \in S$,
3. $\rho(s^*) = \overline{\rho(s)}$ for $s \in S$.

The set of semicharacters on S is denoted by S^*.

Integral representation of p.d. functions

Definition

- An function $\alpha : S \to \mathbb{R}$ on a semigroup with involution is called an **absolute value** if (i) $\alpha(e) = 1$, (ii) $\alpha(s \circ t) \leq \alpha(s)\alpha(t)$, and (iii) $\alpha(s^*) = \alpha(s)$.

- A function $f : S \to \mathbb{R}$ is called **exponentially bounded** if there exists an absolute value α and a constant $C > 0$ s.t. $|f(s)| \leq C\alpha(s)$ for $s \in S$.

Theorem

Let $(S, +, *)$ an abelian semigroup with involution. A function $\phi : S \to \mathbb{R}$ is p.d. and exponentially bounded (resp. bounded) if and only if it has a representation of the form:

$$\phi(s) = \int_{S^*} \rho(s) d\mu(\rho).$$

where μ is a Radon measure with compact support on S^* (resp. on \hat{S}, the set of bounded semicharacters).
Integral representation of p.d. functions

Definition

- An function \(\alpha : S \to \mathbb{R} \) on a semigroup with involution is called an absolute value if (i) \(\alpha(e) = 1 \), (ii) \(\alpha(s \circ t) \leq \alpha(s)\alpha(t) \), and (iii) \(\alpha(s^*) = \alpha(s) \).

- A function \(f : S \to \mathbb{R} \) is called exponentially bounded if there exists an absolute value \(\alpha \) and a constant \(C > 0 \) s.t. \(|f(s)| \leq C\alpha(s) \) for \(s \in S \).

Theorem

Let \((S, +, \ast)\) an abelian semigroup with involution. A function \(\phi : S \to \mathbb{R} \) is p.d. and exponentially bounded (resp. bounded) if and only if it has a representation of the form:

\[
\phi(s) = \int_{S^*} \rho(s) d\mu(\rho).
\]

where \(\mu \) is a Radon measure with compact support on \(S^* \) (resp. on \(\hat{S} \), the set of bounded semicharacters).
Example 1: \((\mathbb{R}_+, +, \text{Id})\)

P.d. functions

- \(S = (\mathbb{R}_+, +, \text{Id})\) is an abelian semigroup.
- The set of bounded semicharacters is exactly the set of functions:
 \[
 s \in \mathbb{R}_+ \mapsto \rho_a(s) = e^{-as},
 \]
 for \(a \in [0, +\infty]\)
- A function \(\phi : \mathbb{R}_+ \rightarrow \mathbb{R}\) is p.d. and bounded if and only if it has the form:
 \[
 \phi(s) = \int_0^\infty e^{-as} d\mu(a) + b\rho_\infty(s)
 \]
 where \(\mu \in \mathcal{M}^b_+ (\mathbb{R}_+)\) and \(b \geq 0\).
- \(\phi\) is p.d., bounded and continuous iff it is the Laplace transform of a measure in \(\mathcal{M}^b_+ (\mathbb{R})\).
Example 2: characterization of p.d. t.i. kernels

Theorem (Bochner)

A function $\kappa(x - y)$ on \mathbb{R}^d is positive definite if and only if it is the Fourier transform of a function $\hat{\kappa}(\omega)$ symmetric, positive, and tending to 0 at infinity.

Examples

\[
K_{\text{Gaussian}}(x, y) = e^{-\frac{(x-y)^2}{2\sigma^2}},
\]
\[
K_{\text{Laplace}}(x, y) = \frac{1}{2} e^{-\gamma |x-y|},
\]
\[
K_{\text{Filter}}(x, y) = \frac{\sin(\Omega(x - y))}{\pi(x - y)}.
\]
Example 3: Semigroup kernels for finite measures (1/6)

- We assume that data to be processed are “bags-of-points”, i.e., sets of points (with repeats) of a space \mathcal{U}.
- Example: a finite-length string as a set of k-mers.
- How to define a p.d. kernel between any two bags that only depends on the union of the bags?
Example 3: Semigroup kernels for finite measures (2/6)

Semigroup of bounded measures

- We can represent any bag-of-point \(x \) as a finite measure on \(U \):
 \[
 x = \sum_i a_i \mu_{x_i},
 \]
 where \(a_i \) is the number of occurrences on \(x_i \) in the bag and \(\mu_{x_i} \) is a basic measure centered on \(x \).

- The measure that represents the union of two bags is the sum of the measures that represent each individual bag.

- This suggests to look at the semigroup \((M^b_+ (U), +, \text{Id}) \) of bounded Radon measures on \(U \) and to search for p.d. functions \(\phi \) on this semigroup.
Example 3: Semigroup kernels for finite measures (3/6)

Semicharacters

- For any Borel measurable function $f : \mathcal{U} \rightarrow \mathbb{R}$ the function $\rho_f : \mathcal{M}^b_+ (\mathcal{U}) \rightarrow \mathbb{R}$ defined by:

$$\rho_f(\mu) = e^{\mu[f]}$$

is a semicharacter on $(\mathcal{M}^b_+ (\mathcal{U}), +)$.

- Conversely, ρ is continuous semicharacter (for the topology of weak convergence) if and only if there exists a continuous function $f : \mathcal{U} \rightarrow \mathbb{R}$ such that $\rho = \rho_f$.

- No such characterization for non-continuous characters, even bounded.

Jean-Philippe Vert (Ecole des Mines) Statistical learning on graphs and groups
Example 3: Semigroup kernels for finite measures (4/6)

Corollary

Let \mathcal{U} be a Hausdorff space. For any Radon measure $\mu \in \mathcal{M}_+^c (C(\mathcal{U}))$ with compact support on the Hausdorff space of continuous real-valued functions on \mathcal{U} endowed with the topology of pointwise convergence, the following function K is a continuous p.d. kernel on $\mathcal{M}_+^b (\mathcal{U})$ (endowed with the topology of weak convergence):

$$K(\mu, \nu) = \int_{C(\mathcal{U})} e^{\mu[f]+\nu[f]} d\mu(f).$$

Remarks

The converse is not true: there exist continuous p.d. kernels that do not have this integral representation (it might include non-continuous semicharacters)
Example 3: Semigroup kernels for finite measures (5/6)

Example: entropy kernel

Let \mathcal{X} be the set of probability densities (w.r.t. some reference measure) on \mathcal{U} with finite entropy:

$$h(x) = -\int_{\mathcal{U}} x \ln x.$$

Then the following entropy kernel is a p.d. kernel on \mathcal{X} for all $\beta > 0$:

$$K(x, x') = e^{-\beta h\left(\frac{x+x'}{2}\right)}.$$

Remark: only valid for densities (e.g., for a kernel density estimator from a bag-of-parts)
Examples: inverse generalized variance kernel

Let \(\mathcal{U} = \mathbb{R}^d \) and \(\mathcal{M}^V_+ (\mathcal{U}) \) be the set of finite measure \(\mu \) with second order moment and non-singular variance

\[
\Sigma(\mu) = \mu \left[xx^\top \right] - \mu [x] \mu [x]^\top.
\]

Then the following function is a p.d. kernel on \(\mathcal{M}^V_+ (\mathcal{U}) \), called the inverse generalized variance kernel:

\[
K(\mu, \mu') = \frac{1}{\det \Sigma \left(\frac{\mu + \mu'}{2} \right)}.
\]
Application of semigroup kernel

Weighted linear PCA of two different measures, with the first PC shown. Variances captured by the first and second PC are shown. The generalized variance kernel is the inverse of the product of the two values.

$\Sigma_{1,1} = 0.0552$
$\Sigma_{2,2} = 0.0013$

$\Sigma'_{1,1} = 0.0441$
$\Sigma'_{2,2} = 0.0237$

$\Sigma''_{1,1} = 0.0497$
$\Sigma''_{2,2} = 0.0139$
Kernelization of the IGV kernel

Motivations
- Gaussian distributions may be poor models.
- The method fails in large dimension

Solution
1. **Regularization:**
 \[
 K_\lambda (\mu, \mu') = \frac{1}{\det \left(\Sigma \left(\frac{\mu + \mu'}{2} \right) + \lambda I_d \right)}.
 \]

2. **Kernel trick:** the non-zero eigenvalues of \(UU^\top \) and \(U^\top U \) are the same \(\implies \) replace the covariance matrix by the centered Gram matrix (technical details in Cuturi et al., 2005).
Illustration of kernel IGV kernel

0.276

0.168

0.184

0.168

0.142

0.122

0.124

0.119

0.0934
Motivations

- A very general formalism to exploit an algebraic structure of the data.
- Kernel IVG kernel has given good results for character recognition from a subsampled image.
- The main motivation is more generally to develop kernels for complex objects from which simple “patches” can be extracted.
- The extension to nonabelian groups (e.g., permutation in the symmetric group) might find natural applications.
Outline

1. Positive definite kernels and statistical learning
2. Kernels on groups and semigroups
3. Kernels on graphs
4. Conclusion
Example: web
Example: social network
Example: protein-protein interaction
We need a kernel $K(x, x')$ between nodes of the graph.

Example: predict gene protein functions from high-throughput protein-protein interaction data.
General remarks

Strategies to make a kernel on a graph

- \mathcal{X} being finite, any symmetric semi-definite matrix K defines a valid p.d. kernel on \mathcal{X}.
- How to “translate” the graph topology into the kernel?
 - Direct geometric approach: $K_{i,j}$ should be “large” when x_i and x_j are “close” to each other on the graph?
 - Functional approach: $\| f \|_K$ should be “small” when f is “smooth” on the graph?
 - Link discrete/continuous: is there an equivalent to the continuous Gaussian kernel on the graph (e.g., limit by fine discretization)?
Strategies to make a kernel on a graph

- \(\mathcal{X} \) being finite, any symmetric semi-definite matrix \(K \) defines a valid p.d. kernel on \(\mathcal{X} \).
- How to “translate” the graph topology into the kernel?
 - Direct geometric approach: \(K_{i,j} \) should be “large” when \(x_i \) and \(x_j \) are “close” to each other on the graph?
 - Functional approach: \(\| f \|_K \) should be “small” when \(f \) is “smooth” on the graph?
 - Link discrete/continuous: is there an equivalent to the continuous Gaussian kernel on the graph (e.g., limit by fine discretization)?
First approach: Geometric

A direct approach

- Remember: for $\mathcal{X} = \mathbb{R}^n$, the Gaussian RBF kernel is:
 \[K(x, x') = \exp \left(- \frac{d(x, x')^2}{2\sigma^2} \right), \]
 where $d(x, x')$ is the Euclidean distance.
- If \mathcal{X} is a graph, let $d(x, x')$ be the shortest-path distance between x and x'.
- Problem: the shortest-path distance is not a Hilbert distance...
Second approach : Functional

Idea

- Define a priori a **smoothness functional** on the functions $f : \mathcal{X} \rightarrow \mathbb{R}$.
- Show that it defines a RKHS and identify the corresponding kernel.
Notations

\[
A = \begin{pmatrix}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
\end{pmatrix}, \quad D = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 3 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{pmatrix}
\]
Definition

The Laplacian of the graph is the matrix $L = A - D$.

$$L = A - D = \begin{pmatrix} -1 & 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 \\ 1 & 1 & -3 & 1 & 0 \\ 0 & 0 & 1 & -2 & 1 \\ 0 & 0 & 0 & 1 & -1 \end{pmatrix}$$
Properties of the Laplacian

Lemma

Let $L = A - D$ be the Laplacian of the graph:

- For any $f : \mathcal{X} \to \mathbb{R}$,
 \[
 \Omega(f) := \sum_{i \sim j} (f(x_i) - f(x_j))^2 = -f^\top L f
 \]

- $-L$ is a symmetric positive semi-definite matrix
- 0 is an eigenvalue with multiplicity 1 associated to the constant eigenvector $1 = (1, \ldots, 1)$
- The image of L is
 \[
 \text{Im}(L) = \left\{ f \in \mathbb{R}^m : \sum_{i=1}^{m} f_i = 0 \right\}
 \]
Our first graph kernel

Theorem

The set \(\mathcal{H} = \{ f \in \mathbb{R}^m : \sum_{i=1}^{m} f_i = 0 \} \) endowed with the norm:

$$\Omega(f) = \sum_{i \sim j} (f(x_i) - f(x_j))^2$$

is a RKHS whose reproducing kernel is \((-L)^*\), the pseudo-inverse of the graph Laplacian.
Lemma

For any $x_0 \in \mathbb{R}^d$, the function:

$$K_{x_0}(x, t) = K_t(x_0, x) = \frac{1}{(4\pi t)^{d/2}} \exp \left(-\frac{||x - x_0||^2}{4t} \right).$$

is solution of the diffusion equation:

$$\frac{\partial}{\partial t} K_{x_0}(x, t) = \Delta K_{x_0}(x, t).$$

with initial condition $K_{x_0}(x, 0) = \delta_{x_0}(x)$.

Third approach: The diffusion equation
For finite-dimensional $f_t \in \mathbb{R}^m$, the diffusion equation becomes:

$$\frac{\partial}{\partial t} f_t = Lf_t$$

which admits the following solution:

$$f_t = f_0 e^{tL}$$

This suggest to consider:

$$K = e^{tL}$$

which is indeed symmetric positive semi-definite. We call it the diffusion kernel or heat kernel.
Example: complete graph

\[K_{i,j} = \begin{cases}
\frac{1 + (m-1)e^{-tm}}{m} & \text{for } i = j, \\
\frac{m}{1 - e^{-tm}} & \text{for } i \neq j.
\end{cases} \]
Example: closed chain

\[K_{i,j} = \frac{1}{m} \sum_{\nu=0}^{m-1} \exp \left[-2t \left(1 - \cos \frac{2\pi \nu}{m} \right) \right] \cos \frac{2\pi \nu (i - j)}{m}. \]
Let $0 = \lambda_1 > -\lambda_2 \geq \ldots \geq -\lambda_m$ be the eigenvalues of the Laplacian:

$$L = \sum_{i=1}^{m} (-\lambda_i) u_i u_i^\top \quad (\lambda_i \geq 0)$$

The diffusion kernel K_t is an invertible matrix because its eigenvalues are strictly positive:

$$K_t = \sum_{i=1}^{m} e^{-t\lambda_i} u_i u_i^\top$$
For any function $f \in \mathbb{R}^m$, let:

$$\hat{f}_i = u_i^\top f$$

be the Fourier coefficients of f (projection of f onto the eigenbasis of K).

The RKHS norm of f is then:

$$\| f \|_{K_t}^2 = f^\top K^{-1} f = \sum_{i=1}^m e^{t \lambda_i} \hat{f}_i^2.$$
This observation suggests to define a whole family of kernels:

\[K_r = \sum_{i=1}^{m} r(\lambda_i) u_i u_i^\top \]

associated with the following RKHS norms:

\[\| f \|_{K_r}^2 = \sum_{i=1}^{m} \frac{\hat{f}_{i}^2}{r(\lambda_i)} \]

where \(r : \mathbb{R}^{+} \rightarrow \mathbb{R}^{+} \) is a non-increasing function.
Example: regularized Laplacian

\[r(\lambda) = \frac{1}{\lambda + \epsilon}, \quad \epsilon > 0 \]

\[K = \sum_{i=1}^{m} \frac{1}{\lambda_i + \epsilon} u_i u_i^\top = (-L + \epsilon I)^{-1} \]

\[\| f \|^2_K = f^\top K^{-1} f = \sum_{i \sim j} (f(x_i) - f(x_j))^2 + \epsilon \sum_{i=1}^{m} f(x_i)^2. \]
Applications 1: graph partitioning

- A classical relaxation of graph partitioning is:

\[
\min_{f \in \mathbb{R}^X} \sum_{i \sim j} (f_i - f_j)^2 \quad \text{s.t.} \sum_i f_i^2 = 1
\]

- This can be rewritten

\[
\max \sum f_i^2 \quad \text{s.t.} \quad \|f\|_\mathcal{H} \leq 1
\]

- This is principal component analysis in the RKHS (“kernel PCA”)
Let x_1, \ldots, x_q a set of q nodes (the query). How to find “similar” nodes (and rank them)?

One solution:

$$\min_{f} \| f \|_{\mathcal{H}} \quad \text{s.t.} \quad f(x_i) \geq 1 \text{ for } i = 1, \ldots, q.$$
Application 3: Semi-supervised learning
Application 3: Semi-supervised learning
Example 4: Tumor classification from microarray data

<table>
<thead>
<tr>
<th>Data available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gene expression measures for more than 10k genes</td>
</tr>
<tr>
<td>Measured on less than 100 samples of two (or more) different classes (e.g., different tumors)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design a classifier to automatically assign a class to future samples from their expression profile</td>
</tr>
<tr>
<td>Interpret biologically the differences between the classes</td>
</tr>
</tbody>
</table>
Example 4: Tumor classification from microarray data

Data available
- Gene expression measures for more than 10k genes
- Measured on less than 100 samples of two (or more) different classes (e.g., different tumors)

Goal
- Design a classifier to automatically assign a class to future samples from their expression profile
- Interpret biologically the differences between the classes
Linear classifiers

The approach

- Each sample is represented by a vector \(x = (x_1, \ldots, x_p) \) where \(p > 10^5 \) is the number of probes.

- **Classification**: given the set of labeled sample, learn a linear decision function:

 \[
 f(x) = \sum_{i=1}^{p} \beta_i x_i + \beta_0 ,
 \]

- **Interpretation**: the weight \(\beta_i \) quantifies the influence of gene \(i \) for the classification.

Pitfalls

- **No robust estimation procedure** exist for 100 samples in \(10^5 \) dimensions!
Prior knowledge

- We know the functions of many genes, and how they interact together.
- This can be represented as a graph of genes, where connected genes perform some action together.
- Prior knowledge: constraint the weights of genes that work together to be similar.
- Mathematically: constrain the norm of the weight vector in the RKHS of the diffusion kernel.
Comparison

N-Glycan biosynthesis

Protein kinases

DNA and RNA polymerase subunits

Glycolysis / Gluconeogenesis

Sulfur metabolism

Nitrogen, asparagine metabolism

Phytoene synthase

Oxidative phosphorylation, TCA cycle

Purine metabolism

Riboflavin metabolism

N-Glycan biosynthesis

Folate biosynthesis

DNA and RNA polymerase subunits

Porphyrin and chlorophyll metabolism

Lysine biosynthesis

Biosynthesis of steroids, ergosterol metabolism

Phenylalanine, tyrosine and tryptophan biosynthesis

Purine metabolism
Outline

1. Positive definite kernels and statistical learning
2. Kernels on groups and semigroups
3. Kernels on graphs
4. Conclusion
Conclusion

- Implicit Hilbert space embedding through positive definite kernels
- State-of-the-art machine learning algorithms based on optimization in reproducing kernel Hilbert spaces
- P.d. kernels on groups and graphs allow the extension of these algorithms to non-vectorial data
- Making p.d. kernel for particular objects is a hot topic in machine learning!
- Many potential applications!
Further reading

Kernels and RKHS: general

N. Aronszajn.
Theory of reproducing kernels.

C. Berg, J. P. R. Christensen, and P. Ressel.
Harmonic analysis on semigroups.

G. Wahba.
Spline Models for Observational Data, volume 59 of *CBMS-NSF Regional Conference Series in Applied Mathematics*.
Further reading

Learning with kernels

V. N. Vapnik.
Statistical Learning Theory.

B. Schölkopf and A. J. Smola.
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond.

J. Shawe-Taylor and N. Cristianini.
Kernel Methods for Pattern Analysis.

B. Schölkopf, K. Tsuda, and J.-P. Vert.
Kernel Methods in Computational Biology.
Further reading

Kernels on graphs

Semigroup kernels
