Practical Optimization: Applications

INSEAD, Spring 2006

Jean-Philippe Vert
Ecole des Mines de Paris

Jean-Philippe.Vert@mines.org
Solvers and modeling language
How to solve an optimization problem?

- Use your own optimization routines
- Use a solver
- Use a modeling language

Trade-off between the *effort* required to perform the implementation and the *freedom* to chose the optimization problem (e.g., little effort for LP but you must then formulate your problem as a LP).
Custom code

- Use your own Newton / interior point routines
- Requires to explicitly define functions, gradients, Hessian
- No publicly-available general-purpose interior method, custom code is required
- Determining a valid barrier function is not trivial, in particular if the inequality constraint is non-differentiable
- Useful for problems that do not fit the particular cases handled by general solvers and modeling languages.
Standard form and solvers

Most CP solvers are designed to handle certain prototypical problems known as *standard forms*, e.g., LP, QP ...

They trade generality for ease of use and performance.

Limitation: the transformation from your problem to a standard form is often not trivial (and prone to errors..)
Solver example

MATLAB’s `linprog` is a program for solving LP:

\[x = \text{linprog}(c, A, b, A_{eq}, b_{eq}, l, u) \]

Problems must be expressed in the following standard form:

\[
\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad Ax \leq b, \\
& \quad A_{eq}x = b_{eq}, \\
& \quad l \leq x \leq u
\end{align*}
\]

Converting to standard often requires many tricks
Smoothed convex CP

- A problem is *smooth* if both the objective and the constraints are twice continuously differentiable.
- Several software packages solve smooth CP:
 - LOQO (primal/dual interior point method)
 - MOSEK (homogeneous algorithm)
- Requires custom code for gradient and Hessians.
- Other packages exist for solving nonconvex smooth problems (but based on local convexity for the search direction).
Other standard forms

- Other standard forms with dedicated solvers exist:
 - Conic programs (SDP, SOCP..): SeDuMi, CDSP, SDPA, SDPT3, DSDP..
 - Geometric programs
Modeling frameworks

- Provide a convenient interface for specifying problems, and then by automating many of the underlying mathematical and computational steps for analyzing and solving them.

- Many excellent frameworks for LP, QP, smooth NLP:
 - Custom modeling language that allows models to be specified in a text file using a natural mathematical syntax: AMPL, GAMS, LINGO
 - Use spreadsheets as a natural, graphical user interface: What’sBest!, Frontline.

- These frameworks are built upon solvers that are called without any user’s intervention
Advantages of modeling languages

- Convenient problem specification
- Standard form detection (LP, QP, NLP) to decide the best solver
- Automatic differentiation (for smooth NLP)
- Solver control: automatically calls the solver, pass the data value and provide reasonable default values
Summary

- If you have a nice standard form problem (LP, QP..) then using a modeling framework (e.g., with Excel) is probably the simplest.
- Alternatively use directly a solver (e.g., input your own functions with gradient and Hessian).
- Alternatively, use custom code (e.g., non-smooth constraints, tricky barrier functions).
The \texttt{cvx} package
Motivation

- A (new) modeling framework for convex programming in MATLAB.
- Offers functions that can be called within other scripts
- Intuitive syntax
- Powerful features (e.g., non-smooth convex functions) that go beyond this course
Disciplined convex programming

CVX can solve any convex program expressed in a particular form called disciplined convex programming

Two key elements

- An expandable *atom library*: a collection of functions and sets with known properties of convexity, monotonicity and range

- A *ruleset* which governs how those atoms can be used and combined to form a valid problem (e.g., a sum of convex functions is ok).

We will only use basic features in this course, because there are already quite a few atoms defined.
General syntax

cvx_begin
 variable x
 minimize(...);
 subject to
 ...

 cvx_end

After the last command the problem is solved and the solution returned in the variable x. The value of the minimum is available in the variable cvx_optval
Dual variables

cvx_begin
 variable x
 dual variable y
 minimize(...);
 subject to
 y : ...
cvx_end

After the last command the optimal dual variable is available in the y dual variable
Example: linear program

minimize $c^T x$
subject to $Ax \leq b$

```
n = size(A,2)
cvx_begin
    variable x(n);
    minimize( c' * x );
    subject to
        A * x <= b;

    cvx_end
```

(see example_lp.m and exampl_lp2.m)
Example: QP with inequality constraints

\[
\begin{align*}
\text{minimize} & \quad \frac{1}{2} x^\top P x + q^\top x + r \\
\text{subject to} & \quad -1 \leq x \leq 1
\end{align*}
\]

cvx_begin
 variable x(n)
 minimize ((1/2)*quad_form(x,P) + q'*x + r)
 x >= -1;
 x <= 1;
cvx_end

(see example_qp.m)
Example: sensitivity analysis for QCQP

We consider (ex. 5.1, homework 5):

\[
\begin{align*}
\text{minimize} & \quad x^2 + 1 \\
\text{subject to} & \quad (x - 2)(x - 4) \leq u
\end{align*}
\]

Compute the optimal value \(p^* \) as a function of \(u \), and check that the optimal dual variable \(\lambda^* \) satisfies:

\[
\frac{dp^*}{du} = -\lambda^*.
\]

(see example_qcqp_sensitivity.m)
Example (cont.)

```matlab
u = linspace(-0.9,10,50);
p_star = zeros(1,length(u));
lambda_star = zeros(1,length(u))
for i = 1:length(u)
    cvx_begin
        variable x(1)
        minimize ( quad_form(x,1) + 1 )
        lambda : quad_form(x,1) - 6*x + 8 <= u(i);
    cvx_end
    p_star(i) = cvx_optval;
    lambda_star(i) = lambda
end
plot(u,-lambda_star,u,p_star)
```
Log-optimal investment strategy
The problem

- n assets held over N periods
- At the beginning of each period we re-invest our total wealth, redistributing it over the n assets using a fixed, constant, allocation strategy $x \in \mathbb{R}^n$ where $x \geq 0$ and $\sum_{i=1}^{n} x_i = 1$.
- We want to determine an allocation strategy x that maximizes growth of our total wealth for large N.
The model

- We use a discrete stochastic model to account for the uncertainty in the returns.
- During each period there are m possible scenarios with probabilities π_1, \ldots, π_m.
- In scenario j the return for asset i over one period is given by p_{ij}.
- We assume the same scenarios for each period, with identical independent distributions.
Formalization

- Let $W(t-1)$ our wealth at the beginning of period t.
- During period t we therefore invest $x_i W(t-1)$ in asset i.
- If scenario j happens in period t then our wealth at the end of period t is:

$$W(t) = \sum_{i=1}^{n} p_{ij} x_i W(t-1)$$

- The total return during period t is therefore:

$$\lambda(t) = \frac{W(t)}{W(t-1)} = p_j^\top x.$$
Growth rate

- At the end of the N periods our wealth has been multiplied by the factor $\prod_{t=1}^{N} \lambda(t)$

- The growth rate of the investment over the N periods is

$$G_N = \frac{1}{N} \sum_{t=1}^{N} \log \lambda(t)$$

- By the law of large numbers, for large N:

$$\lim_{N \to \infty} G_N = E \log \lambda(t) = \sum_{j=1}^{m} \pi_j \log \left(p_j^\top x \right) .$$
Optimization problem

The problem can therefore be formulated as:

\[
\text{maximize } \sum_{j=1}^{m} \pi_j \log \left(p_j^\top x \right) \\
\text{subject to } x \geq 0, \\
1^\top x = 1.
\]

The investment strategy \(x \in \mathbb{R}^n \) that solves this problem is called the log-optimal investment strategy.

This is a convex optimization problem with differentiable objective and constraints.
Example

- 5 assets, 10 equiprobable scenarios.
- Asset 1 is very risky, with occasional large return but (most of the time) substantial loss
- Asset 5 gives a fixed and certain return of 1%.

(see example_logoptimalportfolio.m)
Scenarios

\[
P =
\begin{bmatrix}
3.5000 & 1.1100 & 1.1100 & 1.0400 & 1.0100 \\
0.5000 & 0.9700 & 0.9800 & 1.0500 & 1.0100 \\
0.5000 & 0.9900 & 0.9900 & 0.9900 & 1.0100 \\
0.5000 & 1.0500 & 1.0600 & 0.9900 & 1.0100 \\
0.5000 & 1.1600 & 0.9900 & 1.0700 & 1.0100 \\
0.5000 & 0.9900 & 0.9900 & 1.0600 & 1.0100 \\
0.5000 & 0.9200 & 1.0800 & 0.9900 & 1.0100 \\
0.5000 & 1.1300 & 1.1000 & 0.9900 & 1.0100 \\
0.5000 & 0.9300 & 0.9500 & 1.0400 & 1.0100 \\
3.5000 & 0.9900 & 0.9700 & 0.9800 & 1.0100 \\
\end{bmatrix}
\]
Solving the problem with CVX

\[[m,n] = \text{size}(P); \]

\[
\text{cvx_begin} \\
\quad \text{variable } x_{\text{opt}}(n) \\
\quad \text{maximize}(\text{geomean}(P \times x_{\text{opt}})) \\
\quad \text{sum}(x_{\text{opt}}) == 1 \\
\quad x_{\text{opt}} >= 0 \\
\text{cvx_end}
\]

\[
x_{\text{opt}} \\
x_{\text{unif}} = \text{ones}(n,1)/n \\
R_{\text{opt}} = \text{sum}(\text{log}(P \times x_{\text{opt}}))/m \\
R_{\text{unif}} = \text{sum}(\text{log}(P \times x_{\text{unif}}))/m
\]
Solution

- The log-optimal investment strategy is:

\[x_{opt} = [0.0580 \quad 0.3995 \quad 0.2921 \quad 0.2504 \quad 0.0000]^T \]

- The long-term growth rate achieved is \(R_{opt} = 2.31\% \)

- The long-term growth rate achieved by the uniform strategy is \(R_{unif} = 1.14\% \)

- The optimal strategy is to invest very little on the very risky asset, and nothing on the sure asset. Most of the wealth goes to asset 2.