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Drug discovery

Classical approach
@ Imitate traditional remedies.

@ Accidental discoveries.

New trend
© Understand underlying biological process.
@ ldentify targets (typically proteins).
© Identify modulators of these targets.

v

Typical targets

@ G-protein-coupled-receptors (GPCR).

@ Enzymes.

@ lon channels.
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Virtual screening

Motivation
@ Need to test a huge number of candidate molecule against a target.

@ In silico interaction prediction is therefore a key element.

Classical paradigms

@ Ligand-based : compare candidate ligand to known ligands of the
target (e.g. using machine learning).

@ Structure-based (docking) : use the 3D structure of the target to
determine how well each candidate binds.
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Chemogenomics approach

Limits of the classical paradigms

o Ligand-based : need to know (enough) ligands of a given target to
produce (accurate) predictors.
@ Structure-based :

e Time-consuming.
o Need to know the 3D structure of the target.

Chemogenomic framework
@ Idea: mine the chemical space (small molecules) against the whole
biological space (targets).
@ Similar molecules bind similar targets.

e Advantage: ligand-based approaches on targets with no (or few)
known ligands can take advantage of similar targets with known
ligands.
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Kernel methods for chemogenomics

Cast the interaction problem in a joint ligand-target space (consider
ligand-target pairs).

Apply existing machine learning algorithms in this space.
Similar to Bock and Gough (2005) and Erhan et al. (2006).

Already applied to MHC-I-epitope binding prediction (Heckerman et
al. 2005, Jacob et al. 2008).
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Single-target screening
o Target t with known ligands ¢y, ..., c,.

@ For each t, learn a function f;(c) from the ¢; that predicts if unseen
candidate c is a ligand of t.

@ Linear case: given a description ®(c) of the molecule,
fe(c) = w ®(c).

Chemogenomics setting

o Consider training pairs (t, c); (known to interact or not to interact),
represented by vectors ¢ ((t, ¢);).

e Learn a single function f(t,c) = w' ®(t,c) in the joint space to
predict if the candidate pair (¢, c) interacts.

@ How to choose the pair representation ®?
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Vector representation of pairs

Ligand representation

@ A lot of existing work to represent a molecule t by a vector
d>/,-ga,,d(c) € RY%.

@ Physico-chemical, structural properties of the molecules.

Target representation

@ Similarly, much work devoted to the construction of descriptors for a
given protein t by a vector ®ruger(t) € R

@ Properties of the sequence, structure of the protein.
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Vector representation of pairs

Pair representation
@ Use products of features of ¢ and features of t.
Idea (binary case): indicate that both ¢ and t carry given features.

May be strongly correlated with the fact that they interact.

Set of all possible products of features of ¢ and t is given by the
tensor product:

(D(C, t) = <I>Iig;md(c) & ¢target(t) . (1)

Potential issue: d. x d; vector, may be prohibitively large.
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o Classical property of tensor products :

O(c, 1) T(c, t') = (Drig(c) @ Prar(t)) " (Prig(c') @ Dear(t)))
= q)/,'g(C)T(D/,'g(C,) X ¢tar(t)T¢ta,(tl) .

More generally
Denoting

Klig(c7 C/) = ¢/,'g(C)T¢[,'g(C/), Ktar(ta t,) = <I>tar(t)—l—cbtar(t/) P

we obtain the inner product between tensor products by:

K ((c, t), (¢, 1) = Kear(t, ') x Kig(c, ). (2)
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Kernel for ligands

2D kernel for ligands

@ We chose the Tanimoto kernel (state-of-the-art performances in
general).

@ Characterizes the molecules by the occurrences of linear subgraphs of
length 8 or less.
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Kernels for targets: non-informative approaches

Dirac kernel
Kairac(t, t') = 6(t, t').

Equivalent to performing independant learning for each target.
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Kernels for targets: non-informative approaches

Dirac kernel

Kairac(t, t') = 6(t, t').

Equivalent to performing independant learning for each target.

Multitask kernel

Kmultitask(t7 t/) = Kdirac(ta tl) + 1.

@ Naive information sharing.

@ Penalize individual norm and variance among individual functions.
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Kernels for targets including biological information
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Kernels for targets including biological information

Sequence-based kernels

Classical mismatch and local alignment kernel on whole sequences.

Hierarchy kernel

Use KEGG hierarchy between the targets: number of common ancestors in
the corresponding hierarchy plus one.
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KEGG Benchmark

Data generation
o KEGG data base (Kanehisa et al., 2002).
@ Ligand data for GPCR, enzymes and ion channels.

@ For each positive pair, generate a negative ligand-target pair (same
target, random ligand among existing ligands).

Final benchmark
@ 2436 pairs for enzymes, 798 for GPCR and 2330 for ion channels.

o First experiment: 10-fold cross validation (assess the incidence of
using ligands from other targets on the accuracy of the learned
classifier for a given target).

@ Second experiment: for each t learn a classifier using only interactions
that do not involve t and test on the points that involve t (simulate
the behavior when making predictions for orphan targets).

v
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First experiment

Kiar\ Target Enzymes GPCR Channels
Dirac 0.536 +=0.005 0.682+0.022 0.701 +0.017
multitask 0.874 +0.008 0.595+0.030 0.797 +0.017
hierarchy 0.907 +£0.008 0.817 +0.025 0.857 +0.015
local alignment 0.544 4+ 0.007 0.696 +0.033 0.824 + 0.015

Prediction accuracy for the first protocol on each dataset with various target
kernels.
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hierarchy 0.907 +£0.008 0.817 +0.025 0.857 +0.015
local alignment 0.544 4+ 0.007 0.696 +0.033 0.824 + 0.015

Prediction accuracy for the first protocol on each dataset with various target
kernels.

@ Strong improvement when using data from the other targets. J

@ Stronger improvement when using prior information (hierarchy kernel).
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Dirac 0.500 +0.000 0.500 + 0.000 0.500 = 0.000
multitask 0.856 +=0.009 0.477 £0.025 0.636 4+ 0.021
hierarchy 0.862 +0.009 0.776 +0.026 0.805 +0.018
local alignment 0.521 +0.004 0.647 +0.030 0.722 +0.019

Second experiment

Prediction accuracy for the second protocol on each dataset with various target
kernels.

Still possible to obtain reasonable results when no ligand is known for the J
target.
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General behavior
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Relative improvement of the hierarchy kernel against the Dirac kernel as a function
of the number of known ligands for enzymes, GPCR and ion channel datasets.

@ Strong improvement when few training points available.
@ After a certain point, using similar targets can deteriorates accuracy.

@ Suggests that the method could be improved by learning for each
target independently how much information should be shared.
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Conclusion

@ General method to predict interaction between any chemical
compound and any biological target.

@ Using target kernels allowing to share information across the targets
improves the prediction.

@ Accuracy improvement depends on the number of known ligands.

@ Possible improvements:

o Other kernels (using molecule 3D information or sequence/structure of
targets).

o Adapt the amount of information sharing to each target.

o Other regularizations.
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