Kernel methods for in silico chemogenomics

Laurent Jacob Jean-Philippe Vert

Center for Computational Biology, Mines ParisTech Bioinformatics Department, Institut Curie 11900 Inserm

CAp 2008

- Introduction
 - Drug discovery
 - Chemogenomics
- 2 Method
 - Formalization
 - Representation of pairs
 - Kernel for ligands and targets
- Results
- 4 Conclusion

- Introduction
 - Drug discovery
 - Chemogenomics
- 2 Method
 - Formalization
 - Representation of pairs
 - Kernel for ligands and targets
- 3 Results
- 4 Conclusion

- Introduction
 - Drug discovery
 - Chemogenomics
- 2 Method
 - Formalization
 - Representation of pairs
 - Kernel for ligands and targets
- Results
- 4 Conclusion

- Introduction
 - Drug discovery
 - Chemogenomics
- 2 Method
 - Formalization
 - Representation of pairs
 - Kernel for ligands and targets
- Results
- 4 Conclusion

- Introduction
 - Drug discovery
 - Chemogenomics
- 2 Method
- Results
- 4 Conclusion

Classical approach

- Imitate traditional remedies.
- Accidental discoveries.

New trend

- Understand underlying biological process.
- Identify targets (typically proteins)
- Identify modulators of these targets.

- G-protein-coupled-receptors (GPCR).
- Enzymes
- Ion channels.

Classical approach

- Imitate traditional remedies.
- Accidental discoveries.

New trend

- Understand underlying biological process.
- Identify targets (typically proteins)
- Identify modulators of these targets.

- G-protein-coupled-receptors (GPCR).
- Enzymes.
- Ion channels.

Classical approach

- Imitate traditional remedies.
- Accidental discoveries.

New trend

- Understand underlying biological process.
- ② Identify targets (typically proteins)
- Identify modulators of these targets.

- G-protein-coupled-receptors (GPCR).
- Enzymes.
- Ion channels.

Classical approach

- Imitate traditional remedies.
- Accidental discoveries.

New trend

- Understand underlying biological process.
- Identify targets (typically proteins).
- Identify modulators of these targets.

- G-protein-coupled-receptors (GPCR).
- Enzymes
- Ion channels.

Classical approach

- Imitate traditional remedies.
- Accidental discoveries.

New trend

- Understand underlying biological process.
- Identify targets (typically proteins).
- Identify modulators of these targets.

- G-protein-coupled-receptors (GPCR).
- Enzymes
- Ion channels.

Classical approach

- Imitate traditional remedies.
- Accidental discoveries.

New trend

- Understand underlying biological process.
- Identify targets (typically proteins).
- Identify modulators of these targets.

- G-protein-coupled-receptors (GPCR).
- Enzymes.
- Ion channels.

Motivation

- Need to test a huge number of candidate molecule against a target.
- In silico interaction prediction is therefore a key element.

- Ligand-based : compare candidate ligand to known ligands of the target (e.g. using machine learning).
- Structure-based (docking): use the 3D structure of the target to determine how well each candidate binds.

Motivation

- Need to test a huge number of candidate molecule against a target.
- In silico interaction prediction is therefore a key element.

- Ligand-based : compare candidate ligand to known ligands of the target (e.g. using machine learning).
- Structure-based (docking): use the 3D structure of the target to determine how well each candidate binds.

Motivation

- Need to test a huge number of candidate molecule against a target.
- In silico interaction prediction is therefore a key element.

- Ligand-based : compare candidate ligand to known ligands of the target (e.g. using machine learning).
- Structure-based (docking): use the 3D structure of the target to determine how well each candidate binds.

Motivation

- Need to test a huge number of candidate molecule against a target.
- In silico interaction prediction is therefore a key element.

- Ligand-based : compare candidate ligand to known ligands of the target (e.g. using machine learning).
- Structure-based (docking): use the 3D structure of the target to determine how well each candidate binds.

- Introduction
 - Drug discovery
 - Chemogenomics
- 2 Method
- Results
- 4 Conclusion

Limits of the classical paradigms

- Ligand-based : need to know (enough) ligands of a given target to produce (accurate) predictors.
- Structure-based :
 - Time-consuming
 - Need to know the 3D structure of the target.

- Idea: mine the chemical space (small molecules) against the *whole* biological space (targets).
- Similar molecules bind similar targets.
- Advantage: ligand-based approaches on targets with no (or few) known ligands can take advantage of similar targets with known ligands.

Limits of the classical paradigms

- Ligand-based : need to know (enough) ligands of a given target to produce (accurate) predictors.
- Structure-based :
 - Time-consuming.
 - Need to know the 3D structure of the target.

- Idea: mine the chemical space (small molecules) against the *whole* biological space (targets).
- Similar molecules bind similar targets.
- Advantage: ligand-based approaches on targets with no (or few) known ligands can take advantage of similar targets with known ligands.

Limits of the classical paradigms

- Ligand-based : need to know (enough) ligands of a given target to produce (accurate) predictors.
- Structure-based :
 - Time-consuming.
 - Need to know the 3D structure of the target.

- Idea: mine the chemical space (small molecules) against the *whole* biological space (targets).
- Similar molecules bind similar targets.
- Advantage: ligand-based approaches on targets with no (or few) known ligands can take advantage of similar targets with known ligands.

Limits of the classical paradigms

- Ligand-based : need to know (enough) ligands of a given target to produce (accurate) predictors.
- Structure-based :
 - Time-consuming.
 - Need to know the 3D structure of the target.

- Idea: mine the chemical space (small molecules) against the *whole* biological space (targets).
- Similar molecules bind similar targets.
- Advantage: ligand-based approaches on targets with no (or few) known ligands can take advantage of similar targets with known ligands.

Limits of the classical paradigms

- Ligand-based : need to know (enough) ligands of a given target to produce (accurate) predictors.
- Structure-based :
 - Time-consuming.
 - Need to know the 3D structure of the target.

- Idea: mine the chemical space (small molecules) against the *whole* biological space (targets).
- Similar molecules bind similar targets.
- Advantage: ligand-based approaches on targets with no (or few) known ligands can take advantage of similar targets with known ligands.

- Cast the interaction problem in a joint ligand-target space (consider ligand-target pairs).
- Apply existing machine learning algorithms in this space.
- Similar to Bock and Gough (2005) and Erhan et al. (2006).
- Already applied to MHC-I-epitope binding prediction (Heckerman et al. 2005, Jacob et al. 2008).

- Cast the interaction problem in a joint ligand-target space (consider ligand-target pairs).
- Apply existing machine learning algorithms in this space.
- Similar to Bock and Gough (2005) and Erhan et al. (2006).
- Already applied to MHC-I-epitope binding prediction (Heckerman et al. 2005, Jacob et al. 2008).

- Cast the interaction problem in a joint ligand-target space (consider ligand-target pairs).
- Apply existing machine learning algorithms in this space.
- Similar to Bock and Gough (2005) and Erhan et al. (2006).
- Already applied to MHC-l-epitope binding prediction (Heckerman et al. 2005, Jacob et al. 2008).

- Cast the interaction problem in a joint ligand-target space (consider ligand-target pairs).
- Apply existing machine learning algorithms in this space.
- Similar to Bock and Gough (2005) and Erhan et al. (2006).
- Already applied to MHC-I-epitope binding prediction (Heckerman et al. 2005, Jacob et al. 2008).

- Introduction
- 2 Method
 - Formalization
 - Representation of pairs
 - Kernel for ligands and targets
- Results
- 4 Conclusion

Single-target screening

- Target t with known ligands c_1, \ldots, c_n .
- For each t, learn a function $f_t(c)$ from the c_i that predicts if unseen candidate c is a ligand of t.
- Linear case: given a description $\Phi(c)$ of the molecule, $f_t(c) = w_t^\top \Phi(c)$.

- Consider training pairs $(t, c)_i$ (known to interact or not to interact), represented by vectors $\Phi((t, c)_i)$.
- Learn a single function $f(t,c) = w^{\top} \Phi(t,c)$ in the joint space to predict if the candidate pair (t,c) interacts.
- How to choose the pair representation Φ ?

Single-target screening

- Target t with known ligands c_1, \ldots, c_n .
- For each t, learn a function $f_t(c)$ from the c_i that predicts if unseen candidate c is a ligand of t.
- Linear case: given a description $\Phi(c)$ of the molecule, $f_t(c) = w_t^\top \Phi(c)$.

- Consider training pairs $(t, c)_i$ (known to interact or not to interact), represented by vectors $\Phi((t, c)_i)$.
- Learn a single function $f(t,c) = w^{\top} \Phi(t,c)$ in the joint space to predict if the candidate pair (t,c) interacts.
- How to choose the pair representation Φ ?

Single-target screening

- Target t with known ligands c_1, \ldots, c_n .
- For each t, learn a function $f_t(c)$ from the c_i that predicts if unseen candidate c is a ligand of t.
- Linear case: given a description $\Phi(c)$ of the molecule, $f_t(c) = w_t^{\top} \Phi(c)$.

- Consider training pairs $(t, c)_i$ (known to interact or not to interact), represented by vectors $\Phi((t, c)_i)$.
- Learn a single function $f(t,c) = w^{\top} \Phi(t,c)$ in the joint space to predict if the candidate pair (t,c) interacts.
- How to choose the pair representation Φ?

Single-target screening

- Target t with known ligands c_1, \ldots, c_n .
- For each t, learn a function $f_t(c)$ from the c_i that predicts if unseen candidate c is a ligand of t.
- Linear case: given a description $\Phi(c)$ of the molecule, $f_t(c) = w_t^{\top} \Phi(c)$.

- Consider training pairs $(t, c)_i$ (known to interact or not to interact), represented by vectors $\Phi((t, c)_i)$.
- Learn a single function $f(t,c) = w^{\top} \Phi(t,c)$ in the joint space to predict if the candidate pair (t,c) interacts.
- How to choose the pair representation Φ?

Single-target screening

- Target t with known ligands c_1, \ldots, c_n .
- For each t, learn a function $f_t(c)$ from the c_i that predicts if unseen candidate c is a ligand of t.
- Linear case: given a description $\Phi(c)$ of the molecule, $f_t(c) = w_t^\top \Phi(c)$.

- Consider training pairs $(t, c)_i$ (known to interact or not to interact), represented by vectors $\Phi((t, c)_i)$.
- Learn a single function $f(t, c) = w^{\top} \Phi(t, c)$ in the joint space to predict if the candidate pair (t, c) interacts.
- How to choose the pair representation Φ?

Single-target screening

- Target t with known ligands c_1, \ldots, c_n .
- For each t, learn a function $f_t(c)$ from the c_i that predicts if unseen candidate c is a ligand of t.
- Linear case: given a description $\Phi(c)$ of the molecule, $f_t(c) = w_t^{\top} \Phi(c)$.

- Consider training pairs $(t, c)_i$ (known to interact or not to interact), represented by vectors $\Phi((t, c)_i)$.
- Learn a single function $f(t, c) = w^{\top} \Phi(t, c)$ in the joint space to predict if the candidate pair (t, c) interacts.
- How to choose the pair representation Φ?

- Introduction
- 2 Method
 - Formalization
 - Representation of pairs
 - Kernel for ligands and targets
- Results
- 4 Conclusion

Vector representation of pairs

Ligand representation

- A lot of existing work to represent a molecule t by a vector $\Phi_{ligand}(c) \in \mathbb{R}^{d_c}$.
- Physico-chemical, structural properties of the molecules.

Target representation

- Similarly, much work devoted to the construction of descriptors for a given protein t by a vector $\Phi_{target}(t) \in \mathbb{R}^{d_t}$.
- Properties of the sequence, structure of the protein.

Vector representation of pairs

Ligand representation

- A lot of existing work to represent a molecule t by a vector $\Phi_{ligand}(c) \in \mathbb{R}^{d_c}$.
- Physico-chemical, structural properties of the molecules.

Target representation

- Similarly, much work devoted to the construction of descriptors for a given protein t by a vector $\Phi_{target}(t) \in \mathbb{R}^{d_t}$.
- Properties of the sequence, structure of the protein.

Pair representation

- Use products of features of c and features of t.
- Idea (binary case): indicate that both c and t carry given features.
- May be strongly correlated with the fact that they interact.
- Set of all possible products of features of *c* and *t* is given by the tensor product:

$$\Phi(c,t) = \Phi_{ligand}(c) \otimes \Phi_{target}(t). \tag{1}$$

Pair representation

- Use products of features of c and features of t.
- Idea (binary case): indicate that both c and t carry given features.
- May be strongly correlated with the fact that they interact.
- Set of all possible products of features of c and t is given by the tensor product:

$$\Phi(c,t) = \Phi_{ligand}(c) \otimes \Phi_{target}(t). \tag{1}$$

Pair representation

- Use products of features of c and features of t.
- Idea (binary case): indicate that both c and t carry given features.
- May be strongly correlated with the fact that they interact.
- Set of all possible products of features of c and t is given by the tensor product:

$$\Phi(c,t) = \Phi_{ligand}(c) \otimes \Phi_{target}(t). \tag{1}$$

Pair representation

- Use products of features of c and features of t.
- Idea (binary case): indicate that both c and t carry given features.
- May be strongly correlated with the fact that they interact.
- Set of all possible products of features of c and t is given by the tensor product:

$$\Phi(c,t) = \Phi_{ligand}(c) \otimes \Phi_{target}(t). \tag{1}$$

Pair representation

- Use products of features of c and features of t.
- Idea (binary case): indicate that both c and t carry given features.
- May be strongly correlated with the fact that they interact.
- Set of all possible products of features of c and t is given by the tensor product:

$$\Phi(c,t) = \Phi_{ligand}(c) \otimes \Phi_{target}(t). \tag{1}$$

Kernels for ligand-target pairs

Kernel trick

- Need to compute efficiently the inner product between pairs.
- Classical property of tensor products :

$$\begin{split} \Phi(c,t)^\top \Phi(c',t') &= \left(\Phi_{\textit{lig}}(c) \otimes \Phi_{\textit{tar}}(t) \right)^\top \left(\Phi_{\textit{lig}}(c') \otimes \Phi_{\textit{tar}}(t') \right) \\ &= \Phi_{\textit{lig}}(c)^\top \Phi_{\textit{lig}}(c') \times \Phi_{\textit{tar}}(t)^\top \Phi_{\textit{tar}}(t') \,. \end{split}$$

More generally

Denoting

$$K_{lig}(c,c') = \Phi_{lig}(c)^{\top} \Phi_{lig}(c'), \quad K_{tar}(t,t') = \Phi_{tar}(t)^{\top} \Phi_{tar}(t'),$$

we obtain the inner product between tensor products by:

$$K\left((c,t),(c',t')\right) = K_{tar}(t,t') \times K_{lig}(c,c'). \tag{2}$$

Kernels for ligand-target pairs

Kernel trick

- Need to compute efficiently the inner product between pairs.
- Classical property of tensor products :

$$\begin{split} \Phi(c,t)^\top \Phi(c',t') &= \left(\Phi_{\textit{lig}}(c) \otimes \Phi_{\textit{tar}}(t) \right)^\top \left(\Phi_{\textit{lig}}(c') \otimes \Phi_{\textit{tar}}(t') \right) \\ &= \Phi_{\textit{lig}}(c)^\top \Phi_{\textit{lig}}(c') \times \Phi_{\textit{tar}}(t)^\top \Phi_{\textit{tar}}(t') \,. \end{split}$$

More generally

Denoting

$$K_{lig}(c,c') = \Phi_{lig}(c)^{\top} \Phi_{lig}(c'), \quad K_{tar}(t,t') = \Phi_{tar}(t)^{\top} \Phi_{tar}(t'),$$

we obtain the inner product between tensor products by:

$$K\left((c,t),(c',t')\right) = K_{tar}(t,t') \times K_{lig}(c,c'). \tag{2}$$

Kernels for ligand-target pairs

Kernel trick

- Need to compute efficiently the inner product between pairs.
- Classical property of tensor products :

$$\begin{split} \Phi(c,t)^\top \Phi(c',t') &= \left(\Phi_{\textit{lig}}(c) \otimes \Phi_{\textit{tar}}(t) \right)^\top \left(\Phi_{\textit{lig}}(c') \otimes \Phi_{\textit{tar}}(t') \right) \\ &= \Phi_{\textit{lig}}(c)^\top \Phi_{\textit{lig}}(c') \times \Phi_{\textit{tar}}(t)^\top \Phi_{\textit{tar}}(t') \,. \end{split}$$

More generally

Denoting

$$K_{lig}(c,c') = \Phi_{lig}(c)^{\top} \Phi_{lig}(c'), \quad K_{tar}(t,t') = \Phi_{tar}(t)^{\top} \Phi_{tar}(t'),$$

we obtain the inner product between tensor products by:

$$K\left((c,t),(c',t')\right) = K_{tar}(t,t') \times K_{lig}(c,c'). \tag{2}$$

Outline

- Introduction
- 2 Method
 - Formalization
 - Representation of pairs
 - Kernel for ligands and targets
- Results
- 4 Conclusion

Kernel for ligands

2D kernel for ligands

- We chose the *Tanimoto kernel* (state-of-the-art performances in general).
- Characterizes the molecules by the occurrences of linear subgraphs of length 8 or less.

Kernels for targets: non-informative approaches

Dirac kernel

$$K_{dirac}(t, t') = \delta(t, t').$$

Equivalent to performing independant learning for each target.

Multitask kernel

$$K_{multitask}(t, t') = K_{dirac}(t, t') + 1.$$

- Naive information sharing.
- Penalize individual norm and variance among individual functions.

Kernels for targets: non-informative approaches

Dirac kernel

$$K_{dirac}(t, t') = \delta(t, t').$$

Equivalent to performing independant learning for each target.

Multitask kernel

$$K_{multitask}(t, t') = K_{dirac}(t, t') + 1.$$

- Naive information sharing.
- Penalize individual norm and variance among individual functions.

Kernels for targets including biological information

Sequence-based kernels

Classical mismatch and local alignment kernel on whole sequences.

Hierarchy kerne

Use KEGG hierarchy between the targets: number of common ancestors in the corresponding hierarchy plus one.

Kernels for targets including biological information

Sequence-based kernels

Classical mismatch and local alignment kernel on whole sequences.

Hierarchy kernel

Use KEGG hierarchy between the targets: number of common ancestors in the corresponding hierarchy plus one.

Data generation

- KEGG data base (Kanehisa et al., 2002).
- Ligand data for GPCR, enzymes and ion channels.
- For each positive pair, generate a negative ligand-target pair (same target, random ligand among existing ligands).

- 2436 pairs for enzymes, 798 for GPCR and 2330 for ion channels.
- First experiment: 10-fold cross validation (assess the incidence of using ligands from other targets on the accuracy of the learned classifier for a given target).
- Second experiment: for each t learn a classifier using only interactions that do not involve t and test on the points that involve t (simulate the behavior when making predictions for orphan targets).

Data generation

- KEGG data base (Kanehisa et al., 2002).
- Ligand data for GPCR, enzymes and ion channels.
- For each positive pair, generate a negative ligand-target pair (same target, random ligand among existing ligands).

- 2436 pairs for enzymes, 798 for GPCR and 2330 for ion channels.
- First experiment: 10-fold cross validation (assess the incidence of using ligands from other targets on the accuracy of the learned classifier for a given target).
- Second experiment: for each t learn a classifier using only interactions that do not involve t and test on the points that involve t (simulate the behavior when making predictions for orphan targets).

Data generation

- KEGG data base (Kanehisa et al., 2002).
- Ligand data for GPCR, enzymes and ion channels.
- For each positive pair, generate a negative ligand-target pair (same target, random ligand among existing ligands).

- 2436 pairs for enzymes, 798 for GPCR and 2330 for ion channels.
- First experiment: 10-fold cross validation (assess the incidence of using ligands from other targets on the accuracy of the learned classifier for a given target).
- Second experiment: for each t learn a classifier using only interactions
 that do not involve t and test on the points that involve t (simulate
 the behavior when making predictions for orphan targets).

Data generation

- KEGG data base (Kanehisa et al., 2002).
- Ligand data for GPCR, enzymes and ion channels.
- For each positive pair, generate a negative ligand-target pair (same target, random ligand among existing ligands).

- 2436 pairs for enzymes, 798 for GPCR and 2330 for ion channels.
- First experiment: 10-fold cross validation (assess the incidence of using ligands from other targets on the accuracy of the learned classifier for a given target).
- Second experiment: for each t learn a classifier using only interactions that do not involve t and test on the points that involve t (simulate the behavior when making predictions for orphan targets).

Data generation

- KEGG data base (Kanehisa et al., 2002).
- Ligand data for GPCR, enzymes and ion channels.
- For each positive pair, generate a negative ligand-target pair (same target, random ligand among existing ligands).

- 2436 pairs for enzymes, 798 for GPCR and 2330 for ion channels.
- First experiment: 10-fold cross validation (assess the incidence of using ligands from other targets on the accuracy of the learned classifier for a given target).
- Second experiment: for each t learn a classifier using only interactions that do not involve t and test on the points that involve t (simulate the behavior when making predictions for orphan targets).

Data generation

- KEGG data base (Kanehisa et al., 2002).
- Ligand data for GPCR, enzymes and ion channels.
- For each positive pair, generate a negative ligand-target pair (same target, random ligand among existing ligands).

- 2436 pairs for enzymes, 798 for GPCR and 2330 for ion channels.
- First experiment: 10-fold cross validation (assess the incidence of using ligands from other targets on the accuracy of the learned classifier for a given target).
- Second experiment: for each t learn a classifier using only interactions that do not involve t and test on the points that involve t (simulate the behavior when making predictions for orphan targets).

First experiment

$K_{tar} \setminus Target$	Enzymes	GPCR	Channels
Dirac	0.536 ± 0.005	0.682 ± 0.022	0.701 ± 0.017
multitask	0.874 ± 0.008	0.595 ± 0.030	$\boldsymbol{0.797 \pm 0.017}$
hierarchy	0.907 ± 0.008	0.817 ± 0.025	0.857 ± 0.015
local alignment	0.544 ± 0.007	$\boldsymbol{0.696 \pm 0.033}$	$\textbf{0.824} \pm \textbf{0.015}$

Prediction accuracy for the first protocol on each dataset with various target kernels.

- Strong improvement when using data from the other targets.
- Stronger improvement when using prior information (hierarchy kernel).

First experiment

$K_{tar} \setminus Target$	Enzymes	GPCR	Channels
Dirac	$\textbf{0.536} \pm \textbf{0.005}$	$\textbf{0.682} \pm \textbf{0.022}$	0.701 ± 0.017
multitask	0.874 ± 0.008	0.595 ± 0.030	$\boldsymbol{0.797 \pm 0.017}$
hierarchy	0.907 ± 0.008	0.817 ± 0.025	0.857 ± 0.015
local alignment	0.544 ± 0.007	$\boldsymbol{0.696 \pm 0.033}$	0.824 ± 0.015

Prediction accuracy for the first protocol on each dataset with various target kernels.

- Strong improvement when using data from the other targets.
- Stronger improvement when using prior information (hierarchy kernel).

Second experiment

$K_{tar}\setminus Target$	Enzymes	GPCR	Channels
Dirac	0.500 ± 0.000	0.500 ± 0.000	0.500 ± 0.000
multitask	0.856 ± 0.009	0.477 ± 0.025	$\boldsymbol{0.636 \pm 0.021}$
hierarchy	0.862 ± 0.009	$\boldsymbol{0.776 \pm 0.026}$	0.805 ± 0.018
local alignment	0.521 ± 0.004	0.647 ± 0.030	0.722 ± 0.019

Prediction accuracy for the second protocol on each dataset with various target kernels.

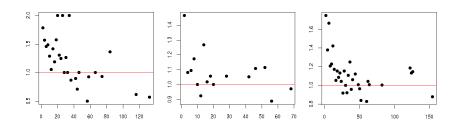
Still possible to obtain reasonable results when no ligand is known for the target.

Second experiment

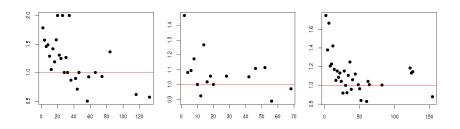
$K_{tar}\setminus Target$	Enzymes	GPCR	Channels
Dirac	0.500 ± 0.000	0.500 ± 0.000	0.500 ± 0.000
multitask	0.856 ± 0.009	0.477 ± 0.025	$\boldsymbol{0.636 \pm 0.021}$
hierarchy	0.862 ± 0.009	0.776 ± 0.026	0.805 ± 0.018
local alignment	0.521 ± 0.004	0.647 ± 0.030	0.722 ± 0.019

Prediction accuracy for the second protocol on each dataset with various target kernels.

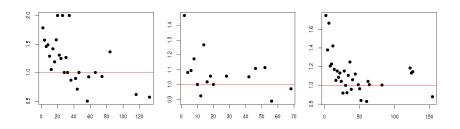
Still possible to obtain reasonable results when no ligand is known for the target.



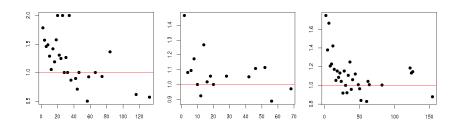
- Strong improvement when few training points available.
- After a certain point, using similar targets can deteriorates accuracy.
- Suggests that the method could be improved by learning for each target independently how much information should be shared.



- Strong improvement when few training points available.
- After a certain point, using similar targets can deteriorates accuracy.
- Suggests that the method could be improved by learning for each target independently how much information should be shared.



- Strong improvement when few training points available.
- After a certain point, using similar targets can deteriorates accuracy.
- Suggests that the method could be improved by learning for each target independently how much information should be shared.



- Strong improvement when few training points available.
- After a certain point, using similar targets can deteriorates accuracy.
- Suggests that the method could be improved by learning for each target independently how much information should be shared.

- General method to predict interaction between any chemical compound and any biological target.
- Using target kernels allowing to share information across the targets improves the prediction.
- Accuracy improvement depends on the number of known ligands.
- Possible improvements:
 - Other kernels (using molecule 3D information or sequence/structure of targets).
 - Adapt the amount of information sharing to each target.
 - Other regularizations.

- General method to predict interaction between any chemical compound and any biological target.
- Using target kernels allowing to share information across the targets improves the prediction.
- Accuracy improvement depends on the number of known ligands.
- Possible improvements:
 - Other kernels (using molecule 3D information or sequence/structure of targets).
 - Adapt the amount of information sharing to each target.
 - Other regularizations.

- General method to predict interaction between any chemical compound and any biological target.
- Using target kernels allowing to share information across the targets improves the prediction.
- Accuracy improvement depends on the number of known ligands.
- Possible improvements:
 - Other kernels (using molecule 3D information or sequence/structure of targets).
 - Adapt the amount of information sharing to each target.
 - Other regularizations.

- General method to predict interaction between any chemical compound and any biological target.
- Using target kernels allowing to share information across the targets improves the prediction.
- Accuracy improvement depends on the number of known ligands.
- Possible improvements:
 - Other kernels (using molecule 3D information or sequence/structure of targets).
 - Adapt the amount of information sharing to each target.
 - Other regularizations.