Inference of missing edges in biological networks

Jean-Philippe Vert
Jean-Philippe.Vert@mines-paristech.fr
Mines ParisTech, Institut Curie, INSERM U900

University of Bristol, UK, October 13, 2008.
Proteins
Network 1: protein-protein interaction
Network 2: metabolic network

[Diagram of metabolic network with various compounds and reactions labeled with codes, such as 2.7.7.4, 2.7.7.5, 3.6.2.1, etc.]
Network 3: gene regulatory network
Biologists have collected a lot of data about proteins. e.g.,
- Gene expression measurements
- Phylogenetic profiles
- Location of proteins/enzymes in the cell

How to use this information “intelligently” to find a good function that predicts edges between nodes.
Our goal

- Gene expression, Gene sequence, Protein localization, ...
- Protein-protein interactions, Metabolic pathways, Signaling pathways, ...

Jean-Philippe Vert (ParisTech)

Inference of biological networks
More precisely

Formalization

- $\mathcal{V} = \{1, \ldots, N\}$ vertices (e.g., genes, proteins)
- $\mathcal{D} = (x_1, \ldots, x_N) \in \mathcal{H}^N$ data about the vertices (\mathcal{H} Hilbert space)
- Goal: predict edges $\mathcal{E} \subset \mathcal{V} \times \mathcal{V}$.

“De novo” inference

- Given data about individual genes and proteins \mathcal{D}, ...
- ... Infer the edges between genes and proteins \mathcal{E}

“Supervised” inference

- Given data about individual genes and proteins \mathcal{D}, ...
- ... and given some known interactions $\mathcal{E}_{\text{train}} \subset \mathcal{E}$, ...
- ... infer unknown interactions $\mathcal{E}_{\text{test}} = \mathcal{E} \setminus \mathcal{E}_{\text{train}}$
More precisely

Formalization

- $\mathcal{V} = \{1, \ldots, N\}$ vertices (e.g., genes, proteins)
- $\mathcal{D} = (x_1, \ldots, x_N) \in \mathcal{H}^N$ data about the vertices (\mathcal{H} Hilbert space)
- Goal: predict edges $\mathcal{E} \subset \mathcal{V} \times \mathcal{V}$.

“De novo” inference

- Given data about individual genes and proteins \mathcal{D}, ...
- ... Infer the edges between genes and proteins \mathcal{E}

“Supervised” inference

- Given data about individual genes and proteins \mathcal{D}, ...
- ... and given some known interactions $\mathcal{E}_{\text{train}} \subset \mathcal{E}$, ...
- ... infer unknown interactions $\mathcal{E}_{\text{test}} = \mathcal{E} \setminus \mathcal{E}_{\text{train}}$
More precisely

Formalization

- $\mathcal{V} = \{1, \ldots, N\}$ vertices (e.g., genes, proteins)
- $\mathcal{D} = (x_1, \ldots, x_N) \in \mathcal{H}^N$ data about the vertices (\mathcal{H} Hilbert space)
- Goal: predict edges $\mathcal{E} \subset \mathcal{V} \times \mathcal{V}$.

“De novo” inference

- Given data about individual genes and proteins \mathcal{D}, ...
- ... Infer the edges between genes and proteins \mathcal{E}

“Supervised” inference

- Given data about individual genes and proteins \mathcal{D}, ...
- ... and given some known interactions $\mathcal{E}_{\text{train}} \subset \mathcal{E}$, ...
- ... infer unknown interactions $\mathcal{E}_{\text{test}} = \mathcal{E} \setminus \mathcal{E}_{\text{train}}$
Outline

1. De novo methods
2. Supervised methods
3. Conclusion
De novo methods

Typical strategies

- Fit a **dynamical system** to time series (e.g., PDE, boolean networks, state-space models)
- Detect **statistical conditional independence or dependency** (Bayesian network, mutual information networks, co-expression)

Pros

- Excellent approach if the model is correct and enough data are available
- Interpretability of the model
- Inclusion of prior knowledge

Cons

- Specific to particular data and networks
- Needs a correct model!
- Difficult integration of heterogeneous data
- Often needs a lot of data and long computation time
De novo methods

Typical strategies

- Fit a dynamical system to time series (e.g., PDE, boolean networks, state-space models)
- Detect statistical conditional independence or dependency (Bayesian networks, mutual information networks, co-expression)

Pros

- Excellent approach if the model is correct and enough data are available
- Interpretability of the model
- Inclusion of prior knowledge

Cons

- Specific to particular data and networks
- Needs a correct model!
- Difficult integration of heterogeneous data
- Often needs a lot of data and long computation time
Evaluation on metabolic network reconstruction

- The known metabolic network of the yeast involves 769 proteins.
- Predict edges from distances between a variety of genomic data (expression, localization, phylogenetic profiles, interactions).
Large-Scale Mapping and Validation of
Escherichia coli Transcriptional Regulation
from a Compendium of Expression Profiles

Jeremiah J. Faith\(^1\), Boris Hayete\(^1\), Joshua T. Thaden\(^2,3\), Ilaria Mogno\(^2,4\), Jamey Wierzbowski\(^2,5\), Guillaume Cottarel\(^2,5\),
Simon Kasif\(^1,2\), James J. Collins\(^1,2\), Timothy S. Gardner\(^1,2\)*
Outline

1. De novo methods
2. Supervised methods
3. Conclusion
Supervised methods

Motivation

In actual applications,

- we know in advance parts of the network to be inferred
- the problem is to add/remove nodes and edges using genomic data as side information

Supervised method

- Given genomic data and the currently known network...
- Infer missing edges between current nodes and additional nodes.
Pattern recognition

- Given a training set of patterns in two classes, learn to discriminate them
- Many algorithms (ANN, SVM, Decision trees, ...)

Jean-Philippe Vert (ParisTech)
Pattern recognition

- Given a training set of patterns in two classes, learn to discriminate them
- Many algorithms (ANN, SVM, Decision trees, ...)

Jean-Philippe Vert (ParisTech)
Pattern recognition

- Given a training set of patterns in two classes, learn to discriminate them
- Many algorithms (ANN, SVM, Decision tress, ...)

Jean-Philippe Vert (ParisTech)
Pattern recognition

Given a training set of patterns in two classes, learn to discriminate them

Many algorithms (ANN, SVM, Decision tress, ...)

Jean-Philippe Vert (ParisTech)
Pattern recognition and graph inference

<table>
<thead>
<tr>
<th>Pattern recognition</th>
<th>Graph inference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Associate a binary label Y to each data X</td>
<td>Associate a binary label Y to each pair of data (X_1, X_2)</td>
</tr>
</tbody>
</table>

Two solutions
- Consider each pair (X_1, X_2) as a single data → learning over pairs
- Reformulate the graph inference problem as a pattern recognition problem at the level of individual vertices → local models
Pattern recognition and graph inference

Pattern recognition
Associate a binary label Y to each data X

Graph inference
Associate a binary label Y to each pair of data (X_1, X_2)

Two solutions
- Consider each pair (X_1, X_2) as a single data -> learning over pairs
- Reformulate the graph inference problem as a pattern recognition problem at the level of individual vertices -> local models
Pattern recognition for pairs

Formulation and basic issue

- A pair can be connected (1) or not connected (-1)
- From the known subgraph we can extract examples of connected and non-connected pairs
- However the genomic data characterize individual proteins; we need to work with pairs of proteins instead!

Known graph

Genomic data
Pattern recognition for pairs

Formulation and basic issue

- A pair can be connected (1) or not connected (-1)
- From the known subgraph we can extract examples of connected and non-connected pairs
- However, the genomic data characterize individual proteins; we need to work with pairs of proteins instead!

Known graph

Genomic data

Inference of biological networks
Pattern recognition for pairs

Formulation and basic issue

- A pair can be connected (1) or not connected (-1)
- From the known subgraph we can extract examples of connected and non-connected pairs
- However the genomic data characterize individual proteins; we need to work with pairs of proteins instead!

Known graph

Genomic data

Inference of biological networks
Pattern recognition for pairs

Representing a pair as a vector

- Each individual protein is represented by a vector $v \in \mathbb{R}^p$
- We must represent a pair of proteins (u, v) by a vector $\psi(u, v) \in \mathbb{R}^q$ in order to estimate a linear classifier
- Question: how build $\psi(u, v)$ from u and v?
Representing a pair

Direct sum

- A simple idea is to **concatenate** the vectors u and v to obtain a $2p$-dimensional vector of (u, v):

$$\psi(u, v) = u \oplus v = \begin{pmatrix} u \\ v \end{pmatrix}.$$

- **Problem**: a linear function then becomes additive...

$$f(u, v) = w^\top \psi(u, v) = w_1^\top u + w^\top v.$$
A simple idea is to concatenate the vectors \(u \) and \(v \) to obtain a \(2p \)-dimensional vector of \((u, v) \):

\[
\psi(u, v) = u \oplus v = \begin{pmatrix} u \\ v \end{pmatrix}.
\]

Problem: A linear function then becomes additive...

\[
f(u, v) = w^\top \psi(u, v) = w_1^\top u + w^\top v.
\]
Direct product

- Alternatively, make the direct product, i.e., the p^2-dimensional vector whose entries are all products of entries of u by entries of v:

$$\psi(u, v) = u \otimes v$$

- **Problem**: can get really large-dimensional...
- **Good news**: inner product factorizes:

$$\left(u_1 \otimes v_1 \right)^\top \left(u_2 \otimes v_2 \right) = \left(u_1^\top u_2 \right) \times \left(v_1^\top v_2 \right) ,$$

which is good for algorithms that use only inner products (SVM...).
Representing a pair

Direct product

- Alternatively, make the direct product, i.e., the p^2-dimensional vector whose entries are all products of entries of u by entries of v:

$$\psi(u, v) = u \otimes v$$

- Problem: can get really large-dimensional...

- Good news: inner product factorizes:

$$\left(u_1 \otimes v_1 \right)^\top \left(u_2 \otimes v_2 \right) = \left(u_1^\top u_2 \right) \times \left(v_1^\top v_2 \right),$$

which is good for algorithms that use only inner products (SVM...)
Representing a pair

Direct product

- Alternatively, make the direct product, i.e., the p^2-dimensional vector whose entries are all products of entries of u by entries of v:

$$\psi(u, v) = u \otimes v$$

- Problem: can get really large-dimensional...
- Good news: inner product factorizes:

$$(u_1 \otimes v_1)^\top (u_2 \otimes v_2) = (u_1^\top u_2) \times (v_1^\top v_2),$$

which is good for algorithms that use only inner products (SVM...).
Other representations for pairs

Symmetric tensor product (Ben-Hur and Noble, 2006)

\[\psi(u, v) = (u \otimes v) + (v \otimes u) . \]

Intuition: a pair \((A, B)\) is similar to a pair \((C, D)\) if:
- \(A\) is similar to \(C\) and \(B\) is similar to \(D\), or...
- \(A\) is similar to \(D\) and \(B\) is similar to \(C\)

Metric learning (V. et al, 2007)

\[\psi(u, v) = (u - v)^{\otimes 2} . \]

Intuition: a pair \((A, B)\) is similar to a pair \((C, D)\) if:
- \(A - B\) is similar to \(C - D\), or...
- \(A - B\) is similar to \(D - C\).
Other representations for pairs

Symmetric tensor product (Ben-Hur and Noble, 2006)

\[\psi(u, v) = (u \otimes v) + (v \otimes u). \]

Intuition: a pair \((A, B)\) is similar to a pair \((C, D)\) if:
- \(A\) is similar to \(C\) and \(B\) is similar to \(D\), or...
- \(A\) is similar to \(D\) and \(B\) is similar to \(C\)

Metric learning (V. et al, 2007)

\[\psi(u, v) = (u - v) \otimes^2. \]

Intuition: a pair \((A, B)\) is similar to a pair \((C, D)\) if:
- \(A - B\) is similar to \(C - D\), or...
- \(A - B\) is similar to \(D - C\).
For two vectors $u, v \in \mathcal{H}$ let the metric:

$$d_M(u, v) = (u - v)^\top M(u - v).$$

Consider the problem:

$$\min_{M \geq 0} \sum_i l(u_i, v_i, y_i) + \lambda \|M\|^2_{\text{Frobenius}},$$

where l is a hinge loss to enforce:

$$d_M(u_i, v_i) \begin{cases}
\leq 1 - \gamma & \text{if } (u_i, v_i) \text{ is connected,} \\
\geq 1 + \gamma & \text{otherwise.}
\end{cases}$$
Link with metric learning

Metric learning

For two vectors \(u, v \in \mathcal{H} \) let the metric:

\[
d_M(u, v) = (u - v)^	op M (u - v).
\]

Consider the problem:

\[
\min_{M \geq 0} \sum_i l(u_i, v_i, y_i) + \lambda \| M \|_F^2,
\]

where \(l \) is a hinge loss to enforce:

\[
d_M(u_i, v_i) \begin{cases}
\leq 1 - \gamma & \text{if } (u_i, v_i) \text{is connected}, \\
\geq 1 + \gamma & \text{otherwise}.
\end{cases}
\]
A SVM with the representation

\[\psi(u, v) = (u - v)^\otimes 2 \]

solves this metric learning problem without the constraint \(M \geq 0 \).

Equivalently, train the SVM over pairs with the **metric learning pairwise kernel**:

\[
K_{MLPK}((u_1, v_1), (u_2, v_2)) = \psi(u_1, v_1)^\top \psi(u_2, v_2)
= [K(u_1, u_2) - K(u_1, v_2) - K(v_1, u_2) + K(u_2, v_2)]^2 .
\]
Supervised inference with local models

The idea (Bleakley et al., 2007)

- Motivation: define specific models for each target node to discriminate between its neighbors and the others.
- Treat each node independently from the other. Then combine predictions for ranking candidate edges.
Supervised inference with local models

The idea (Bleakley et al., 2007)

- Motivation: define specific models for each target node to discriminate between its neighbors and the others
- Treat each node independently from the other. Then combine predictions for ranking candidate edges.
The LOCAL model

Jean-Philippe Vert (ParisTech)
The LOCAL model

Jean-Philippe Vert (ParisTech)
The LOCAL model
The LOCAL model
The LOCAL model

Jean-Philippe Vert (ParisTech)

Inference of biological networks
The LOCAL model
The LOCAL model
The LOCAL model
A few remarks

- **Weak hypothesis:**
 - if A is connected to B,
 - if C is similar to B,
 - then A is likely to be connected to C.

- **Computationally**: much faster to train N local models with N training points each, than to train 1 model with N^2 training points.

- **Caveats:**
 - each local model may have very few training points
 - no sharing of information between different local models
A few remarks

Weak hypothesis:
- if A is connected to B,
- if C is similar to B,
- then A is likely to be connected to C.

Computationally: much faster to train N local models with N training points each, than to train 1 model with N^2 training points.

Caveats:
- each local model may have very few training points
- no sharing of information between different local models
A few remarks

Weak hypothesis:
- if A is connected to B,
- if C is similar to B,
- then A is likely to be connected to C.

Computationally: much faster to train N local models with N training points each, than to train 1 model with N^2 training points.

Caveats:
- each local model may have very few training points
- no sharing of information between different local models
Results: protein-protein interaction (yeast)

(from Bleakley et al., 2007)
Results: metabolic gene network (yeast)

(from Bleakley et al., 2007)
Results: regulatory network (E. coli)

<table>
<thead>
<tr>
<th>Method</th>
<th>Recall at 60%</th>
<th>Recall at 80%</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIRENE</td>
<td>44.5%</td>
<td>17.6%</td>
</tr>
<tr>
<td>CLR</td>
<td>7.5%</td>
<td>5.5%</td>
</tr>
<tr>
<td>Relevance networks</td>
<td>4.7%</td>
<td>3.3%</td>
</tr>
<tr>
<td>ARACNe</td>
<td>1%</td>
<td>0%</td>
</tr>
<tr>
<td>Bayesian network</td>
<td>1%</td>
<td>0%</td>
</tr>
</tbody>
</table>

SIRENE = Supervised Inference of REgulatory NEtworks (Mordelet and V., 2008)
Prediction of missing enzyme genes in a bacterial metabolic network

Reconstruction of the lysine-degradation pathway of *Pseudomonas aeruginosa*

Yoshihiro Yamanishi¹, Hisaaki Mihara², Motoharu Osaki², Hisashi Muramatsu³, Nobuyoshi Esaki², Tetsuya Sato¹, Yoshiyuki Hizukuri¹, Susumu Goto¹ and Minoru Kanehisa¹

1 Bioinformatics Center, Institute for Chemical Research, Kyoto University, Japan
2 Division of Environmental Chemistry, Institute for Chemical Research, Kyoto University, Japan
3 Department of Biology, Graduate School of Science, Osaka University, Japan
Applications: missing enzyme prediction

LYSINE DEGRADATION

Penicillins and cephalosporins biosynthesis

2-Oxoadipate

S-Glutaryl-dihydrolipoamide

(S)-3-Hydroxybutanoyl-CoA

Acetoacetyl-CoA

Acetyl-CoA

Citrate cycle

Protein-lysine

Citrate cycle

Protein-N6-Me-lysine

Protein-N,N-Me2-lysine

Protein-N-trimethyl-lysine

Trichlobutyl-lysine

N6-Hydroxy-trimethyl-lysine

Glycine

3-Dehydrocamitine

Aerobactin
Prediction of nitrogen metabolism-related genes in *Anabaena* by kernel-based network analysis

Shinobu Okamoto¹*, Yoshihiro Yamanishi¹, Shigeki Ehira², Shuichi Kawashima³, Koichiro Tonomura¹** and Minoru Kanehisa¹

¹ Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Japan
² Department of Biochemistry and Molecular Biology, Faculty of Science, Saitama University, Saitama, Japan
³ Human Genome Center, Institute of Medical Science, University of Tokyo, Meguro, Japan
Determination of the role of the bacterial peptidase PepF by statistical inference and further experimental validation

Liliana LOPEZ KLEINE1,2, Alain TRUBUI1, Véronique MONNET2

1Unité de Mathématiques et Informatiques Appliquées. INRA Jouy en Josas 78352, France.
2Unité de Biochimie Bactérienne. INRA Jouy en Josas 78352, France.
Prediction at 60% precision, restricted to transcription factors (from Mordelet and V., 2008).
Outline

1. De novo methods
2. Supervised methods
3. Conclusion
Take-home messages

- When the network is known in part, supervised methods can be more adapted than unsupervised ones.
- A variety of methods have been investigated recently (metric learning, matrix completion, pattern recognition).
 - work for any network
 - work with any data
 - can integrate heterogeneous data, which strongly improves performance
- Current research: infer edges simultaneously with global constraints on the graph?
People I need to thank

- Yoshihiro Yamanishi, Minoru Kanehisa (Univ. Kyoto): kCCA, kML
- Jian Qian, Bill Noble (Univ. Washington): pairwise SVM
- Kevin Bleakley, Gerard Biau (Univ. Montpellier), Fantine Mordelet (ParisTech/Curie): local SVM