Including prior knowledge in shrinkage classifiers for genomic data

Jean-Philippe Vert
Jean-Philippe.Vert@mines-paristech.fr
Mines ParisTech / Institut Curie / Inserm

Statistical Advances in Genome-scale Data Analysis workshop,
Ascona, Switzerland, May 3-8, 2009.
Outline

1. Supervised classification of genomic data
2. Classification of array CGH data
3. Classification of expression data using gene networks
4. Conclusion
Outline

1. Supervised classification of genomic data
2. Classification of array CGH data
3. Classification of expression data using gene networks
4. Conclusion
Outline

1. Supervised classification of genomic data
2. Classification of array CGH data
3. Classification of expression data using gene networks
4. Conclusion
Outline

1. Supervised classification of genomic data
2. Classification of array CGH data
3. Classification of expression data using gene networks
4. Conclusion
Motivation

Goal

- Design a classifier to automatically assign a class to future samples from their expression profile
- Interpret biologically the differences between the classes
Pattern recognition, *aka* supervised classification
Pattern recognition, *aka* supervised classification

Jean-Philippe Vert (ParisTech/Curie)

Shrinkage classifiers for genomic data

Ascona 2009
Pattern recognition, *aka* supervised classification
Pattern recognition, *aka* supervised classification
Pattern recognition, *aka* supervised classification

Challenges

- High dimension
- Few samples
- Structured data
- Heterogeneous data
- Prior knowledge
- Fast and scalable implementations
Linear classifiers

The model

- Each sample is represented by a vector $x = (x_1, \ldots, x_p)$
- **Goal**: estimate a linear function:

$$f_\beta(x) = \sum_{i=1}^{p} \beta_i x_i + \beta_0.$$

- **Interpretability**: the weight β_i quantifies the influence of feature i (but...)

![Diagram of data points and decision boundary](image)
Linear classifiers

Training the model

- Minimize an empirical risk on the training samples:

\[
\min_{\beta \in \mathbb{R}^{p+1}} R_{\text{emp}}(\beta) = \frac{1}{n} \sum_{i=1}^{n} l(f_\beta(x_i), y_i),
\]

- ... subject to some constraint on \(\beta \), e.g.:

\[
\Omega(\beta) \leq C.
\]
Linear classifiers

Training the model

- Minimize an empirical risk on the training samples:
 \[
 \min_{\beta \in \mathbb{R}^{p+1}} R_{\text{emp}}(\beta) = \frac{1}{n} \sum_{i=1}^{n} l(f_{\beta}(x_i), y_i),
 \]

- ... subject to some constraint on \(\beta \), e.g.:
 \[
 \Omega(\beta) \leq C.
 \]
The approach

A common method in statistics to learn with few samples in high dimension is to **constrain the Euclidean norm of** β

$$\Omega_{ridge}(\beta) = \| \beta \|_2^2 = \sum_{i=1}^{p} \beta_i^2,$$

(ridge regression, support vector machines...)

Pros
- Good performance in classification

Cons
- Limited interpretation (small weights)
- No prior biological knowledge
Example: Feature Selection

The approach

Constrain most weights to be 0, i.e., select a few genes whose expression are sufficient for classification.

\[\Omega_{\text{Best subset selection}}(\beta) = \| \beta \|_0 = \sum_{i=1}^{p} 1(\beta_i > 0). \]

This is usually a NP-hard problem, many greedy variants have been proposed (filter methods, wrapper methods)

Pros

- Good performance
- Biomarker selection
- Interpretability

Cons

- NP-hard
- Gene selection not robust
- No use of prior knowledge
Example: Sparsity inducing convex priors

The approach

Constrain most weights to be 0 through a convex non-differentiable penalty:

$$\Omega_{\text{LASSO}}(\beta) = \| \beta \|_1 = \sum_{i=1}^{p} |\beta_i| .$$

- Greedy feature selection (T-tests, ...) Several variants exist, e.g., elastic net penalty ($\| \beta \|_1 + \| \beta \|_2$), ...

Pros

- Good performance
- Biomarker selection
- Interpretability

Cons

- Gene selection not robust
- No use of prior knowledge

Jean-Philippe Vert (ParisTech/Curie) Shrinkage classifiers for genomic data Ascona 2009 11 / 43
Why LASSO leads to sparse solutions

Geometric interpretation with $p = 2$
Incorporating prior knowledge

The idea

- If we have a specific prior knowledge about the “correct” weights, it can be included in Ω in the constrain:

 $$\text{Minimize } R_{\text{emp}}(\beta) \text{ subject to } \Omega(\beta) \leq C.$$

- If we design a **convex** function Ω, then the algorithm boils down to a convex optimization problem (usually **easy to solve**).

- Similar to priors in Bayesian statistics
Outline

1. Supervised classification of genomic data
2. Classification of array CGH data
3. Classification of expression data using gene networks
4. Conclusion
Comparative Genomic Hybridization (CGH)

Motivation

- Comparative genomic hybridization (CGH) data measure the DNA copy number along the genome.
- Very useful, in particular in cancer research.
- Can we classify CGH arrays for diagnosis or prognosis purpose?

Jain et al. Genome research 2002 12:325-332
Let \(x \) be a CGH profile

We focus on linear classifiers, i.e., the sign of:

\[
f(x) = x^T \beta.
\]

We expect \(\beta \) to be:

- **sparse**: only a few positions should be discriminative
- **piecewise constant**: within a region, all probes should contribute equally
A penalty for CGH array classification

The fused LASSO penalty (Tibshirani et al., 2005)

\[\Omega_{\text{fusedlasso}}(\beta) = \sum_i |\beta_i| + \sum_{i \sim j} |\beta_i - \beta_j| . \]

- First term leads to \textit{sparse} solutions
- Second term leads to \textit{piecewise constant} solutions
- Combined with a hinge loss leads to a \textit{fused SVM} (Rapaport et al., 2008);
Application: metastasis prognosis in melanoma

Jean-Philippe Vert (ParisTech/Curie)

Shrinkage classifiers for genomic data

Ascona 2009 18 / 43
1. Supervised classification of genomic data
2. Classification of array CGH data
3. Classification of expression data using gene networks
4. Conclusion
Tissue classification from microarray data

Jean-Philippe Vert (ParisTech/Curie)

Shrinkage classifiers for genomic data

Ascona 2009 20 / 43
Gene networks

- Glycolysis / Gluconeogenesis
- N-Glycan biosynthesis
- Protein kinases
- DNA and RNA polymerase subunits
- Glycolysis / Gluconeogenesis
- Sulfur metabolism
- Porphyrin and chlorophyll metabolism
- Riboflavin metabolism
- Folate biosynthesis
- Biosynthesis of steroids, ergosterol metabolism
- Lysine biosynthesis
- Phenylalanine, tyrosine and tryptophan biosynthesis
- Oxidative phosphorylation, TCA cycle
- Nitrogen, asparagine metabolism
- DNA and RNA polymerase subunits
- Folate biosynthesis
- Purine metabolism
- Nitrogen, asparagine metabolism

Jean-Philippe Vert (ParisTech/Curie)
Motivation

- Basic biological functions usually involve the **coordinated action of several proteins**:
 - Formation of **protein complexes**
 - Activation of metabolic, signalling or regulatory **pathways**
- Many pathways and protein-protein interactions are **already known**
- **Hypothesis**: the weights of the classifier should be “coherent” with respect to this **prior knowledge**
An idea

1. Use the gene network to extract the "important information" in gene expression profiles by Fourier analysis on the graph.

2. Learn a linear classifier on the smooth components.
The Laplacian of the graph is the matrix \(L = D - A \).
Fourier basis

- L is positive semidefinite

- The eigenvectors e_1, \ldots, e_n of L with eigenvalues $0 = \lambda_1 \leq \ldots \leq \lambda_n$ form a basis called Fourier basis

- For any $f : V \to \mathbb{R}$, the Fourier transform of f is the vector $\hat{f} \in \mathbb{R}^n$ defined by:
 \[\hat{f}_i = f^\top e_i, \quad i = 1, \ldots, n. \]

- The inverse Fourier formula holds:
 \[f = \sum_{i=1}^{n} \hat{f}_i e_i. \]
Fourier basis

\[\lambda = 0 \]
\[\lambda = 0.5 \]
\[\lambda = 1 \]
\[\lambda = 2.3 \]
\[\lambda = 4.2 \]
Fourier basis
Smoothing operator

Definition

- Let \(\phi : \mathbb{R}^+ \rightarrow \mathbb{R}^+ \) be non-increasing.
- A smoothing operator \(S_\phi \) transform a function \(f : \mathbb{R} \rightarrow \mathbb{R} \) into a smoothed version:

\[
S_\phi(f) = \sum_{i=1}^{n} \hat{f}_i \phi(\lambda_i) e_i.
\]
Smoothing operators

Examples

- **Identity operator** ($S_\phi(f) = f$):

 $$\phi(\lambda) = 1, \quad \forall \lambda$$

- **Low-pass filter**:

 $$\phi(\lambda) = \begin{cases} 1 & \text{if } \lambda \leq \lambda^*, \\ 0 & \text{otherwise.} \end{cases}$$

- **Attenuation of high frequencies**:

 $$\phi(\lambda) = \exp(-\beta \lambda).$$
Smoothing operators

Examples

- **Identity operator** ($S_\phi(f) = f$):
 \[\phi(\lambda) = 1 , \quad \forall \lambda \]

- **Low-pass filter:**
 \[\phi(\lambda) = \begin{cases}
 1 & \text{if } \lambda \leq \lambda^*, \\
 0 & \text{otherwise.}
 \end{cases} \]

- **Attenuation of high frequencies:**
 \[\phi(\lambda) = \exp(-\beta \lambda). \]
Smoothing operators

Examples

- **Identity operator** ($S_\phi(f) = f$):

 \[
 \phi(\lambda) = 1, \quad \forall \lambda
 \]

- **Low-pass filter**:

 \[
 \phi(\lambda) = \begin{cases}
 1 & \text{if } \lambda \leq \lambda^*, \\
 0 & \text{otherwise.}
 \end{cases}
 \]

- **Attenuation of high frequencies**:

 \[
 \phi(\lambda) = \exp(-\beta \lambda).
 \]
Supervised classification and regression

Working with smoothed profiles

- Classical methods for linear classification and regression with a ridge penalty solve:

\[
\min_{\beta \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^{n} l \left(\beta^T f_i, y_i \right) + \lambda \beta^T \beta.
\]

- Applying these algorithms on the smooth profiles means solving:

\[
\min_{\beta \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^{n} l \left(\beta^T S_\phi(f_i), y_i \right) + \lambda \beta^T \beta.
\]
Lemma

This is equivalent to:

$$\min_{v \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^{n} l \left(v^\top f_i, y_i \right) + \lambda \sum_{i=1}^{p} \frac{\hat{\nu}_i^2}{\phi(\lambda_i)},$$

hence the linear classifier v is smooth.

Proof

- Let $v = \sum_{i=1}^{n} \phi(\lambda_i) e_i e_i^\top \beta$, then

$$\beta^\top S_{\phi}(f_i) = \beta^\top \sum_{i=1}^{n} \hat{f}_i \phi(\lambda_i) e_i = f^\top v.$$

- Then $\hat{\nu}_i = \phi(\lambda_i) \hat{\beta}_i$ and $\beta^\top \beta = \sum_{i=1}^{n} \frac{\hat{\nu}_i^2}{\phi(\lambda_i)^2}$.

Jean-Philippe Vert (ParisTech/Curie) Shrinkage classifiers for genomic data Ascona 2009 31 / 43
Lemma

This is equivalent to:

\[
\min_{v \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^{n} l \left(v^\top f_i, y_i \right) + \lambda \sum_{i=1}^{p} \frac{\hat{v}_i^2}{\phi(\lambda_i)},
\]

hence the linear classifier \(v \) is smooth.

Proof

- Let \(v = \sum_{i=1}^{n} \phi(\lambda_i) e_i e_i^\top \beta \), then

\[
\beta^\top S_\phi(f_i) = \beta^\top \sum_{i=1}^{n} \hat{f}_i \phi(\lambda_i) e_i = f^\top v.
\]

- Then \(\hat{v}_i = \phi(\lambda_i) \hat{\beta}_i \) and \(\beta^\top \beta = \sum_{i=1}^{n} \frac{\hat{v}_i^2}{\phi(\lambda_i)^2} \).
Kernel methods

Smoothing kernel

Kernel methods (SVM, kernel ridge regression..) only need the inner product between smooth profiles:

\[K(f, g) = S_\phi(f) \, S_\phi(g) \]

\[= \sum_{i=1}^{n} \hat{f}_i \hat{g}_i \phi(\lambda_i)^2 \]

\[= f^\top \left(\sum_{i=1}^{n} \phi(\lambda_i)^2 e_i e_i^\top \right) g \]

\[= f^\top K_\phi g, \]

with

\[K_\phi = \sum_{i=1}^{n} \phi(\lambda_i)^2 e_i e_i^\top. \]
Examples

For \(\phi(\lambda) = \exp(-t\lambda) \), we recover the diffusion kernel:

\[
K_\phi = \exp_M(-2tL).
\]

For \(\phi(\lambda) = \frac{1}{\sqrt{1 + \lambda}} \), we obtain

\[
K_\phi = (L + I)^{-1},
\]

and the penalization is:

\[
\sum_{i=1}^{n} \frac{\hat{v}_i^2}{\phi(\lambda_i)} = v^T (L + I) v = \|v\|_2^2 + \sum_{i \sim j} (v_i - v_j)^2.
\]
Examples

For $\phi(\lambda) = \exp(-t\lambda)$, we recover the diffusion kernel:

$$K_\phi = \exp_M(-2tL).$$

For $\phi(\lambda) = 1/\sqrt{1 + \lambda}$, we obtain

$$K_\phi = (L + I)^{-1},$$

and the penalization is:

$$\sum_{i=1}^{n} \frac{\hat{v}_i^2}{\phi(\lambda_i)} = v^T (L + I) v = \| v \|_2^2 + \sum_{i \sim j} (v_i - v_j)^2.$$
Data

Expression

- Study the effect of low irradiation doses on the yeast
- 12 non irradiated vs 6 irradiated
- Which pathways are involved in the response at the transcriptomic level?

Graph

- KEGG database of metabolic pathways
- Two genes are connected if they code for enzymes that catalyze successive reactions in a pathway (metabolic gene network).
- 737 genes, 4694 vertices.
Spectral analysis of gene expression profiles using gene networks

PC1 pyruvate metabolism glucose metabolism ... a large network helps keep the bio-
chemical relationships between genes without the constraints

Fig. 5. This work was supported by the grant ACI-IMPBIO-2004-47 of the French Ministry for Research and New Technologies.
Prior hypothesis

Genes near each other on the graph should have similar weights.

Two solutions (Rapaport et al., 2007, 2008)

\[
\Omega_{\text{spectral}}(\beta) = \sum_{i \sim j} (\beta_i - \beta_j)^2,
\]

\[
\Omega_{\text{graphfusion}}(\beta) = \sum_{i \sim j} |\beta_i - \beta_j| + \sum_i |\beta_i|.
\]
Other penalties

Prior hypothesis
Genes near each other on the graph should have similar weights.

Two solutions (Rapaport et al., 2007, 2008)

\[
\Omega_{\text{spectral}}(\beta) = \sum_{i \sim j} (\beta_i - \beta_j)^2,
\]

\[
\Omega_{\text{graphfusion}}(\beta) = \sum_{i \sim j} |\beta_i - \beta_j| + \sum_i |\beta_i|.
\]
Other penalties

Prior hypothesis

Genes near each other on the graph should have non-zero weights (i.e., the support of β should be made of a few connected components).

Graph Lasso (Jacob et al., 2009)

\[
\Omega_{\text{intersection}}(\beta) = \sum_{i \sim j} \sqrt{\beta_i^2 + \beta_j^2},
\]

\[
\Omega_{\text{union}}(\beta) = \sup_{\alpha \in \mathbb{R}^p : \forall i \sim j, \|\alpha_i^2 + \alpha_j^2\| \leq 1} \alpha^\top \beta.
\]
Other penalties

Prior hypothesis

Genes near each other on the graph should have non-zero weights (i.e., the support of β should be made of a few connected components).

Graph Lasso (Jacob et al., 2009)

$$\Omega_{\text{intersection}}(\beta) = \sum_{i \sim j} \sqrt{\beta_i^2 + \beta_j^2},$$

$$\Omega_{\text{union}}(\beta) = \sup_{\alpha \in \mathbb{R}^p : \forall i \sim j, \|\alpha_i^2 + \alpha_j^2\| \leq 1} \alpha^\top \beta.$$
Example: finding discriminant modules in gene networks

Groups (1, 2) and (2, 3). Left: $\Omega_{\text{intersection}}(\beta)$. Right: $\Omega_{\text{union}}(\beta)$. Vertical axis is β_2.
1. Supervised classification of genomic data
2. Classification of array CGH data
3. Classification of expression data using gene networks
4. Conclusion
Modern machine learning methods for regression / classification lend themselves well to the integration of prior knowledge in the penalization / regularization function.

Several computationally efficient approaches (structured LASSO, kernels...)

Natural extension to data integration
People I need to thank

- Franck Rapaport, Emmanuel Barillot, Andrei Zynoviev, Laurent Jacob (Institut Curie / Mines ParisTech)
- Guillaume Obozinski (UC Berkeley / INRIA)