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Drug discovery

Classical approach

Imitate traditional remedies.

Accidental discoveries.

New trend
1 Understand underlying biological process.

2 Identify targets (typically proteins).

3 Identify modulators of these targets.

Typical targets

G-protein-coupled-receptors (GPCR).

Enzymes.

Ion channels.
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Virtual screening

Motivation

Need to test a huge number of candidate molecule against a target.

In silico interaction prediction is therefore a key element.

Classical paradigms

Ligand-based : compare candidate ligand to known ligands of the
target (e.g. using machine learning).

Structure-based (docking) : use the 3D structure of the target to
determine how well each candidate binds.
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Chemogenomics approach

Limits of the classical paradigms

Ligand-based : need to know (enough) ligands of a given target to
produce (accurate) predictors.

Structure-based :

Time-consuming.
Need to know the 3D structure of the target.

Chemogenomic framework

Idea: mine the chemical space (small molecules) against the whole
biological space (targets).

Similar molecules bind similar targets.

Advantage: ligand-based approaches on targets with no (or few)
known ligands can take advantage of similar targets with known
ligands.
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Kernel methods for chemogenomics

Cast the interaction problem in a joint ligand-target space (consider
ligand-target pairs).

Apply existing machine learning algorithms in this space.

Similar to Bock and Gough (2005) and Erhan et al. (2006).

Already applied to MHC-I-epitope binding prediction (Heckerman et
al. 2005, Jacob et al. 2008).
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Formalization

Single-target screening

Target t with known ligands c1, . . . , cn.

For each t, learn a function ft(c) from the ci that predicts if unseen
candidate c is a ligand of t.

Linear case: given a description Φ(c) of the molecule,
ft(c) = w>

t Φ(c).

Chemogenomics setting

Consider training pairs (t, c)i (known to interact or not to interact),
represented by vectors Φ ((t, c)i ).

Learn a single function f (t, c) = w>Φ(t, c) in the joint space to
predict if the candidate pair (t, c) interacts.

How to choose the pair representation Φ?
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Vector representation of pairs

Ligand representation

A lot of existing work to represent a molecule t by a vector
Φligand(c) ∈ Rdc .

Physico-chemical, structural properties of the molecules.

Target representation

Similarly, much work devoted to the construction of descriptors for a
given protein t by a vector Φtarget(t) ∈ Rdt .

Properties of the sequence, structure of the protein.
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Vector representation of pairs

Pair representation

Use products of features of c and features of t.

Idea (binary case): indicate that both c and t carry given features.

May be strongly correlated with the fact that they interact.

Set of all possible products of features of c and t is given by the
tensor product:

Φ(c, t) = Φligand(c)⊗ Φtarget(t) . (1)

Potential issue: dc × dt vector, may be prohibitively large.
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Kernels for ligand-target pairs

Kernel trick

Need to compute efficiently the inner product between pairs.

Classical property of tensor products :

Φ(c, t)>Φ(c ′, t ′) = (Φlig (c)⊗ Φtar (t))
> (

Φlig (c ′)⊗ Φtar (t
′)
)

= Φlig (c)>Φlig (c ′)× Φtar (t)
>Φtar (t

′) .

More generally

Denoting

Klig (c, c ′) = Φlig (c)>Φlig (c ′), Ktar (t, t
′) = Φtar (t)

>Φtar (t
′) ,

we obtain the inner product between tensor products by:

K
(
(c, t), (c ′, t ′)

)
= Ktar (t, t

′)× Klig (c, c ′). (2)
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Kernel for ligands

2D kernel for ligands

We chose the Tanimoto kernel (state-of-the-art performances in
general).

Characterizes the molecules by the occurrences of linear subgraphs of
length 8 or less.
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Kernels for targets: non-informative approaches

Dirac kernel

Kdirac(t, t
′) = δ(t, t ′).

Equivalent to performing independant learning for each target.

Multitask kernel

Kmultitask(t, t ′) = Kdirac(t, t
′) + 1.

Naive information sharing.

Penalize individual norm and variance among individual functions.
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Kernels for targets including biological information

Sequence-based kernels

Classical mismatch and local alignment kernel on whole sequences.

Hierarchy kernel

Use KEGG hierarchy between the targets: number of common ancestors in
the corresponding hierarchy plus one.
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KEGG Benchmark

Data generation

KEGG data base (Kanehisa et al., 2002).

Ligand data for GPCR, enzymes and ion channels.

For each positive pair, generate a negative ligand-target pair (same
target, random ligand among existing ligands).

Final benchmark

2436 pairs for enzymes, 798 for GPCR and 2330 for ion channels.

First experiment: 10-fold cross validation (assess the incidence of
using ligands from other targets on the accuracy of the learned
classifier for a given target).

Second experiment: for each t learn a classifier using only interactions
that do not involve t and test on the points that involve t (simulate
the behavior when making predictions for orphan targets).
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First experiment

Ktar\ Target Enzymes GPCR Channels

Dirac 0.536± 0.005 0.682± 0.022 0.701± 0.017
multitask 0.874± 0.008 0.595± 0.030 0.797± 0.017
hierarchy 0.907± 0.008 0.817± 0.025 0.857± 0.015

local alignment 0.544± 0.007 0.696± 0.033 0.824± 0.015

Prediction accuracy for the first protocol on each dataset with various target

kernels.

Strong improvement when using data from the other targets.

Stronger improvement when using prior information (hierarchy kernel).
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Second experiment

Ktar\ Target Enzymes GPCR Channels

Dirac 0.500± 0.000 0.500± 0.000 0.500± 0.000
multitask 0.856± 0.009 0.477± 0.025 0.636± 0.021
hierarchy 0.862± 0.009 0.776± 0.026 0.805± 0.018

local alignment 0.521± 0.004 0.647± 0.030 0.722± 0.019

Prediction accuracy for the second protocol on each dataset with various target

kernels.

Still possible to obtain reasonable results when no ligand is known for the
target.
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General behavior

Relative improvement of the hierarchy kernel against the Dirac kernel as a function

of the number of known ligands for enzymes, GPCR and ion channel datasets.

Strong improvement when few training points available.

After a certain point, using similar targets can deteriorates accuracy.

Suggests that the method could be improved by learning for each
target independently how much information should be shared.
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Conclusion

General method to predict interaction between any chemical
compound and any biological target.

Using target kernels allowing to share information across the targets
improves the prediction.

Accuracy improvement depends on the number of known ligands.

Possible improvements:

Other kernels (using molecule 3D information or sequence/structure of
targets).
Adapt the amount of information sharing to each target.
Other regularizations.
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