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ABSTRACT

Motivation: The computational prediction of protein–protein interac-

tions is currently a major issue in bioinformatics. Recently, a variety

of co-evolution-based methods have been investigated toward this

goal. In this study, we introduced a partial correlation coefficient as

a new measure for the degree of co-evolution between proteins, and

proposed its use to predict protein–protein interactions.

Results: The accuracy of the prediction by the proposed method

was compared with those of the original mirror tree method and the

projection method previously developed by our group. We found that

the partial correlation coefficient effectively reduces the number of

false positives, as compared with other methods, although the number

of false negatives increased in the prediction by the partial correlation

coefficient.

Availability: The R script for the prediction of protein–protein interac-

tions reported in this manuscript is available at http://timpani.genome.

ad.jp/~parco/

Contact: sato@kuicr.kyoto-u.ac.jp

Supplementary information: The information is also available at the

same site as the R script.

1 INTRODUCTION

The use of co-evolutionary information is one of the popular

approaches for predicting a protein–protein interaction (PPI). This

approach is based on the assumption that interacting protein pairs

are likely to evolve in a correlated fashion, and that the phylogenetic

trees of the interacting proteins are similar to each other, owing to

the co-evolution. Based on several previous reports, such as that by

Goh et al. (2000), Pazos and Valencia (2001) developed a method to

evaluate the intensity of co-evolution by comparing a pair of dis-

tance matrices, or a set of genetic distances, instead of phylogenetic

trees. The intensity of co-evolution is calculated with the Pearson’s

correlation coefficient between the distance matrices (for details,

see Methods). This is referred to as the ‘mirror tree’ method, accord-

ing to the assumption. In recent years, some variants of the mirror

tree method have been proposed (Gertz et al., 2003; Goh and Cohen,

2002; Kim et al., 2004; Ramani and Marcotte, 2003; Tan et al.,

2004). One of the latest improvements in the mirror tree framework

is the reduction of false positives, which is facilitated by removing

the information about the evolutionary relationships of the organism

sources from the distance matrices. It has been pointed out that

predictions by the mirror tree methods tend to introduce many

false positives. One explanation for this phenomenon is that, in

the mirror tree method, the distance matrices of all of the proteins

are constructed with a set of orthologues from the same organism

sources. As a result, all of the distance matrices share the informa-

tion about the evolutionary relationship of the sources, which is

suspected of being the cause of the false positives. Sato et al. (2005)

and Pazos et al. (2005) independently developed methods to

remove such evolutionary information from the distance matrices,

and demonstrated that the approaches can dramatically reduce the

number of false positives in the prediction.

In this manuscript, we propose the use of the partial correlation

coefficient as a novel measure for the intensity of co-evolution, to

improve the original mirror tree approach. From the definition (see

Methods), the partial correlation coefficient is expected to be useful

to remove the information about the evolutionary relationship of

the sources. The performance of the partial correlation coefficient,

in terms of reducing the false positives from the prediction, was

improved, as compared with that reported by Sato et al. (2005).

We also examined the relationship between the accuracy of the

PPI prediction by the co-evolutionary analysis and the number of

proteins used in the study.

2 METHODS

2.1 Dataset

We selected 821 interacting pairs of Escherichia coli proteins that were

experimentally determined, from the Database of Interacting Proteins

(DIP) Version 01/16/2006 (Salwinski et al., 2004). The selected pairs did

not include homo-interactions, and comprised 179 different E.coli proteins.

All of the proteins are registered in KEGG/KO (Kanehisa et al., 2006),

a database of putative orthologous sequences identified from fully sequenced

genome data. Then, putative orthologues corresponding to 179 proteins

derived from E.coli were collected from 65 different bacterial species,

according to the description in KEGG/KO. Hereafter, the putative ortho-

logues are simply referred to as the orthologues. The lists of PPI pairs,

protein names and source organisms are provided in the Supplementary�To Whom correspondence should be addressed.
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data. One of the assumptions in this study is that a pair of proteins from a

bacterium, which are each orthologous to the interacting proteins of E.coli,

also interacts in the bacterial species. The other assumption is that the

interaction affects the co-evolution of the orthologues.

2.2 Multiple sequence alignment and distance matrix

A multiple alignment of each set of selected orthologous proteins was

performed with the alignment software, MAFFT (Katoh et al., 2005). A

distance matrix for the orthologues was calculated from the multiple

sequence alignment. Suppose that we want to obtain a distance matrix,

DA, for protein A. The orthologues of protein A are collected from n species.

The size of DA is n · n, and each row or column of the matrix corresponds to

a species under consideration. An element of the matrix, DA(x, y), represents

the genetic distance of protein A between species x and y. The distance

was calculated as a maximum likelihood estimate, with the PROTDIST

module in the PHYLIP package (Felsenstein, 2004). The score table by

Jones et al. (1992) was used for the maximum likelihood estimation. The

distance matrix is symmetric, and only the upper or lower triangular part of

the matrix is used in the prediction process.

2.3 Transformation from distance matrix to

phylogenetic vector

The distance matrix was transformed into a vector for easier formulation.

The upper or lower half of the non-diagonal elements of the distance matrix

was arranged as an array of the numerical values in a certain order. This

operation was applied to all of the proteins, and the corresponding distance

matrices were transformed into vectors with the same order of the elements.

When the matrix has a size of n · n, the dimension of the vector is n(n�1)/2.

The vector is hereafter referred to as a ‘phylogenetic vector’. As described

below, n was set to 66 in this study. Let us consider the pair of protein i and

protein j, and their phylogenetic vectors jnii and jnji, transformed from the

corresponding distance matrices Di and Dj, where the subscripts i and j

indicate different sets of orthologues. Then, we applied the normalization

of the elements of each vector with the average and the standard deviation of

the elements as follows:

jn$

i i ¼
jnii � jmiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðniÞ
p ‚ ð1Þ

where jmi is a vector with the same dimension as jnii. All of the elements

of jmi are constant, and are equivalent to the arithmetic average over the

elements of jnii. Var(vi) indicates the variance over all of the elements of jnii.
The inner product of a pair of normalized vectors is reduced to the Pearson’s

correlation coefficient used for the mirror tree method. Hereafter, the

correlation coefficient is denoted as rMIRROR
ij .

rMIRROR
ij ¼ hn$

i j n$

j i: ð2Þ

2.4 Projection operator

Here we will briefly review the projection method proposed in our previous

manuscript (Sato et al., 2005). In this method, we use a unit vector jui, which

represents the evolutionary relationship of the species. We designed the unit

vector in three different ways: (1) transforming the distance matrix of 16S

ribosomal RNA (rRNA) from the same source organisms as for the proteins

under consideration, (2) averaging the phylogenetic vectors and (3) extract-

ing the principal components of the phylogenetic vectors. The unit vectors

obtained in these three ways were respectively designated as ju16Si, juAVEi
and juPC1i.

Using the unit vector jui, a projection operator P is obtained as

P ¼ I � juihuj‚ ð3Þ

where juihuj is also a projection operator onto the direction of the unit vector

jui. I represents an identity matrix with the same size as jui huj. By applying

the projection operator (3) to a phylogenetic vector, say, jnii, the component

orthogonal to jui is obtained as follows:

j«ii ¼ Pjnii ¼ jnii � juihujnii: ð4Þ

The projection operator can exclude the information about the evolutionary

relationship among the source organisms from a phylogenetic vector. The

same projection operator was applied to all of the phylogenetic vectors

under consideration. Each of the residual vectors defined by formula (4)

was normalized with the average and the standard deviation of the elements.

Consider a pair of normalized vectors, j«$

i iand j«$

j i. Then, the inner product

of the two vectors

rPROJECTION
ij ¼ h«$

i j«$

j i ð5Þ

represents the Pearson’s correlation coefficient between the residues, after

excluding the information about the evolutionary relationship from the ori-

ginal phylogenetic vectors. The Pearson’s correlation coefficients between

the residual vectors for proteins i and j, based on the unit vectors ju16Si,
juAVEi and juPC1i in the construction of the projection operator P, are rep-

resented by r16S
ij , rAVE

ij and rPC1
ij , respectively.

2.5 Partial correlation coefficient

Suppose that we have m proteins and we want to detect interacting pairs

among them. Let us consider multiple regressions of jnii and jnji with

(m� 2) phylogenetic vectors as follows:

jnii ¼ a0 þ
Xm

k 6¼i‚ j

akjnki þ jdii‚ ð6Þ

jnji ¼ b0 þ
Xm

l 6¼i‚ j

bljnli þ jdji‚ ð7Þ

where ai and bj are scalar parameters. The linear combination of (m�2)

phylogenetic vectors is expected to represent the evolutionary relationship of

the source organisms, since the principal component analysis of a number of

phylogenetic vectors suggested that the first principal component vector,

with a cumulative rate of contribution >80%, represents the evolutionary

relationship (data not shown). Therefore, the residual vectors, jdii and jdji,
essentially lack the evolutionary information of the source organisms. jnji is

excluded from the summation on the right side of the first equation. If protein

i, represented by jnii, co-evolves with protein j, represented by jnji, through a

PPI, then the effect of the co-evolution with protein j is expected to be

present in the residual vector jdii. Likewise, the effect of co-evolution

with protein i, if any, is expected to be present in jdji. Therefore, the sim-

ilarity between the two residual vectors is considered to indicate the extent of

co-evolution between proteins i and j. To evaluate the similarity between the

residual vectors, we normalized the vectors with the averages and the stand-

ard deviations, and we expressed them as jd$

i i and jd$

j i. The inner product

between the normalized residual vectors is a measure to indicate the sim-

ilarity between them, and is called the partial correlation coefficient. That is,

the partial correlation coefficient rPARTIAL
ij between jnii and jnji is expressed

as follows:

rPARTIAL
ij ¼ hd$

i jd$

j i: ð8Þ

Instead of constructing the above multiple regression models in each com-

putation, the following formula was used to obtain the partial correlation

coefficient.

rPARTIAL
ij ¼

�ðR�1Þijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR�1ÞiiðR�1Þjj

q ‚ ð9Þ

where R is the correlation coefficient matrix whose (i, j)-th element is

rMIRROR
ij , and the superscript �1 indicates the inverse of the matrix. For

the derivation of Equation (9), see Supplementary data. When the subscripts,

i and j, are omitted, r# collectively represents the type of correlation

coefficient indicated by the superscript.

Partial correlation coefficient and co-evolution
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3 RESULTS AND DISCUSSION

3.1 Prediction of protein–protein interaction by

co-evolutionary analysis

To evaluate the intensity of the co-evolution between proteins, we

calculated five types of correlation coefficients, rMIRROR, r16S,

rAVE, rPC1 and rPARTIAL, for all of the possible pairs of 179 pro-

teins, i.e. 15 931 pairs of proteins. In this analysis, the unit vectors

required for the calculations of rAVE and rPC1 were obtained by the

average operation or the principal component analysis of the phylo-

genetic vectors of the 179 proteins, whereas 177 proteins were used

as the explanatory variables of multiple regression for the calcula-

tion of the partial correlation coefficient between the remaining two

proteins. The correlation coefficients, sorted in decreasing order, are

listed in the Supplementary data, and only the top 20 members of

the lists are shown in Table 1. Interacting pairs registered in DIP are

highlighted by asterisks in the table. As shown in the table, the top

20 positions for either method were occupied by 8 or 9 interacting

protein pairs. In the case of rPARTIAL, however, the interacting pairs

were the most abundant near the top of the list, as compared to the

other methods. The fifth position of the list for rPARTIAL is occupied

by the pair, pstS and pstB. There is no description about the inter-

action between these proteins in DIP. However, both proteins are

involved in the phosphate transport system, according to their

KEGG/KO annotations. Therefore, the proteins may interact with

each other. Even if we use a high value, say 0.9, as a threshold for

the correlation coefficient to predict a PPI, rMIRROR will produce

many pairs with high scores, including many non-interacting pro-

teins, leading to more false positives in the actual prediction. This

observation agrees with the results of our previous work (Sato et al.,
2005). In contrast, the presence of interacting proteins in the top 20

list and the rapid decreases of r16S, rAVE, rPC1 and rPARTIAL guar-

antee the accuracy of prediction with the correlation coefficients,

if the threshold is set at a sufficiently high value. Out of the

four correlation coefficients, the decrease of rPARTIAL was the

steepest.

To examine the effect of the threshold values on the prediction

accuracy, we evaluated the performance by introducing four dif-

ferent thresholds, 0.9, 0.8, 0.7 and 0.6, for the correlation coefficient

in each method. The performances of the original mirror tree

method and our four proposed methods were compared in terms

of the sensitivity and the specificity, and the results are summarized

in Table 2. In each case, when a pair of proteins had a correla-

tion coefficient larger than a threshold, the pairs of proteins

were predicted to interact with each other. Table 2 shows that

rPARTIAL provided extremely high specificity at any threshold,

while rMIRROR provided high sensitivity in all of the cases, except

for the threshold ¼ 0.9. The high specificities of rPARTIAL mean

that the use of a partial correlation coefficient helps to drastically

reduce the false positives, as compared to those of rMIRROR. This

is an important feature for practical use in actual applications,

because we would start the prediction with the part with high

confidence; that is, from the top of the ranked list of predictions.

Table 1. Comparison of the top 20 protein pairs sorted in decreasing order of the correlation coefficients

Rank rMIRROR r16S rAVE rPC1 rPARTIAL

1 rpoC - rpoB 0.9883� sdhB - sdhA 0.9659� sdhB - sdhA 0.9562� sdhB - sdhA 0.9586� nrdB – nrdA 0.9360�

2 rpoC - dnaN 0.9831 priA - ileS 0.9423 priA - ileS 0.9291 nrdB - nrdA 0.9268� sdhB – sdhA 0.9103�

3 sdhB - sdhA 0.9820� carB - murC 0.9398 nrdB - nrdA 0.9271� priA - ileS 0.9242 trpB - trpA 0.6719�

4 rpoC - polA 0.9814� rpoC - rpoB 0.9288� rpoD - rpoC 0.9257� carB - murC 0.9158 gltD - gltB 0.6708�

5 groL - rpoC 0.9794 nrdB - nrdA 0.9207� carB - murC 0.9187 rpoD - rpoC 0.8953� pstS - pstB 0.5679

6 priA - ileS 0.9790 rpoD - rpoC 0.9103� rpoC - rpoB 0.8860� murC - trxB 0.8685 atpE - atpB 0.5531�

7 rpoB - nusA 0.9786� murC - trxB 0.9075 murC - trxB 0.8737 carB - trxB 0.8542 valS - gltA 0.5263

8 rpoB - rpoA 0.9783� rpoC - dnaN 0.8976 malG - malF 0.8722� rpoC - rpoB 0.8464� groL - dnaK 0.5217�

9 groL - polA 0.9780 carB - trxB 0.8961 carB - trxB 0.8605 malG - malF 0.8386� hemC - murA 0.5106

10 carB - murC 0.9777 hflB - rho 0.8925 rpoD - gyrB 0.8506 rpoD - gyrB 0.8375 gltA - pyrD 0.4598

11 uvrC - uvrB 0.9771� rpoC - nusG 0.8889� priA - serS 0.8438 priA - serS 0.8375 malE - malG 0.4474�

12 dnaX - dnaG 0.9765 rpoB - nusA 0.8752� rpoD - rpoB 0.8408� serS - ileS 0.8330 sucC - sucD 0.4373�

13 rpoB - dnaN 0.9763 rpoD - rpoB 0.8716� serS - ileS 0.8398 ileS - clpP 0.8310 rplK - valS 0.4215

14 rpoC - nusG 0.9760� priA - serS 0.8711 rpoB - nusA 0.8297� gltD - gltB 0.8245� valS - leuS 0.4039

15 uvrA - dnaX 0.9759 serS - ileS 0.8689 ileS - clpP 0.8293 ileS - sucB 0.8155 leuS - purB 0.3769

16 rpoC - gyrB 0.9756 malG - malF 0.8678� rpoC - dnaN 0.8230 sucC - sucD 0.8043� hflB - rho 0.3603

17 hflB - rho 0.9754 prlA - polA 0.8626 ileS - sucB 0.8229 hflB - rho 0.8030 dnaK - serS 0.3601

18 rpoB - polA 0.9746� ileS - clpP 0.8555 rpoD - dnaN 0.8187 rpoB - nusA 0.7999� gltX - leuA 0.3578

19 rpoA - polA 0.9745� rpoB - rpoA 0.8550� gltD - gltB 0.8157� priA - clpP 0.7838 infA - murA 0.3441

20 uvrA - lepA 0.9745 murC - glmS 0.8548 hflB - rho 0.8141 greA - pnp 0.7838 rpsN - ilvB 0.3418�

Table 2. Sensitivity and Specificity of the prediction

Method Sensitivity Specificity

0.9 0.8 0.7 0.6 0.9 0.8 0.7 0.6

rMIRROR 23.02 60.29 80.15 87.09 7.54 6.72 6.32 5.81

r16S 0.49 2.68 7.31 13.28 57.14 22.68 13.57 8.94

rAVE 0.37 1.34 3.29 6.58 60.00 45.83 27.27 18.31

rPC1 0.24 0.85 2.31 5.24 50.00 41.18 26.03 18.38

rPARTIAL 0.24 0.24 0.24 0.49 100.00 100.00 100.00 100.00

Sensitivity ¼ ðTrue positive=ðTrue positive þ False negativeÞÞ · 100%‚Specificity ¼
ðTrue positive=ðTrue positive þ False positiveÞÞ · 100%:

T.Sato et al.
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In other words, we would not be interested in the part of the

prediction with lower confidence; that is, the lower ranking mem-

bers of the prediction, in a practical situation. Table 2 also shows

that the specificities of r16S, rAVE and rPC1 were much higher than

those of rMIRROR, but less than those of rPARTIAL. On the other

hand, the sensitivities of r16S, rAVE and rPC1 were higher than those

of rPARTIAL, but less than those of rMIRROR. These observations

about r16S, rAVE and rPC1 agree with those in our previous report

with regard to the sensitivity and the specificity of the correlation

coefficients (Sato et al., 2005). Thus, the partial correlation coef-

ficient was more effective for the reduction of false positives from

the prediction of PPI by the analysis of co-evolution than the

previously proposed methods.

3.2 Prediction accuracy and the number of proteins

Out of the five types of correlation coefficients used in this study,

it is clear from the definitions that rAVE, rPC1 and rPARTIAL are

dependent on the number of proteins used for the calculations.

In contrast, rMIRROR and r16S are independent of the number of

proteins. We examined the relationship between the prediction

accuracy and the number of proteins by the following procedure.

(1) Select m proteins randomly from the 179 proteins.

(2) Compute the five types of correlation coefficients for every

possible pair of the m proteins. As for rAVE and rPC1, the unit

vector jui was estimated with the phylogenetic vectors of

the m proteins, whereas rPARTIAL for a pair was calculated

with the remaining (m�2) proteins as explanatory variables.

(3) Store the correlation coefficients in the five bins corresponding

to the different types of correlation coefficients for each pair.

(4) Repeat (1–3) until each bin for all of the possible pairs from

the 179 proteins includes 100 correlation coefficients.

The mean value of 100 correlation coefficients in a bin was used as

the corresponding type of correlation coefficient between a pair

of proteins. When the mean correlation coefficient between two

proteins was larger than a given threshold value, the proteins

were predicted to interact with each other. We examined four

cases of m, 10, 20, 30 and 40, in this study. For each case, the

sensitivity and specificity for the five types of correlation coeffi-

cients were calculated. The sensitivity and the specificity are shown

as the functions of the number of proteins in Figure 1.

The specificity for rPARTIAL increases and those for rAVE and

rPC1 decrease, as the number of proteins increases. In contrast,

rMIRROR and r16S have constant values, since they are independent

from m, as described above. In any case, however, the specificity

of rPARTIAL is basically larger than or equal to those of other

types of correlation coefficients. The difference in the dependence

on the number of proteins between rPARTIAL and other methods

suggests that the prediction with rPARTIAL is more useful for the

reduction of false positives, when a large number of proteins is

available for the prediction. At the same time, rPARTIAL is usually

effective in reducing the false positives, even when the number of

proteins is small.

The sensitivities for r16S, rAVE, rPC1 and rPARTIAL were quite

low, as compared to that of rMIRROR. The sensitivities for rMIRROR

and r16S were constant. In contrast, the sensitivities for the remain-

ing three types of correlation coefficients showed a dependence

on the number of proteins. As the number of proteins decreases,

the sensitivity for rPARTIAL increases, whereas those for rAVE and

rPC1 decrease. In any case, the sensitivity of rPARTIAL was quite

small and lower than those of the other types of correlation coef-

ficients. Although the analyses suggested that the prediction with

rPARTIAL includes more false negatives than other methods, the

high specificity for rPARTIAL is considered to compensate for

such deficits.

4 CONCLUSION

In this report, we demonstrated the potential of the partial correla-

tion coefficient as a new measure for the intensity of co-evolution

between proteins. In the numerical experiment, we showed that the

performance of the partial correlation coefficient is better than or

comparable with that of the projection method developed by Sato

et al. (2005) and the original mirror tree method. We also examined

the relationship between the prediction accuracy and the number of

Fig. 1. The relationship between the prediction accuracy and the number of proteins. The x-axis indicates the number of proteins used in the analyses,

and the y-axis indicates the sensitivity (a)–(d) or specificity (e)–(h). The performance of the five types of correlation coefficients was evaluated based on

several threshold values, which are denoted at the top of each panel.

Partial correlation coefficient and co-evolution
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proteins used for the prediction analysis. The specificity for the

prediction with rPARTIAL was the highest among the five types

of correlation coefficients, when a large number of sequences

was available. Even when the number of proteins was small, the

specificity for rPARTIAL was better than those by the other methods.

However, the prediction with rPARTIAL included many false neg-

atives, like the prediction by the projection methods. This problem

should be examined for further improvement of PPI prediction by

co-evolutionary analysis.
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