Classification of gene expression data with gene networks

Jean-Philippe Vert
Jean-Philippe.Vert@ensmp.fr

Centre for Computational Biology
Ecole des Mines de Paris, ParisTech

2e Journée de Biologie Systemique, Université Paris 5, April 25th, 2007
Outline

1. Motivation
2. Using gene networks as prior knowledge
3. Application
4. Conclusion
Outline

1. Motivation
2. Using gene networks as prior knowledge
3. Application
4. Conclusion
Outline

1. Motivation

2. Using gene networks as prior knowledge

3. Application

4. Conclusion
Outline

1. Motivation
2. Using gene networks as prior knowledge
3. Application
4. Conclusion
Outline

1. Motivation
2. Using gene networks as prior knowledge
3. Application
4. Conclusion
Tissue profiling with DNA chips

Data

- Gene expression measures for more than 10k genes
- Measured typically on less than 100 samples of two (or more) different classes (e.g., different tumors)
Tissue classification from microarray data

Goal

- Design a **classifier** to automatically assign a class to future samples from their expression profile
- Interpret biologically the differences between the classes
Linear classifiers

The approach

- Each sample is represented by a vector \(x = (x_1, \ldots, x_p) \) where \(p > 10^5 \) is the number of probes.
- **Classification**: given the set of labeled sample, learn a linear decision function:
 \[
 f_\beta(x) = \sum_{i=1}^{p} \beta_i x_i + \beta_0,
 \]
 that is positive for one class, negative for the other.
- **Interpretation**: the weight \(\beta_i \) quantifies the influence of gene \(i \) for the classification.
Linear classifiers estimation

Empirical risk minimization

Estimate the weights β_i by minimizing an empirical error on the training set:

$$\min_{\beta \in \mathbb{R}^{p+1}} \frac{1}{n} \sum_{i=1}^{n} l(f_{\beta}(x_i), y_i),$$

where $l(y, f(x))$ is a loss function.

Pitfalls

- Statistics does not apply (?): 100 samples in 10^5 dimensions!
- It is necessary to reduce the complexity of the problem with prior knowledge.
Linear classifiers estimation

Empirical risk minimization

Estimate the weights β_i by minimizing an empirical error on the training set:

$$\min_{\beta \in \mathbb{R}^{p+1}} \frac{1}{n} \sum_{i=1}^{n} l(f_\beta(x_i), y_i),$$

where $l(y, f(x))$ is a loss function.

Pitfalls

- **Statistics does not apply (??):** 100 samples in 10^5 dimensions!
- It is necessary to reduce the complexity of the problem with prior knowledge.
The approach

A common method in statistics to learn with few samples in high dimension is to constrain the Euclidean norm of β

$$\| \beta \|^2_2 = \sum_{i=1}^{p} \beta_i^2,$$

(ridge regression, support vector machines...)

Pros
- Good performance in classification

Cons
- Limited interpretation (small weights)
- No prior biological knowledge
Example: Feature Selection

The approach

Constrain most weights to be 0, i.e., **select a few genes** (< 100) whose expression are enough for classification. Interpretation is then about the selected genes. Examples:

- **Greedy feature selection** (T-tests, ...)
- **Contrain the norm of** β: **LASSO penalty** ($\| \beta \|_1 = \sum_{i=1}^{p} |\beta_i|$), **elastic net penalty** ($\| \beta \|_1 + \| \beta \|_2$), ...

Pros

- Good performance in classification
- Biomarker selection
- Interpretability

Cons

- The gene selection process is usually **not** robust
- No use of prior biological knowledge
Gene networks

Glycolysis / Gluconeogenesis

N-Glycan biosynthesis

Protein kinases

DNA and RNA polymerase subunits

Porphyrin and chlorophyll metabolism

Sulfur metabolism

Riboflavin metabolism

Folate biosynthesis

Biosynthesis of steroids, ergosterol metabolism

Lysine biosynthesis

Phenylalanine, tyrosine and tryptophan biosynthesis

Purine metabolism

Nitrogen, asparagine metabolism

Oxidative phosphorylation, TCA cycle

Nitrogen, asparagine metabolism

DNA and RNA polymerase subunits

Biosynthesis of steroids, ergosterol metabolism

Lysine biosynthesis

Phenylalanine, tyrosine and tryptophan biosynthesis

Purine metabolism

Nitrogen, asparagine metabolism

Oxidative phosphorylation, TCA cycle

Nitrogen, asparagine metabolism

Oxidative phosphorylation, TCA cycle
Basic biological functions usually involve the coordinated action of several proteins:

- Formation of protein complexes
- Activation of metabolic, signalling or regulatory pathways

Many pathways and protein-protein interactions are already known

Hypothesis: the weights of the classifier should be “coherent” with respect to this prior knowledge
The idea

1. Use the gene network to extract the “important information” in gene expression profiles by Fourier analysis on the graph.
2. Learn a linear classifier on the smooth components.
Notations

\[A = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}, \quad D = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \]
The Laplacian of the graph is the matrix \(L = D - A \).
Lemma

Let $L = D - A$ be the Laplacian of the graph:

- For any $f : \mathcal{X} \to \mathbb{R}$,

 $$f^\top Lf = \sum_{i \sim j} (f(x_i) - f(x_j))^2$$

- L is a symmetric positive semi-definite matrix

- 0 is an eigenvalue with multiplicity equal to the number of connected components.
Proof: link between $\Omega(f)$ and L

\[
\sum_{i \sim j} (f(x_i) - f(x_j))^2 = \sum_{i \sim j} \left(f(x_i)^2 + f(x_j)^2 - 2f(x_i)f(x_j) \right)
\]

\[
= \sum_{i=1}^{m} D_{i,i} f(x_i)^2 - 2 \sum_{i \sim j} f(x_i)f(x_j)
\]

\[
= f^T Df - f^T Af
\]

\[
= f^T Lf
\]
Proof: eigenstructure of L

- L is symmetric because A and D are symmetric.
- For any $f \in \mathbb{R}^m$, $f^\top Lf \geq 0$, therefore the (real-valued) eigenvalues of L are ≥ 0: L is therefore positive semi-definite.
- f is an eigenvector associated to eigenvalue 0
 iff $f^\top Lf = 0$
 iff $\sum_{i \sim j} (f(x_i) - f(x_j))^2 = 0$,
 iff $f(x_i) = f(x_j)$ when $i \sim j$,
 iff f is constant (because the graph is connected).
Fourier basis

Definition

- The eigenvectors e_1, \ldots, e_n of L with eigenvalues $0 = \lambda_1 \leq \ldots \leq \lambda_n$ form a basis called Fourier basis.

- For any $f: V \to \mathbb{R}$, the Fourier transform of f is the vector $\hat{f} \in \mathbb{R}^n$ defined by:
 \[
 \hat{f}_i = f^\top e_i, \quad i = 1, \ldots, n.
 \]

- Obviously the inverse Fourier formula holds:
 \[
 f = \sum_{i=1}^{n} \hat{f}_i e_i.
 \]
Fourier basis

$\lambda = 0$ $\lambda = 0.5$ $\lambda = 1$

$\lambda = 2.3$ $\lambda = 4.2$
Fourier basis
Let $\phi : \mathbb{R}^+ \rightarrow \mathbb{R}^+$ be non-increasing.

A smoothing operator S_ϕ transform a function $f : V \rightarrow \mathbb{R}$ into a smoothed version:

$$S_\phi(f) = \sum_{i=1}^{n} \hat{f}_i \phi(\lambda_i) e_i.$$
Smoothing operators

Examples

- Identity operator \(S_\phi(f) = f \):
 \[
 \phi(\lambda) = 1, \quad \forall \lambda
 \]

- Low-pass filter:
 \[
 \phi(\lambda) = \begin{cases}
 1 & \text{if } \lambda \leq \lambda^*, \\
 0 & \text{otherwise}. \end{cases}
 \]

- Attenuation of high frequencies:
 \[
 \phi(\lambda) = \exp(-\beta \lambda).
 \]
Smoothing operators

Examples

- Identity operator ($S_\phi(f) = f$):

 $$\phi(\lambda) = 1, \quad \forall \lambda$$

- Low-pass filter:

 $$\phi(\lambda) = \begin{cases} 1 & \text{if } \lambda \leq \lambda^*, \\ 0 & \text{otherwise.} \end{cases}$$

- Attenuation of high frequencies:

 $$\phi(\lambda) = \exp(-\beta \lambda).$$
Smoothing operators

Examples

- Identity operator \((S_\phi(f) = f)\):
 \[
 \phi(\lambda) = 1, \quad \forall \lambda
 \]

- Low-pass filter:
 \[
 \phi(\lambda) = \begin{cases}
 1 & \text{if } \lambda \leq \lambda^*, \\
 0 & \text{otherwise.}
 \end{cases}
 \]

- Attenuation of high frequencies:
 \[
 \phi(\lambda) = \exp(-\beta \lambda).
 \]
Supervised classification and regression

Working with smoothed profiles

- Classical methods for linear classification and regression with a ridge penalty solve:

 \[
 \min_{\beta \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^{n} l \left(\beta^\top f_i, y_i \right) + \lambda \beta^\top \beta .
 \]

- Applying these algorithms on the smooth profiles means solving:

 \[
 \min_{\beta \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^{n} l \left(\beta^\top S\phi(f_i), y_i \right) + \lambda \beta^\top \beta .
 \]
Smooth solution

Lemma

This is equivalent to:

$$\min_{v \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^{n} l \left(v^\top f_i, y_i \right) + \lambda \sum_{i=1}^{p} \frac{\hat{v}_i^2}{\phi(\lambda_i)} ,$$

hence the linear classifier v is smooth.

Proof

- Let $v = \sum_{i=1}^{n} \phi(\lambda_i) e_i e_i^\top \beta$, then

 $$\beta^\top S_{\phi}(f_i) = \beta^\top \sum_{i=1}^{n} \hat{f}_i \phi(\lambda_i) e_i = f^\top v .$$

- Then $\hat{v}_i = \phi(\lambda_i) \hat{\beta}_i$ and $\beta^\top \beta = \sum_{i=1}^{n} \frac{\hat{v}_i^2}{\phi(\lambda_i)^2}$.

J.-P. Vert (Ecole des Mines) Classification of gene expression data 25 / 35
Lemma

This is equivalent to:

\[
\min_{v \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^{n} l \left(v^\top f_i, y_i \right) + \lambda \sum_{i=1}^{p} \frac{\hat{v}_i^2}{\phi(\lambda_i)},
\]

hence the linear classifier \(v \) is smooth.

Proof

- Let \(v = \sum_{i=1}^{n} \phi(\lambda_i) e_i e_i^\top \beta \), then

\[
\beta^\top S_\phi(f_i) = \beta^\top \sum_{i=1}^{n} \hat{f}_i \phi(\lambda_i) e_i = f^\top v.
\]

- Then \(\hat{v}_i = \phi(\lambda_i) \hat{\beta}_i \) and \(\beta^\top \beta = \sum_{i=1}^{n} \frac{\hat{v}_i^2}{\phi(\lambda_i)^2} \).
Kernel methods (SVM, kernel ridge regression..) only need the inner product between smooth profiles:

\[K(f, g) = S_\phi(f)^\top S_\phi(g) \]

\[= \sum_{i=1}^{n} \hat{f}_i \hat{g}_i \phi(\lambda_i)^2 \]

\[= f^\top \left(\sum_{i=1}^{n} \phi(\lambda_i)^2 e_i e_i^\top \right) g \]

\[= f^\top K_\phi g , \]

with

\[K_\phi = \sum_{i=1}^{n} \phi(\lambda_i)^2 e_i e_i^\top . \]
Examples

For $\phi(\lambda) = \exp(-t\lambda)$, we recover the diffusion kernel:

$$K_\phi = \exp_M(-2tL).$$

For $\phi(\lambda) = 1/\sqrt{1 + \lambda}$, we obtain

$$K_\phi = (L + I)^{-1},$$

and the penalization is:

$$\sum_{i=1}^{n} \frac{\hat{v}_i^2}{\phi(\lambda_i)} = v^\top (L + I) v = \| v \|_2^2 + \sum_{i \sim j} (v_i - v_j)^2.$$
For $\phi(\lambda) = \exp(-t\lambda)$, we recover the diffusion kernel:

$$K_\phi = \exp(-2tL).$$

For $\phi(\lambda) = 1/\sqrt{1 + \lambda}$, we obtain

$$K_\phi = (L + I)^{-1},$$

and the penalization is:

$$\sum_{i=1}^{n} \frac{\hat{v}_i^2}{\phi(\lambda_i)} = \mathbf{v}^\top (L + I) \mathbf{v} = \| \mathbf{v} \|_2^2 + \sum_{i \sim j} (v_i - v_j)^2.$$
Outline

1. Motivation
2. Using gene networks as prior knowledge
3. Application
4. Conclusion
Data

Expression
- Study the effect of low irradiation doses on the yeast
- 12 non irradiated vs 6 irradiated
- Which pathways are involved in the response at the transcriptomic level?

Graph
- KEGG database of metabolic pathways
- Two genes are connected if they code for enzymes that catalyze successive reactions in a pathway (metabolic gene network).
- 737 genes, 4694 vertices.
Spectral analysis of gene expression profiles using gene networks

PC1
pyruvate metabolism
glucose metabolism
... a large network helps keep the bio-
chemical relationships between genes without the constraints
of pathway limits.

Classification performance

LOO hinge loss / error vs. Beta

LOO hinge loss / error vs. Percentage of eigenvalues removed
Glycolysis / Gluconeogenesis

Protein kinases

N Glycan biosynthesis

Porphyrin and chlorophyll metabolism

Sulfur metabolism

Riboflavin metabolism

Folate biosynthesis

Biosynthesis of steroids, ergosterol metabolism

Lysine biosynthesis

Phenylalanine, tyrosine and tryptophan biosynthesis

DNA and RNA polymerase subunits

Oxidative phosphorylation, TCA cycle

Purine metabolism

Nitrogen, asparagine metabolism
Spectral analysis of gene expression profiles using gene networks

Fig. 5....

The work was supported by the grant ACI-IMPBIO-2004-47 of the French Ministry for Research and New Technologies.
Outline

1. Motivation
2. Using gene networks as prior knowledge
3. Application
4. Conclusion
Use the gene graph to encode **prior knowledge** about the classifier.

Prior knowledge is always needed to classify few examples in large dimensions (sometimes implicitly)

Future work: validation of the method on more data, other formulations, directed graphs...
Acknowledgements

KernelChip project (ACI IMPBIO)

- **Franck Rapaport** (Ecole des Mines and Curie Institute)
- **Emmanuel Barillot** (Curie Institute)
- **Andrei Zynoviev** (Curie Institute)
- **Marie Dutreix** (Curie Institute)

Reference