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Abstract — Functional principal component analy-
sis (PCA) enables us to investigate some patterns
of data over time. However, There is a problem
that this analysis is sensitive to a few influential ob-
servations as in the case of multivariate PCA. In
this paper, we propose a method of sensitivity anal-
ysis in functional PCA. Empirical influence function
(ELFs) for eigenvalues and eigenfunctions are de-
rived in both cases where the smoothing parameter
is fixed and unfixed. And using these influence func-
tions, we proposed a sensitivity analysis procedure
to detect singly and jointly influential observations.
In dealing on the eigenfunctions, we use following
two methods. 1) Based on EIF for coefficient vec-
tors of the basis function expansion. 2) Based on
the sampled vectors of the functional EIF.

1 Introduction

Sensitivity analysis has been developed in many
fields to investigate the relation between observa-
tions and the result of analysis. However, in the
case of functional data, few researches have been
done. On the other hands, functional PCA has
been developed by many person (Besse and Ram-
say, 1986; Ramsay and Dalzel, 1991; Ramsay and
Silverman, 1997). The objective of this paper is
to propose a method of sensitivity analysis in func-
tional PCA, or more precisely a method to detect
singly and jointly influential observations in func-
tional PCA. In section 2, we introduce penelized
functional principal component analysis. Next sen-
sitivity analysis in functional PCA is shown in sec-
tion 3.

2 Functional principal component analysis

2.1 Ordinary functional principal compo-

nent analysis

Suppose we have a set of functional data
{xi(s)}

N
i=1.Then define sample mean vector and co-

variance matrix as x̄(t) = N−1
∑N

i=1 xi(t), v(s, t) =

N−1
∑N

i=1{xi(s)−x̄(s)}{xi(t)−x̄(t)}. In functional
PCA a functional linear combination is introduced
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fi =
∫

ξ(s)xi(s)ds using weight function ξ(s). The
weight function ξ(s) is chosen in such a way that it
maximizes the variance

PCASV =

∫ ∫
ξ(s)v(s, t)ξ(t)dsdt, (1)

under the constraints
∫

ξl(t)
2dt = 1. This leads to

an integral eigenproblem as follows:

∫
v(s, t)ξ(t)dt = ρξ(t). (2)

2.2 Penalized functional principal compo-

nent analysis

2.2.1 Roughness penalty

We introduce penalty function to incorporate
smoothing into the principal components. Here
we penalize the roughness of ξ by its inte-
grated squared second derivative i.e., PEN2(ξ) =<
D2ξ, D2ξ >=‖ D2ξ ‖2, where < ·, · > and ‖
· ‖2indicate the inner product and the squared
norm, respectively. In this case the penalized vari-
ance can be expressed by

PCAPSV =
PCASV

‖ ξ ‖2 +λ × PEN2(ξ)
, (3)

where λ is a smoothing parameter. This expression
means that the trade-off between maximizing the
sample variance and keeping the smoothness of ξ is
controlled by a smoothing parameter λ. Under nat-
ural boundary conditions, ‖ D2ξ ‖2=< ξ, D4ξ >, so
maximizing problem leads the following eigenprob-
lem.

∫
v(s, t)ξ(t)dt = ρ(I + λD4)ξ(s), (4)

2.2.2 Algorithm

A data function xi(s) and a weight function ξ(s)
can be expanded as

xi(s) =

K∑

k=1

Cikφk(s) = CT
i φ(s),

ξ(s) =

K∑

k=1

ykφk(s) = yT φ(s), (5)



Figure 1: EIF based on coefficients vector

using basis functions φ(s) = (φ1(s), · · · , φK(s))T ,
where K is the number of basis functions. De-
fine V as the covariance matrix of coefficient
Ci and let Jφ =

∫
φ(s)φ(s)T ds and Kφ =∫

(D2φ(s))(D2φ(s))T ds. Then the functional eigen-
problem (5) is transformed to the following matrix
generalized eigenproblem

(JφVJφ)y = ρ(Jφ + λKφ)y. (6)

By applying Cholesky factorization LLT = Jφ +
λKφ, the above generalized eigenproblem leads to
an eigenproblem of a symmetrical matrix as

(SJφVJφS
T )(S−T y) = ρ(S−T y), (7)

where S = L−1 and S−T = (S−1)T . λ is determind
by cross-validation.

3 Sensitivity analysis in functional PCA

3.1 Influence function

To evaluate the influence of each individual we
use the idea of influence function. Here we de-
fine the EIF by the partial derivative of the esti-
mated parameter function or vector with respect to
a perturbation parameter. Let us introduce weights
nw̃α/

∑
β w̃β for the α-th observation as perturba-

tion parameters, and define the first order partial
derivative of parameter vector θ̂ with respect to wα

as the influence function of θ̂ for the α-th obser-
vation. Or in other words, we define the influence
function for the α-th observation by the first deriva-
tive with respect to ε defined as

wα = 1 for allα −→ wα = nw̃α/
∑

β

w̃β,

where w̃β =

{
1 (β 6= α)
1 + ε (β = α).

(8)

Figure 2: EIF based on the discrete functions

It is known from the perturbation theory of eigen-
problems, when matrix SJVJST in equation (7)
can be expanded as a convergent power series of ε.
When the smoothing parameter λ is fixed,

(
SJVJST

)(k)
= SJV(k)JST (k = 1, 2). (9)

When the smoothing parameter λ isn’t fixed,

(
SJVJST

)(1)
= S(1)JVJST + SJV(1)JST

+SJVJ(S(1))T , (10)

where covariance matrix V(1) = (C−C̄)(C−C̄)T −
V, influence function of matrix S can be calculated
as S(1) = ∂λ

∂ε

(
∂S

∂λ

)
= −L−1L(1)L−1 (see, Tanaka

and Tarumi, 1989, p.18-19, for the derivation of
L(1)). Therefore, we can define the EIFs for eigen-
values and eigenfucntions respectively as follows:

EIF (x; ρs) = ρ(1)
s

= (S−Ty)T
r

(
SJVJST

)(1)
(S−Ty)s, (11)

EIF (x; ξs(t)) = (y(1)
s )T φ(t) =

[
ST (S−T y)(1)s

+ (S(1))T (S−T y)s

]T
φ(t). (12)

When the number of the basis function is fixed, the
influence function for eigenvalue and eigenfunction
can be expressed as

EIF (x; ρs) = ρ(1)
s = (S−T y)T

r

(
SJVJST

)(1)
(S−T y)s,

(13)

EIF (x; ξs(t)) = (y(1)
s )T φ(t) =

[
ST (S−T y)(1)s

+ (S(1))T (S−T y)s

]T
φ(t). (14)
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Figure 3: Cook’s D based on âcovJK: Coefficients

3.1.1 Single-case diagnostics

To evaluate the influence of each individual,
generalized Cook’s D is used here. Di =
[EIFi]

T [âcov]−1[EIFi], where âcov is the asymp-
totic covariance matrix for the parameters of inter-
est. To avoid the theory of probability in functional
context, we define the generalized Cook’s D in func-
tional data analysis in the following two ways.

3.2 Cook’s D based on the coefficients of

the basis function expansion

When the number of the basis functions is fixed,
each functional observation xi(s) can be deter-
mined by the corresponding coefficient vector Ci.
Then, by regarding Ci as the original multivariate
observation, we can define Cook’s D in the same
way as in the case of ordinary multivariate analysis
(Figure 1). To evaluate âcov we use the Jacknife,

âcovJK :=
1

N(N − 1)

N∑

i=1

JIFiJIF T
i (15)

where JIF (xi; θ̂) = (N − 1)(θ̂[−i] − θ̂).

3.2.1 Cook’s D based on the discrete func-

tions

We define a discrete vector (ξ
(1)
i (t1), · · · , ξ

(1)
i (tH))

by sampling from a functional influence function

(ξ
(1)
i (t) at approriate grid point, and define Cook’s

D for these multivariate data. The multivariate in-
fluence function vector is defined as EIFi = ΦT y

(1)
i ,

where Φ is a K × H matrix whose (k, h)th ele-
ment is given by φk(th). Figure 1,2 shows the im-
age of these two definitions of EIF. The asymp-
totic covariance matrix of ΦT yi can be obtained by
acov(ΦT yi) = ΦT VyΦ, using the asymptotic co-
variance matrix Vy of y. Thus we can define Cook’s
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Figure 4: Cook’s D based on âcovJK: Discrete

D as

Di = y
(1)T
i Φ(ΦT VyΦ)−ΦT y

(1)
i . (16)

3.3 Multiple-case diagnostics

Tanaka has proposed to apply principal component
analysis (PCA) to the influence functions for de-
tecting influential subsets of observations in multi-
variate methods (see e.g., Tanaka, 1994). In short,
the aim of multiple-case diagnostics is to investigate
the pattern of the influence and detect the influen-
tial subsets. As in the single-case diagnostics, we
will try PCA based on the coefficient and discrete
function.

3.4 Numerical example

We shall apply to the mean daily temperature data
of 50 wether station in Japan in 1999. For single-
case diagnostics, two method is applied to calcu-
late Cook’s D. Figure 3 and 4 shows that Cook’s
D based on the coefficients of the basis function
expansion and discrete functions have same result.
For multiple-case diagnostics, functional PCA is
applied to the functional EIFs. And this shows
same result as single-case. Figure 5 shows func-
tional PCA based on coefficient of the basis func-
tion expansion and Figure 6 shows the result based
on discrete functions.

3.5 Mathematical relation

In single-case diagnostics we defined Cook’s D in
two different ways. One is based on the EIF for
the coefficient vector of the basis function expan-

sion, i.e., D1i = y
(1)T
i V−1

y y
(1)
i , where Vy is an

estimate for the asymptotic covariance matrix of
yi. The other is based on the sampled vector of

the functional EIF y
(1)T
i φ(t). In this case Cook’s

D is defined as D2i = y
(1)T
i Φ(ΦT VyΦ)−ΦT y

(1)
i .



Figure 5: Functional PCA: Coefficients

If we choose a K × H matrix Φ so that rank
Φ = K, then we can prove that the relation V−1

y =

Φ(ΦT VyΦ)−ΦT holds (see, Searle, 1082, p.224),
and therefore D1i ≡ D2i for any i. In multiple-case
diagnostics we applied PCA with metric [âcov]− to
the EIF to detect influential subsets of observations
(see, Tanaka, 1994; Tanaka and Zhang, 1999). Here
we can use both of the EIF for the coefficient vec-
tors and the EIF for the sampled functional EIF.
We obtain eigenvalue problems

(
1

N

N∑

i=1

y
(1)
i y

(1)T
i − νVy

)
a = 0, (17)

in the former formulation, and
(

1

N

N∑

i=1

ΦT y
(1)
i y

(1)T
i Φ − ν(ΦTVyΦ)

)
b = 0, (18)

in the latter formulation. Assume that rank Φ = K.
Then, multiplying (ΦΦT )−1Φ to equation (18) from
the left we obtain an eigenproblem of Φb which is
just equivalent to equation (17). Therefore, we may
conclude that, though we derived two kinds of EIF,
we need not develop sensitivity analysis based on
the functional EIF in addition to sensitivity analy-
sis based on the EIF for the coefficients of the basis
function expansion.
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