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Summary. In this paper we derive empirical influence functions for features in
kernel principal component analysis. Based on the derived influence functions, a
sensitivity analysis procedure is proposed for detecting influential objects with re-
spect to each feature, subspace spanned by specified eigenvectors, and configuration
of the features of interest. We show the usefulness of the proposed procedure with
a numerical example.
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1 Introduction

In recent years, kernel-based statistical methods have been developed such as
support vector machine (SVM), kernel regression analysis (kernel RA), kernel
principal component analysis (kernel PCA), and kernel canonical correlation
analysis (kernel CCA) [SS02]. However, there is a possibility that these meth-
ods are sensitive to a few influential objects. Sensitivity analysis has been well
developed in various methods of ordinary multivariate data analysis such as
RA, PCA, and CCA. Similarly, it is much anticipated to develop a method
of detecting influential objects which have extraordinarily large effects on the
results obtained by kernel methods as well, because it is undesirable that the
interpretation of the result of analysis depends on a few objects. However,
there has been little work on the sensitivity analysis in kernel methods so far.

In this paper, we focus on the kernel PCA and we propose a method
of sensitivity analysis in the context of the kernel PCA. The kernel PCA is
a useful method to investigate nonlinear structures of the data and remove
noise effects. It works well in ordinary circumstances to extract a few major
features from the complex data when the kernel similarity matrix is obtained.
The algorithm for computing the features reduces to solving an eigenvalue
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problem of the kernel similarity matrix. However, based on our experiences
in multivariate classical PCA, there is a possibility that the kernel PCA is
sensitive to a few influential objects.

To investigate the effect of influential objects on the features in the ker-
nel PCA, we derive empirical influence functions (EIFs) for the features by
applying a variant of perturbation theory of eigenproblems. In particular, we
consider influence statistics based on the EIF for each feature or principal
component(PC) and the EIFs for two statistics which characterize the sub-
space spanned by eigenvectors of interest, and propose a sensitivity analysis
method based on the EIF. We shall apply the proposed method to an artifi-
cial dataset, and show the usefulness of our approach for detecting influential
objects on the result of the kernel PCA.

2 Kernel principal component analysis (KPCA)

2.1 Kernel PCA (KPCA)

Kernel PCA is a method which generalizes classical PCA [SSM98]. Its goal
is to extract a feature taking into account nonlinear structures in a dataset
{xi}Ni=1, where each object xi belongs to some set X . To this end, the objects
xi are mapped to a high-dimensional space, or a Hilbert space Hx, by a map-
ping φ(.). Classical PCA can then be applied to the images {φ(xi)}Ni=1. The
goal is to find a direction w ∈ Hx such that the feature f(x) =< w, φ(x) > has
the maximal variance, where < ·, · > indicate an inner-product in the Hilbert
space. As directions orthogonal to the subspace spanned by φ(x1), · · · , φ(xN)
do not contribute to the variance, it can be restricted that the w belongs to
this space. The w can therefore be expressed as

w =
N∑

i=1

αiφ(xi). (1)

The corresponding feature f can be calculated as

f(x) =
N∑

i=1

αi < φ(xi), φ(x) >, (2)

where α = (α1, · · · , αN)T . We can consider multiple features fj (j =
1, 2, · · ·, p), choosing the corresponding directions wj sequentially under the
constraints ||wj||2 = 1 and < wj , wk >= 0 (j > k).

The use of kernel function k(x,x′) for computing < φ(x), φ(x′) > enables
us to avoid the explicit calculation of φ(x), which is called kernel trick [SS02].
Any kernel function k(·, ·) on X 2 defines a Hilbert space and a mapping φ(.)
such that ∀(x,x′) ∈ X 2, k(x,x′) =< φ(x), φ(x′) >. Examples of the kernel
functions are linear kernel:
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k(x,x′) = xTx′, (3)

and Gaussian kernel with width σ:

k(x,x′) = exp{− ‖ x − x′ ‖2 /2σ2}. (4)

The performance of the KPCA depends on the choice of the kernel functions.
The cross-validation is useful for choosing the kernel function and its optimal
parameters. When linear kernel is chosen as the kernel function, the result of
the KPCA is equivalent to that of classical PCA [SSM98].

2.2 Algorithm of KPCA

Let now K, (K)ij := k(xi, xj), be a kernel matrix. Suppose that the kernel
matrix K is centered in advance as follows:

K ← QNKQN , (5)

where QN = IN − 1
N 1N1T

N , IN is an identity matrix and 1N = (1, 1, · · · , 1)T .
Then, the kernel matrix K is decomposed as

K =
N∑

a=1

ρauauT
a = UDUT , (6)

where U = [u1, u2, · · · , uN ] and D = diag(ρ1, ρ2, · · · , ρN). Since ||w||2 =
αT Kα = 1, α = u/

√
ρ, the j−th feature fj ∈ RN is computed as

fj = Kαj =
√

ρjuj. (7)

3 Sensitivity analysis in kernel PCA

3.1 Influence function

Let us introduce case-weights Nwi/
∑

β wβ for the objects as perturbation
parameters, and define the first order partial derivative of estimated parameter
vector or function θ̂ with respect to wi as the empirical influence function
(EIF) of θ̂ for the i-th object. Or in other words, we define the EIF for the i-th
object by the first derivative with respect to ε after introducing the following
case-weight perturbation

wβ = 1 for allβ −→ wβ = Nw̃β/

N∑
β=1

w̃β, where w̃β =
{

1 (β �= i)
1 + ε (β = i) (8)

to the objects. Then it is easily verified that the first derivative of θ̂ with
respect to ε is equal to a constant times the empirical influence curve [Ham74,
Tan94].
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3.2 Perturbation to the eigenproblem of KPCA

Consider a case weight perturbation to an object. The feature f is assumed
to be expanded in a convergent power series in the neighborhood of ε = 0 as

f (ε) = f + εf (1) + O(ε2). (9)

We want to evaluate the influence of each object on the feature f by evaluating
the derivative f (1). However, it is not possible to compute such derivative
directly. Similarly, the eigenvalue ρ and eigenvector u of the kernel matrix K
are also assumed to be expanded as

ρ(ε) = ρ + ερ(1) + O(ε2), u(ε) = u + εu(1) + O(ε2). (10)

However, we can not directly evaluate the derivatives ρ(1) and u(1) as well,
because it is impossible to introduce the case-weight perturbation to an N×N
kernel matrix K. We therefore propose the following procedure.

First, the N × N kernel matrix K is decomposed or approximated by a
set of eigenvectors associated with the largest p eigenvalues as

K = UDUT = UD1/2D1/2UT = BBT , (11)

where D = diag(ρ1, · · · , ρp), U = [u1, · · · , up], B = UD1/2, and p < N (for
example, p is a rank of K). We can consider that the configuration of N rows
of B provides a p-dimensional approximation to the configuration of the N
objects in the feature space. Let us define a p× p matrix L as

L = BT B = V DV T , (12)

where D = diag(ρ1, · · · , ρp), V = [v1, · · · , vp], ρ and v are the eigenvalue
and eigenvector of matrix L, respectively. Note that the eigenvalues are the
same across matrices K and L. The j-th eigenvector uj of K = BBT has
relationships with the j-th eigenvector vj of L = BT B as follows:

uj = ρ
−1/2
j Bvj and vj = ρ

−1/2
j BTuj, j = 1, 2, · · · , p. (13)

Here we propose to introduce perturbations to the weights for N rows of the
matrix B, and evaluate the perturbed ρ, v and u, and then the perturbed f .

3.3 Perturbation to the eigenproblem of L

Let b be a column of the matrix BT , and b̄ be the mean vector of {bi}Ni=1,
where BT = [b1, b2, · · · , bN ]. Let us define the covariance matrix C as
C = 1

N

∑N
i=1(bi − b̄)(bi − b̄)T . Then, the perturbed covariance matrix C

is expanded as
C(ε) = C + εC(1) + (ε2/2)C(2), (14)
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where C(1) and C(2) are given as

C(1) = (b− b̄)(b− b̄)T − C, C(2) = −2(b− b̄)(b− b̄)T (15)

(see, e.g., [Cri85]). From the perturbation theory of eigenproblems, its eigen-
values and eigenvectors can be also expanded in a convergent power series in
the neighborhood of ε = 0 as

ρs(ε) = ρs + ερ(1)
s + O(ε2), vs(ε) = vs + εv(1)

s + O(ε2), (16)

and we have the following formulas (see, e.g. [Sib79]):

ρ(1)
s = a(1)

ss , v(1)
s =

∑
r �=s

(ρs − ρr)−1a(1)
rs vr. (17)

where a
(1)
rs = vT

r C(1)vs.
Then, the EIFs for the j-th feature fj in KPCA can be derived as

EIF (x; fj) = Bv(1)
j . (18)

Note that the expansion of eigenvectors vs cannot be used in the case where
there exist other eigenvalues which are exactly equal to or very close to ρs.

3.4 Influence functions related to the subspace spanned by
specified eigenvectors which characterize features of interest

Suppose that we have q features f1, f2, · · · , fq of interest, selected from p fea-
tures (q < p). Here we propose to evaluate the influence on the subspace
spanned by the q eigenvectors which characterize the features of interest by
using the following two statistics:

P = Vq(V T
q Vq)−1V T

q = VqV
T
q , (19)

T = VqDqV
T
q , (20)

where Dq = diag(ρ1 , · · · , ρq), Uq = diag(u1, · · · , uq), and Vq = [v1, · · · , vq].
The P indicates the orthogonal projector onto the subspace spanned by Vq ,
and T indicates the dominant part of eigen decomposition of L = V DV T .

Then, the perturbed matrices P and T are expanded as

P (ε) = VqV
T

q + ε(VqV
T
q )(1) + O(ε2), (21)

T (ε) = VqDqV
T
q + ε(VqDqV

T
q )(1) + O(ε2), (22)

where (VqV
T
q )(1) and (VqDqV

T
q )(1) can be computed, respectively, by using

the following formulas in [Tan88]:
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(VqV
T
q )(1) =

q∑
s=1

p∑
r=q+1

(ρs − ρr)−1a(1)
rs (vsvT

r + vrvT
s ), (23)

(VqDqV
T

q )(1) =
∑q

s=1

∑q
r=1(v

T
s C(1)vr)vsvT

r

+
∑q

s=1

∑p
r=q+1 ρs(ρs − ρr)−1(vT

s C(1)vr)(vsvT
r + vrvT

s ).
(24)

Note that these formulas work well even if there exist multiple eigenvalues
or eigenvalues which are very close with each other among those of interest.
Therefore, we can define the EIFs for P and T as follows, respectively:

EIF (x; P ) = P (1) = (VqV
T
q )(1), (25)

EIF (x; T ) = T (1) = (VqDqV
T
q )(1). (26)

3.5 Influence functions for the configuration of N objects

We consider the influence on the configuration of N objects. Let us define an
N × q feature matrix Fq as Fq = [f1, f2, · · · , fq] by selecting q features from p
features, which is obtained by Fq = BVq in the q-dimensional feature space.
Here we propose to use two statistics

‖ FqF
T
q ‖, ‖ FqF

T
q

{tr(FqF T
q )2}1/2

‖, (27)

which characterize the configuration of N objects. As discussed in [RE76],
the former statistic is invariant for translation and rotation, while the latter
is invariant for translation, rotation and scale change.

When we introduce the perturbation, the first statistic can be expanded
as

‖ FqF
T
q − Fq(ε)F T

q (ε) ‖= |ε|M1 + o(ε), (28)

where M1 = (tr{(VqV
T
q )(1)BT B}2)1/2, and the second statistic can be ex-

panded as

‖ FqF
T
q

{tr(FqF T
q )2}1/2

− Fq(ε)Fq(ε)T

{tr(Fq(ε)Fq(ε)T )2}1/2
‖= |ε|M2 + o(ε), (29)

where M2 = (R(1))1/2 with R(1) given as

R(1) =
tr{(VqV

T
q )(1)BT B}2

tr(VqV T
q BT B)2

−
[

tr{VqV
T
q BT B(VqV

T
q )(1)BT B}

tr(VqV T
q BT B)2

]2

≥ 0. (30)

It can be verified that R(1) is closely related to Escoufier’s RV coefficient as

RV (Fq, Fq(ε)) = 1− (ε2/2)R(1) + o(ε2). (31)

The coefficients of |ε|, M1 and M2, can be used as influence measures. Note
that both coefficients M1 and M2 are functions of P (1).
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4 Numerical example

We applied the KPCA to the toy data used in [SSM98] with two kernel func-
tions: linear kernel and Gaussian kernel with width σ = 0.5. Figure 1 shows
the scatter-plot of the features (PC2 scores versus PC1 scores) for linear ker-
nel and Gaussian kernel, respectively. It seems that the clusters can be more
clearly detected by the nonlinear effect of Gaussian kernel.

Next, we applied the proposed sensitivity analysis to the result of the
KPCA. We computed the EIF for the first feature (PC1 scores), for example.
Figure 2 shows the index-plot of the norms of the corresponding EIFs in using
linear kernel and Gaussian kernel, respectively. The objects with large effect
on the PC1 direction seem to be detected as influential objects in both cases.

Finally, we studied the influence on the subspace spanned by a few eigen-
vectors which characterize the features of interest, and that on the configu-
ration of N objects. We computed the EIFs for two statistics P and T with
q = 2 and p = 4 in applying KPCA with Gaussian kernel. Figure 3 shows
the index-plots of the Frobenius norms of the corresponding EIFs for the P
and T , respectively. We computed the proposed influence measures M1 and
M2 with q = 2 and p = 4 in applying KPCA with Gaussian kernel. Figure 4
shows the index-plots for the coefficients M1 and M2, respectively. The ob-
jects supporting the configuration seem to be detected as influential objects
in both cases. There is a possibility that detected influential objects depend
on the choice of the parameters in the kernel functions.

Fig. 1. Scatter-plot of features (PC2 versus PC1) in the KPCA with linear kernel
(left) and Gaussian kernel (right)

5 Concluding remarks

We proposed a method of sensitivity analysis in KPCA. The key idea was
to introduce case-weight perturbations to the objects in the p-dimensional
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Fig. 2. Index-plot of the norms of the EIFs for PC1 feature

Fig. 3. Index-plot of the norms of the EIFs for P (left) and T (right)

Fig. 4. Index-plot of influence measures M1 (left) and M2 (right)
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Euclidean space derived as the eigenvalue-based approximation to the Hilbert
space and then evaluate the amount of influence with influence functions.
In a numerical example it is shown that the proposed procedure is useful for
detecting influential objects. As influence measures we used influence functions
P and T related to the subspace spanned by specified eigenvectors which
characterize features of interest and coefficients M1 and M2 which reflect
the changes of the configuration of N objects. The reason why we consider
subspace and configuration in addition to individual features or individual
PCs is that usually in KPCA subspaces or configurations are more important
than individual PCs. For vector or matrix of influence functions we used the
norm with identity metric in the present paper, while the inverse of asymptotic
covariance matrix is often used as the metric to compute the Cook’s D type
measures in the ordinary PCA. We may define in KPCA similar measures
based on internal or external estimates for the covariance matrix. Studies on
metrics and on the effects of the goodness of eigenvalue-based approximation
will be topics of our future study.
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