Including prior knowledge in shrinkage classifiers for genomic data

Jean-Philippe Vert
Jean-Philippe.Vert@mines-paristech.fr
Mines ParisTech / Curie Institute / Inserm

University of Liège, April 30, 2010.
Cancer diagnosis

Shrinkage classifiers for genomic data

Jean-Philippe Vert (ParisTech)
Cancer prognosis

Jean-Philippe Vert (ParisTech) Shrinkage classifiers for genomic data University of Liège
Pattern recognition, *aka* supervised classification
Pattern recognition, *aka* supervised classification
Pattern recognition, *aka* supervised classification

Jean-Philippe Vert (ParisTech)

Shrinkage classifiers for genomic data

University of Liège
Pattern recognition, *aka* supervised classification
Pattern recognition, *aka* supervised classification

Challenges
- High dimension
- Few samples
- Structured data
- Heterogeneous data
- Prior knowledge
- Fast and scalable implementations
- Interpretable models
Formalization

The problem

- Given a set of training instances \((x_1, y_1), \ldots, (x_n, y_n)\), where \(x_i \in \mathcal{X}\) are data and \(y_i \in \mathcal{Y}\) are continuous or discrete variables of interest,
- Estimate a function

\[y = f(x) \]

where \(x\) is any new data to be labeled.
- \(f\) should be accurate and interpretable.
Linear classifiers

The model

- Each sample \(x \in \mathcal{X} \) is represented by a vector of features (or descriptors, or patterns):

\[
\Phi(x) = (\Phi_1(x), \ldots, \Phi_p(x)) \in \mathbb{R}^p.
\]

- Based on the training set we estimate a linear function:

\[
f_\beta(x) = \sum_{i=1}^{p} \beta_i \Phi_i(x) = \beta^\top \Phi(x).
\]
For any candidate set of weights $\beta = (\beta_1, \ldots, \beta^p)$ we quantify how "good" the linear function f_β is on the training set with some empirical risk:

$$R(\beta) = \frac{1}{n} \sum_{i=1}^{n} l(f_\beta(x_i), y_i).$$

We choose the β that achieves the minimum empirical risk, subject to some constraint:

$$\Omega(\beta) \leq C.$$

Equivalently we solve

$$\min_{\beta \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^{n} l(f_\beta(x_i), y_i) + \lambda \Omega(\beta).$$
Two important questions

\[f_\beta(x) = \sum_{i=1}^{p} \beta_i \Phi_i(x) \]

\[\min_{\beta \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^{n} l(f_\beta(x_i), y_i) + \lambda \Omega(\beta) \]

- How to design the features \(\Phi(x) \)?
- How to choose the penalty \(\Omega(\beta) \)?
1. Cancer prognosis from DNA copy number variations

2. Diagnosis and prognosis from gene expression data

3. Conclusion
A simple view of cancer progression

cells grow as a benign tumor in epithelium
break through basal lamina
invade capillary

capillary

connective tissue
basal lamina
travel through bloodstream (less than 1 in 1000 cells will survive to form metastases)

adhere to blood vessel wall in liver
escape from blood vessel (extravasation)
proliferate to form metastasis in liver
Chromosomal aberrations in cancer

[Image of chromosomes and cell structure]
Comparative Genomic Hybridization (CGH)

Motivation

- Comparative genomic hybridization (CGH) data measure the DNA copy number along the genome.
- Very useful, in particular in cancer research.
- Can we classify CGH arrays for diagnosis or prognosis purpose?

Jean-Philippe Vert (ParisTech)

Shrinkage classifiers for genomic data

University of Liège
Aggressive vs non-aggressive melanoma

![Graphs showing comparison between aggressive and non-aggressive melanoma](image)
For a CGH profile $x \in \mathbb{R}^p$, we focus on linear classifiers, i.e., the sign of:

$$f_\beta(x) = \beta^\top x.$$

We expect β to be:
- **sparse**: not all positions should be discriminative
- **piecewise constant**: within a selected region, all probes should contribute equally
Promoting sparsity with the ℓ_1 penalty

The ℓ_1 penalty (Tibshirani, 1996; Chen et al., 1998)

The solution of

$$\min_{\beta \in \mathbb{R}^p} R(\beta) + \lambda \sum_{i=1}^p |\beta_i|$$

is usually sparse.

Geometric interpretation with $p = 2$
Promoting piecewise constant profiles penalty

The variable fusion penalty (Land and Friedman, 1996)

The solution of

$$\min_{\beta \in \mathbb{R}^p} R(\beta) + \lambda \sum_{i=1}^{p-1} |\beta_{i+1} - \beta_i|$$

is usually piecewise constant.
A penalty for CGH array classification

The fused LASSO penalty (Tibshirani et al., 2005)

\[\Omega_{fusedlasso}(\beta) = \sum_i |\beta_i| + \sum_{i \sim j} |\beta_i - \beta_j| . \]

- First term leads to **sparse** solutions
- Second term leads to **piecewise constant** solutions

The fused SVM (Rapaport et al., 2008)

\[
\min_{\beta \in \mathbb{R}^p} \sum_{i=1}^{n} \ell \left(y_i, \beta^\top x_i \right) + \lambda \sum_i |\beta_i| + \mu \sum_{i \sim j} |\beta_i - \beta_j| .
\]

where \(\ell \) is, e.g., the hinge loss \(\ell(y, t) = \max(1 - yt, 0) \). It is then a LP.
Application: predicting metastasis in melanoma

Jean-Philippe Vert (ParisTech)
Shrinkage classifiers for genomic data
University of Liège
Outline

1. Cancer prognosis from DNA copy number variations
2. Diagnosis and prognosis from gene expression data
3. Conclusion
DNA → RNA → protein

- CGH shows the (static) DNA
- Cancer cells have also abnormal (dynamic) gene expression (= transcription)
Tissue profiling with DNA chips

Data

- Gene expression measures for more than 10k genes
- Measured typically on less than 100 samples of two (or more) different classes (e.g., different tumors)
Tissue classification from microarray data

Goal

- Design a classifier to automatically assign a class to future samples from their expression profile
- Interpret biologically the differences between the classes

Difficulty

- Large dimension
- Few samples
Prognosis from microarray data (MAMMAPRINT)

A: Gene-Expression Profiling
B: St. Gallen Criteria
Gene signature

The idea
- We look for a limited set of genes that are sufficient for prediction.
- Equivalently, the linear classifier will be \textit{sparse}.

Motivations
- \textbf{Bet on sparsity}: we believe the "true" model is sparse.
- \textbf{Interpretation}: we will get a biological interpretation more easily by looking at the selected genes.
- \textbf{Accuracy}: by restricting the class of classifiers, we "increase the bias" but "decrease the variance". This should be helpful in large dimensions (it is better to estimate well a wrong model than estimate badly a good model).
But...

Challenging the idea of gene signature

- We often observe little **stability** in the genes selected...
- Is gene selection the most **biologically relevant** hypothesis?
- What about thinking instead of "pathways" or "modules" signatures?

<table>
<thead>
<tr>
<th>Gene Name</th>
<th>Value</th>
<th>Gene Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cytochrome C oxidase</td>
<td>0.1250</td>
<td>Hsp90</td>
<td>0.0500</td>
</tr>
<tr>
<td>Tumor necrosis factor</td>
<td>0.0500</td>
<td>Hsp70</td>
<td>0.0500</td>
</tr>
<tr>
<td>LDH</td>
<td>0.0500</td>
<td>Lactate dehydrogenase</td>
<td>0.0500</td>
</tr>
<tr>
<td>Glutathione peroxidase</td>
<td>0.0500</td>
<td>Superoxide dismutase</td>
<td>0.0500</td>
</tr>
<tr>
<td>Catalase</td>
<td>0.0500</td>
<td>Myosin</td>
<td>0.0500</td>
</tr>
<tr>
<td>p53</td>
<td>0.0500</td>
<td>Bcl-2</td>
<td>0.0500</td>
</tr>
<tr>
<td>Bcl-XL</td>
<td>0.0500</td>
<td>Bcl-2</td>
<td>0.0500</td>
</tr>
<tr>
<td>Bcl-2</td>
<td>0.0500</td>
<td>Bcl-2</td>
<td>0.0500</td>
</tr>
</tbody>
</table>
Gene networks

N-Glycan biosynthesis

Protein kinases

DNA and RNA polymerase subunits

Glycolysis / Gluconeogenesis

Sulfur metabolism

Nitrogen, asparagine metabolism

Porphyrin and chlorophyll metabolism

Riboflavin metabolism

Folate biosynthesis

Oxidative phosphorylation, TCA cycle

Biosynthesis of steroids, ergosterol metabolism

Lysine biosynthesis

Phenylalanine, tyrosine and tryptophan biosynthesis

Purine metabolism

DNA and RNA polymerase subunits
Motivation

- Basic biological functions usually involve the **coordinated action of several proteins**:
 - Formation of **protein complexes**
 - Activation of metabolic, signalling or regulatory **pathways**
- Many pathways and protein-protein interactions are already known
- **Hypothesis**: the weights of the classifier should be “coherent” with respect to this prior knowledge
Graph based penalty

Prior hypothesis
Genes near each other on the graph should have similar weights.

Two solutions (Rapaport et al., 2007, 2008)

\[\Omega_{\text{spectral}}(\beta) = \sum_{i \sim j} (\beta_i - \beta_j)^2, \]
\[\Omega_{\text{graphfusion}}(\beta) = \sum_{i \sim j} |\beta_i - \beta_j| + \sum_{i} |\beta_i|. \]
Graph based penalty

Prior hypothesis
Genes near each other on the graph should have similar weights.

Two solutions (Rapaport et al., 2007, 2008)

\[
\Omega_{\text{spectral}}(\beta) = \sum_{i \sim j} (\beta_i - \beta_j)^2,
\]

\[
\Omega_{\text{graphfusion}}(\beta) = \sum_{i \sim j} |\beta_i - \beta_j| + \sum_i |\beta_i|.
\]
Rapaport et al

N
-
Glycan biosynthesis
Protein kinases
DNA and RNA polymerase subunits
N-Glycan biosynthesis

- Glycolysis / Gluconeogenesis
- Porphyrin and chlorophyll metabolism
- Riboflavin metabolism
- Folate biosynthesis
- Biosynthesis of steroids, ergosterol metabolism
- Lysine biosynthesis
- Phenylalanine, tyrosine and tryptophan biosynthesis
- Oxidative phosphorylation, TCA cycle
- Purine metabolism
- Nitrogen, asparagine metabolism
- DNA and RNA polymerase subunits
Spectral analysis of gene expression profiles using gene networks

Fig. 5. This figure illustrates the spectral analysis of gene expression profiles using gene networks. The analysis was supported by the grant ACI-IMPBIO-2004-47 of the French Ministry for Research and New Technologies.
How to select jointly genes belonging to predefined pathways?

Jean-Philippe Vert (ParisTech)
Shrinkage classifiers for genomic data
University of Liège
Selecting pre-defined groups of variables

Group lasso (Yuan & Lin, 2006)

If groups of covariates are likely to be selected together, the ℓ_1/ℓ_2-norm induces sparse solutions at the group level:

$$\Omega_{\text{group}}(w) = \sum_g \|w_g\|_2$$

$$\Omega(w_1, w_2, w_3) = \|(w_1, w_2)\|_2 + \|w_3\|_2$$
What if a gene belongs to several groups?

Issue of using the group-lasso

- $\Omega_{\text{group}}(w) = \sum_g \|w_g\|_2$ sets groups to 0.
- One variable is selected \iff all the groups to which it belongs are selected.

IGF selection \Rightarrow selection of unwanted groups

Removal of any group containing a gene \Rightarrow the weight of the gene is 0.
Overlap norm (Jacob et al., 2009)

An idea

Introduce latent variables v_g:

$$\min_{w,v} L(w) + \lambda \sum_{g \in G} \|v_g\|_2$$

$$w = \sum_{g \in G} v_g$$

$\text{supp}(v_g) \subseteq g$.

Properties

- Resulting support is a *union* of groups in G.
- Possible to select one variable without selecting all the groups containing it.
- Equivalent to group lasso when there is no overlap.
A new norm

Overlap norm

\[
\min_{\mathbf{w}, \mathbf{v}} L(\mathbf{w}) + \lambda \sum_{g \in G} \| \mathbf{v}_g \|_2 \\
\mathbf{w} = \sum_{g \in G} \mathbf{v}_g \\
\text{supp} (\mathbf{v}_g) \subseteq g.
\]

with

\[
\Omega_{\text{overlap}} (\mathbf{w}) \triangleq \min_{\mathbf{v}} \sum_{g \in G} \| \mathbf{v}_g \|_2 \\
\mathbf{w} = \sum_{g \in G} \mathbf{v}_g \\
\text{supp} (\mathbf{v}_g) \subseteq g.
\]

Property

- \(\Omega_{\text{overlap}} (\mathbf{w})\) is a norm of \(\mathbf{w}\).
- \(\Omega_{\text{overlap}} (\cdot)\) associates to \(\mathbf{w}\) a specific (not necessarily unique) decomposition \((\mathbf{v}_g)_{g \in G}\) which is the argmin of (*).
Overlap and group unity balls

Balls for $\Omega^G_{\text{group}}(\cdot)$ (middle) and $\Omega^G_{\text{overlap}}(\cdot)$ (right) for the groups $G = \{\{1, 2\}, \{2, 3\}\}$ where w_2 is represented as the vertical coordinate. Left: group-lasso ($G = \{\{1, 2\}, \{3\}\}$), for comparison.
Theoretical results

Consistency in group support (Jacob et al., 2009)

- Let \bar{w} be the true parameter vector.
- Assume that there exists a unique decomposition \bar{v}_g such that $\bar{w} = \sum_g \bar{v}_g$ and $\Omega^G_{\text{overlap}}(\bar{w}) = \sum \|\bar{v}_g\|_2$.
- Consider the regularized empirical risk minimization problem $L(w) + \lambda \Omega^G_{\text{overlap}}(w)$.

Then

- under appropriate mutual incoherence conditions on X,
- as $n \to \infty$,
- with very high probability,

the optimal solution \hat{w} admits a unique decomposition $(\hat{v}_g)_{g \in G}$ such that

$$\{g \in G | \hat{v}_g \neq 0\} = \{g \in G | \bar{v}_g \neq 0\}.$$
Theoretical results

Consistency in group support (Jacob et al., 2009)

- Let \bar{w} be the true parameter vector.
- Assume that there exists a unique decomposition \bar{v}_g such that $\bar{w} = \sum_g \bar{v}_g$ and $\Omega^G_{\text{overlap}}(\bar{w}) = \sum \|\bar{v}_g\|_2$.
- Consider the regularized empirical risk minimization problem $L(w) + \lambda \Omega^G_{\text{overlap}}(w)$.

Then

- under appropriate mutual incoherence conditions on X,
- as $n \to \infty$,
- with very high probability,

the optimal solution \hat{w} admits a unique decomposition $(\hat{v}_g)_{g \in G}$ such that

$$\{ g \in G | \hat{v}_g \neq 0 \} = \{ g \in G | \bar{v}_g \neq 0 \}.$$
Synthetic data: overlapping groups

- 10 groups of 10 variables with 2 variables of overlap between two successive groups: \{1, \ldots, 10\}, \{9, \ldots, 18\}, \ldots, \{73, \ldots, 82\}.
- Support: union of 4th and 5th groups.
- Learn from 100 training points.

Frequency of selection of each variable with the lasso (left) and \(\Omega_{\text{overlap}}^G \) (middle), comparison of the RMSE of both methods (right).
Graph lasso

Two solutions

\[\Omega_{\text{intersection}}(\beta) = \sum_{i \sim j} \sqrt{\beta_i^2 + \beta_j^2}, \]

\[\Omega_{\text{union}}(\beta) = \sup_{\alpha \in \mathbb{R}^p : \forall i \sim j, \|\alpha_i^2 + \alpha_j^2\| \leq 1} \alpha^\top \beta. \]
Graph lasso vs kernel on graph

- **Graph lasso:**
 \[
 \Omega_{\text{graph lasso}}(w) = \sum_{i \sim j} \sqrt{w_i^2 + w_j^2}.
 \]
 Constrains the **sparsity**, not the values

- **Graph kernel**
 \[
 \Omega_{\text{graph kernel}}(w) = \sum_{i \sim j} (w_i - w_j)^2.
 \]
 Constrains the values (**smoothness**), not the sparsity
Preliminary results

Breast cancer data

- Gene expression data for 8,141 genes in 295 breast cancer tumors.
- Canonical pathways from MSigDB containing 639 groups of genes, 637 of which involve genes from our study.

<table>
<thead>
<tr>
<th>METHOD</th>
<th>ℓ_1</th>
<th>Ω_{OVERLAP}</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERROR</td>
<td>0.38 ± 0.04</td>
<td>0.36 ± 0.03</td>
</tr>
<tr>
<td>MEAN # PATH.</td>
<td>130</td>
<td>30</td>
</tr>
</tbody>
</table>

- Graph on the genes.

<table>
<thead>
<tr>
<th>METHOD</th>
<th>ℓ_1</th>
<th>Ω_{graph}</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERROR</td>
<td>0.39 ± 0.04</td>
<td>0.36 ± 0.01</td>
</tr>
<tr>
<td>AV. SIZE C.C.</td>
<td>1.03</td>
<td>1.30</td>
</tr>
</tbody>
</table>
Outline

1. Cancer prognosis from DNA copy number variations

2. Diagnosis and prognosis from gene expression data

3. Conclusion
Modern machine learning methods for regression / classification lend themselves well to the integration of prior knowledge in the penalization / regularization function.

Several computationally efficient approaches (structured LASSO, kernels...)

Tight collaborations with domain experts can help develop specific learning machines for specific data

Natural extensions for data integration
People I need to thank

Franck Rapaport (now MSKCC), Emmanuel Barillot, Andrei Zynoviev (Institut Curie), Laurent Jacob (UC Berkeley) Guillaume Obozinski (INRIA)