Inferring and using biological networks

Jean-Philippe Vert
Jean-Philippe.Vert@mines-paristech.fr

Mines ParisTech / Institut Curie / INSERM U900

University of Laval, Quebec, Canada, December 4, 2008.
We have many genes and proteins..
Network 1: protein-protein interaction
Network 2: metabolic network
Network 3: gene regulatory network
Biologists have collected a lot of data about proteins. e.g.,

- Gene expression measurements
- Phylogenetic profiles
- Location of proteins/enzymes in the cell
Problem 1: how to infer relationships between genes from biological data?
Problem 2: how to use biological networks to help in the analysis of genomic data?
1. How to infer relationships between genes from biological data?

2. How to use biological networks to help in the analysis of genomic data?

3. Conclusion
Outline

1. How to infer relationships between genes from biological data?
2. How to use biological networks to help in the analysis of genomic data?
3. Conclusion
De novo methods

“De novo” inference

- Given data about individual genes and proteins, ...
- ... Infer the edges between genes and proteins

Typical strategies

- Fit a dynamical system to time series (e.g., PDE, boolean networks, state-space models)
- Detect statistical conditional independence or dependency (Bayesian network, mutual information networks, co-expression)
De novo methods

“De novo” inference
- Given data about individual genes and proteins, ...
- ... Infer the edges between genes and proteins

Typical strategies
- Fit a dynamical system to time series (e.g., PDE, boolean networks, state-space models)
- Detect statistical conditional independence or dependency (Bayesian network, mutual information networks, co-expression)
Evaluation on metabolic network reconstruction

- The known metabolic network of the yeast involves 769 proteins.
- Predict edges from distances between a variety of genomic data (expression, localization, phylogenetic profiles, interactions).
Large-Scale Mapping and Validation of *Escherichia coli* Transcriptional Regulation from a Compendium of Expression Profiles

Jeremiah J. Faith\(^1\)\(^\circ\), Boris Hayete\(^1\)\(^\circ\), Joshua T. Thaden\(^2,3\), Ilaria Mogno\(^2,4\), Jamey Wierzbowski\(^2,5\), Guillaume Cottarel\(^2,5\), Simon Kasif\(^1,2\), James J. Collins\(^1,2\), Timothy S. Gardner\(^1,2\)*
Supervised methods

Motivation

In actual applications,

- we know in advance parts of the network to be inferred
- the problem is to add/remove nodes and edges using genomic data as side information

Supervised method

- Given genomic data and the currently known network...
- Infer missing edges between current nodes and additional nodes.
Interlude: Pattern recognition

- Given a training set of patterns in two classes, learn to discriminate them.
- Many algorithms (ANN, SVM, Decision trees, ...)

![Image of pattern recognition with two classes of patterns: red and yellow circles.](image_url)
Interlude: Pattern recognition

- Given a training set of patterns in two classes, learn to discriminate them.
- Many algorithms (ANN, SVM, Decision trees, ...)

Jean-Philippe Vert (ParisTech)
Given a training set of patterns in two classes, learn to discriminate them

Many algorithms (ANN, SVM, Decision trees, ...)

Jean-Philippe Vert (ParisTech)

Inferring and using biological networks
Given a training set of patterns in two classes, learn to discriminate them

Many algorithms (ANN, SVM, Decision trees, ...)

Jean-Philippe Vert (ParisTech)
Pattern recognition and graph inference

Pattern recognition
Associate a binary label Y to each data X

Graph inference
Associate a binary label Y to each pair of data (X_1, X_2)

Two solutions
- Consider each pair (X_1, X_2) as a single data -> learning over pairs
- Reformulate the graph inference problem as a pattern recognition problem at the level of individual vertices -> local models
Pattern recognition and graph inference

Pattern recognition
Associate a binary label Y to each data X

Graph inference
Associate a binary label Y to each pair of data (X_1, X_2)

Two solutions
- Consider each pair (X_1, X_2) as a single data -> learning over pairs
- Reformulate the graph inference problem as a pattern recognition problem at the level of individual vertices -> local models
Pattern recognition for pairs

Formulation and basic issue

- A pair can be connected (1) or not connected (-1)
- From the known subgraph we can extract examples of connected and non-connected pairs
- However the genomic data characterize individual proteins; we need to work with pairs of proteins instead!
Pattern recognition for pairs

Formulation and basic issue

- A pair can be connected (1) or not connected (-1)
- From the known subgraph we can extract examples of connected and non-connected pairs
- However the genomic data characterize individual proteins; we need to work with pairs of proteins instead!

Known graph

Genomic data

Jean-Philippe Vert (ParisTech)
Pattern recognition for pairs

Formulation and basic issue

- A pair can be connected (1) or not connected (-1)
- From the known subgraph we can extract examples of connected and non-connected pairs
- However the genomic data characterize individual proteins; we need to work with pairs of proteins instead!
Representing a pair

Concatenation

- A simple idea is to **concatenate** the vectors u and v describing two proteins to obtain a description of the pair:

$$\psi(u, v) = \begin{pmatrix} u \\ v \end{pmatrix}.$$

Symmetric tensor product (Ben-Hur and Noble, 2006)

$$K_{pair} [(A, B), (C, D)] = k(A, C)k(B, D) + k(A, D)k(B, C)$$

Intuition: a pair (A, B) is similar to a pair (C, D) if:
- A is similar to C and B is similar to D, or...
- A is similar to D and B is similar to C
Supervised inference with local models

The idea (Bleakley et al., 2007)

- Motivation: define specific models for each target node to discriminate between its neighbors and the others.
- Treat each node independently from the other. Then combine predictions for ranking candidate edges.
The idea (Bleakley et al., 2007)

- Motivation: define specific models for each target node to discriminate between its neighbors and the others
- Treat each node independently from the other. Then combine predictions for ranking candidate edges.
The LOCAL model
A few remarks about the local approach

- **Weak hypothesis:**
 - if A is connected to B,
 - if C is similar to B,
 - then A is likely to be connected to C.

- **Computationally:** much faster to train N local models with N training points each, than to train 1 model with N^2 training points.

- **Caveats:**
 - each local model may have very few training points
 - no sharing of information between different local models
A few remarks about the local approach

Weak hypothesis:
- if A is connected to B,
- if C is similar to B,
- then A is likely to be connected to C.

Computationally: much faster to train N local models with N training points each, than to train 1 model with N^2 training points.

Caveats:
- each local model may have very few training points
- no sharing of information between different local models
A few remarks about the local approach

Weak hypothesis:
- if A is connected to B,
- if C is similar to B,
- then A is likely to be connected to C.

Computationally: much faster to train N local models with N training points each, than to train 1 model with N^2 training points.

Caveats:
- each local model may have very few training points
- no sharing of information between different local models
Results: protein-protein interaction (yeast)

(from Bleakley et al., 2007)
Results: metabolic gene network (yeast)

(from Bleakley et al., 2007)
Results: regulatory network (E. coli)

<table>
<thead>
<tr>
<th>Method</th>
<th>Recall at 60%</th>
<th>Recall at 80%</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIRENE</td>
<td>44.5%</td>
<td>17.6%</td>
</tr>
<tr>
<td>CLR</td>
<td>7.5%</td>
<td>5.5%</td>
</tr>
<tr>
<td>Relevance networks</td>
<td>4.7%</td>
<td>3.3%</td>
</tr>
<tr>
<td>ARACNe</td>
<td>1%</td>
<td>0%</td>
</tr>
<tr>
<td>Bayesian network</td>
<td>1%</td>
<td>0%</td>
</tr>
</tbody>
</table>

SIRENE = Supervised Inference of REgulatory NEtworks (Mordelet and V., 2008)
Applications: missing enzyme prediction

Prediction of missing enzyme genes in a bacterial metabolic network

Reconstruction of the lysine-degradation pathway of *Pseudomonas aeruginosa*

Yoshihiro Yamanishi¹, Hisaaki Mihara², Motoharu Osaki², Hisashi Muramatsu³, Nobuyoshi Esaki², Tetsuya Sato¹, Yoshiyuki Hizukuri¹, Susumu Goto¹ and Minoru Kanehisa¹

¹ Bioinformatics Center, Institute for Chemical Research, Kyoto University, Japan
² Division of Environmental Chemistry, Institute for Chemical Research, Kyoto University, Japan
³ Department of Biology, Graduate School of Science, Osaka University, Japan
Applications: missing enzyme prediction
Prediction of nitrogen metabolism-related genes in *Anabaena* by kernel-based network analysis

Shinobu Okamoto\(^1\)*, Yoshihiro Yamanishi\(^1\), Shigeki Ehira\(^2\), Shuichi Kawashima\(^3\), Koichiro Tonomura\(^1\)** and Minoru Kanehisa\(^1\)

\(^1\) Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Japan
\(^2\) Department of Biochemistry and Molecular Biology, Faculty of Science, Saitama University, Saitama, Japan
\(^3\) Human Genome Center, Institute of Medical Science, University of Tokyo, Meguro, Japan
Determination of the role of the bacterial peptidase PepF by statistical inference and further experimental validation

Liliana LOPEZ KLEINE1,2, Alain TRUBUIL1, Véronique MONNET2

1Unité de Mathématiques et Informatiques Appliquées. INRA Jouy en Josas 78352, France.
2Unité de Biochimie Bactérienne. INRA Jouy en Josas 78352, France.
Application: predicted regulatory network (E. coli)

Prediction at 60% precision, restricted to transcription factors (from Mordelet and V., 2008).
1. How to infer relationships between genes from biological data?

2. How to use biological networks to help in the analysis of genomic data?

3. Conclusion
Tissue classification from microarray data

Goal
- Design a **classifier** to automatically assign a class to future samples from their expression profile
- Interpret biologically the differences between the classes

Issue
- 20K+ genes but only <100 tumours
Protein networks can help us

- Basic biological functions usually involve the **coordinated action of several proteins**:
 - Formation of **protein complexes**
 - Activation of metabolic, signalling or regulatory **pathways**
- Many pathways and protein-protein interactions are **already known**
- **Hypothesis**: the weights of the classifier should be “coherent” with respect to this **prior knowledge**
The idea

1. Use the gene network to extract the “important information” in gene expression profiles by Fourier analysis on the graph.
2. Learn a linear classifier on the smooth components.
Data

Expression

- Study the effect of low irradiation doses on the yeast
- 12 non irradiated vs 6 irradiated
- Which pathways are involved in the response at the transcriptomic level?

Graph

- KEGG database of metabolic pathways
- Two genes are connected if they code for enzymes that catalyze successive reactions in a pathway (metabolic gene network).
- 737 genes, 4694 vertices.
Classification performance

![Graphs showing classification performance](image_url)

Jean-Philippe Vert (ParisTech) Inferring and using biological networks
Glycolysis / Gluconeogenesis

Porphyrin and chlorophyll metabolism

Riboflavin metabolism

Folate biosynthesis

Biosynthesis of steroids, ergosterol metabolism

Lysine biosynthesis

Phenylalanine, tyrosine and tryptophan biosynthesis

Protein kinases

N Glycan biosynthesis

Nitrogen, asparagine metabolism

DNA and RNA polymerase subunits

Oxidative phosphorylation, TCA cycle

Purine metabolism

DNA and RNA polymerase... are available. This means in particular that the pictures provide virtually no information regarding the over-
Spectral analysis of gene expression profiles using gene networks

Fig. 5. Example of gene network for glycolysis.

This work was supported by the grant ACI-IMPBIO-2004-47 of the French Ministry for Research and New Technologies.
1. How to infer relationships between genes from biological data?

2. How to use biological networks to help in the analysis of genomic data?

3. Conclusion
A supervised machine learning formulation leads to promising results on the problem of inferring unknown relationships between genes and proteins.

Conversely, biological networks can help fighting the curse of dimensionality.

All this is progression very quickly these days!
People I need to thank

- **Graph inference**: Yoshihiro Yamanishi, Minoru Kanehisa (Univ. Kyoto), Jian Qian, Bill Noble (Univ. Washington), Kevin Bleakley, Gerard Biau (Univ. Montpellier), Fantine Mordelet (ParisTech/Curie)

- **Using graphs**: Franck Rapaport, Emmanuel Barillot, Andrei Zinovyev (Institut Curie)